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Abstract: Background: A major contributor to disability after hemorrhagic stroke is secondary brain
damage induced by the inflammatory response. Following stroke, global increases in numerous
cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and
peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged
tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may
be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a
comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered
within the vesicles themselves. These concentrations were correlated to patient acute neurological
condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow
Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs
were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines
detected within EVs were still correlated to poor outcomes despite their putative neuroprotective
properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulat-
ing factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9)
were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes.
Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental out-
comes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range
delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering
recovery.

Keywords: extracellular vesicles; hemorrhagic stroke; inflammation; Glasgow Outcome Scale; Glas-
gow Coma Scale-Extended; cytokines; chemotaxis

1. Introduction

Cerebrovascular accident (CVA), or stroke, is the worldwide leading cause of long-
term disability, occurring at any age and across all demographics [1]. Hemorrhagic stroke
often results in poor prognosis with a disturbing mortality rate of ~74%. Of those who
survive the initial stroke event, 90% suffer from a permanent lifelong disability [1] and
an estimated financial burden of 34 billion USD. The incidence of stroke continues to rise,
even in younger age groups, with nearly half of the US population predicted to have
cerebrovascular disease in some form by the mid 2030s [2]. The morbidity and mortality of
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hemorrhagic stroke, in addition to the extreme financial burden it imposes, highlight the
need for better prognostics to identify patients in need of early interventions.

A major contributor to disability after stroke is secondary brain damage induced by
the inflammatory response [3]. After stroke, concentrations of a wide range of cytokines in-
crease globally within the brain, cerebrospinal fluid, and in peripheral blood/plasma [4–6],
several of which have been correlated to worse outcomes after stroke [7,8]. Based on
these findings, clinical trials are currently in progress to test the efficacy of inhibition
of cytokine-mediated inflammatory processes. Inflammatory regulators, such as the IL1
system [9], are known mediators of inflammation in stroke, and this has been targeted in
several clinical trials [10]. Administration of IL1 receptor antagonists within several hours
after CVA improves overall patient outcome compared to placebo-treated patients [11].
This highlights the pathways of cytokine-mediated inflammation as promising avenues
for stroke treatment. However, a comprehensive study investigating cytokine profiles
after hemorrhagic stroke is needed to identify the most efficacious treatments as well as to
develop a biomarker panel for the identification of patients at risk of cytokine-mediated
neuroinflammation.

Cytokine diffusion, and thus their signaling influences, are functions of cellular release,
cellular uptake (via specific cytokine receptors), and extracellular degradation [12–14]. An
alternative means of cytokine release and distribution could come in the form of packaging
and enrichment in extracellular vesicles (EVs), which could provide a means of protected
transport. EVs are nano-sized, membrane-enclosed vesicles released extracellularly from
essentially all cell types and into all biofluids [15]. They may derive from the endosomal
system (referred to as exosomes) or may bud directly from the plasma membrane (some-
times called ectosomes or microvesicles) [16], as well as other forms of secreted vesicles [17].
EVs released into extracellular fluids contain and can transfer DNA, various RNAs, lipids,
and proteins [18] including cytokines for cell–cell communication, and they possess the
capability of crossing the blood–brain barrier [19]. Cytokine-enriched EVs would offer a
focused profile of the post-stroke cytokine response from a minimally invasive, periph-
eral source in circulating plasma. This avoids retrieval of CSF through painful lumbar
puncture for similar analysis, making EVs ideal targets for the identification of diagnostic
biomarkers.

In this study, we quantified the abundance of 80 cytokines in the plasma of hemor-
rhagic stroke patients. Further, we quantified the same 80 cytokines on patient plasma
EVs, assessing both EV membrane-bound and internally sequestered cytokines. We found
EV-associated cytokines to correspond to worse patient outcome compared to cytokine
profiles from plasma alone. We report here that EV-associated cytokine profiles are largely
correlated to worse acute (GCS) and chronic (GOS-E) neurological conditions regardless of
the cytokines′ individual predicted effects on neuroinflammation or neuroprotection.

2. Results
2.1. Patient Demographics and Information

In total, 31 patients were included in this analysis (21 male and 10 female). Four
patients were African American, 3 were Hispanic, and 24 were Caucasian. The average
age was 51.17 ± 15.88 SD. Age was not significantly correlated to either GCS or GOS-E
(p = 0.66, r = 0.08; p = 0.49, r = −0.13, respectively). The average BMI was 25.8 ± 4.3 SD,
which was not correlated to either GCS or GOS-E (p = 0.75, r = 0.06; p = 0.77, r = −0.05,
respectively). Multiple types of hemorrhage were recorded, including subarachnoid hem-
orrhage (SAH) (n = 7); subdural hemorrhage (SDH) (n = 6); intracranial hemorrhage
(ICH) (n = 3); intraparenchymal hemorrhage (IPH) (n = 4); intraventricular hemorrhage
(IVH) (n = 3); and a combination of up to 3 hemorrhage types (n = 8). Upon admission,
the average GCS score was 10.54 overall, 10.62 ± 4.33 SD for males, 10.40 ± 2.91 SD
for females, 13.75 ± 0.96 SD for IPH, 7.60 ± 3.27 SD for IVH, 9.40 ± 4.30 SD for ICH,
11.44 ± 4.42 SD for SAH, and 9.30 ± 3.34 SD for SDH. The average hemorrhage volume
was 32,855.49 mm3 ± 24,403.33 SD, which was negatively correlated to the GCS (p = 0.012,
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r =−0.45) and not significantly correlated to the GOS-E (p = 0.88, r = −0.03). The type of
hemorrhagic stroke was not observed to affect GCS or GOS-E. Healthy subjects include
8 males and 6 females averaging 53 years old ± 13.42 SD. A healthy pooled plasma sample
was also included to provide an “averaged” cytokine level for healthy plasma. Pooled
healthy donor plasma averaged 52 years old ± 10.96 SD. These and other demographic
data, as well as outcome scores, are shown in Table S1. Table S2 breaks down the GCS [20]
and GOS-E [21,22] scores by clinical criteria to provide a context for these scores in terms
of patient impairment.

2.2. A Limited Number of Plasma Cytokines Are Associated with Positive and Negative GCS
Scores and Positive GOS-E Scores in Hemorrhagic Stroke Patients

We evaluated the relationships among global plasma cytokine profiles with respect to
GCS (early phase measure) and GOS-E scores (30+ day outcome measure). We correlated
the concentrations of these plasma cytokines to patient GCS, recorded at the time of blood
draw—5–7 days after admission—and to their GOS-E scores obtained at least 3 months
after stroke; these were then compared to plasma cytokine concentrations of the healthy
controls. Of the cytokines correlated with GCS from the blood plasma only, granulocyte
chemotactic protein 2 (GCP-2/CXCL6) was shown to correlate to the most negative GCS
(p = 0.04, r = −0.340), followed by Eotaxin-3/CCL26 (p = 0.057, r = −0.421) and hepatocyte
growth factor (HGF) (p = 0.046, r = −0.420). Insulin-like growth factor binding protein-4
(IGFBP-4) (p = 0.067, r = −0.387) was correlated to a more negative GCS score, and tissue
inhibitor of metalloproteinases 2 (TIMP-2) (p = 0.063, r = 0.393) was correlated to a more
positive GCS score. Cytokines considered to be inflammatory (GCP-2, Eotaxin-3) were
correlated to more negative GCS than those considered neuroprotective (HGF, IGFBP-4,
TIMP-2) (Figure 1).

Figure 1. Regression analysis of plasma cytokines correlated to GCS at 5–7 days after hemorrhagic
stroke. Negative values correspond to lower GCS; positive values correspond to higher GCS. Three
anti-inflammatory cytokines were identified. HGF (r = −0.420) and IGFBP-4 (r = −0.387) correlate
to negative GCS scores, whereas TIMP-2 (r = 0.393) correlates to a positive GCS score. The 2
inflammatory cytokines identified, Eotaxin-3/CCL26 (r = −0.421) and GCP-2/CXCL6 (r = −0.340),
both correlate to negative GCS. Asterisks above figure bars indicate statistical significance. One
asterisk (*) indicates p value smaller than 0.1 (p < 0.1). Two asterisks (**) indicate p value smaller than
0.05 (p < 0.05).

Four cytokines from plasma alone that correlated to GOS-E show positive regres-
sion values. Angiogenin (p = 0.0494, r = 0.414), RANTES/CCL5 (p = 0.043, r = 0.426),
neutrophil-activating peptide 2 (NAP-2/CXCL7) (p = 0.055, r = 0.405), and osteopon-
tin/SPP1 (p = 0.0508, r = 0.412) were correlated to positive GOS-E scores (Figure 2). RANTES,
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a cytokine with a mixed inflammatory and neuroprotective profile [23,24], was most
strongly correlated to GOS-E, whereas neuroprotective cytokines NAP-2, osteopontin, and
angiogenin were correlated slightly less strongly to GOS-E.

Figure 2. Regression analysis of plasma cytokines correlated to GOS-E at 5–7 days after hemorrhagic
stroke. Negative values correspond to lower GOS-E; positive values correspond to higher GOS-E.
Four plasma cytokines, including anti-inflammatory angiogenin (r = 0.414) and osteopontin/SPP1
(r = 0.412) and pro-inflammatory NAP-2/CXCL7 (r = 0.405) and RANTES/CCL5 (r = 0.426), cor-
related to positive GOS-E scores. Asterisks above figure bars indicate statistical significance. One
asterisk (*) indicates p value smaller than 0.1 (p < 0.1). Two asterisks (**) indicate p value smaller than
0.05 (p < 0.05).

2.3. EV Surface-Bound Cytokines Correlated to Negative GCS and GOS-E Scores

In different systems, including blood, cytokines appear to be on EV surfaces as well
as contained inside them [19,25,26]. Thus, we also computed the statistical regression of
presumably EV membrane-bound cytokines (i.e., from intact EVs) to patient outcome scores
and compared them to cytokine concentrations on the surfaces of the plasma EVs from
healthy controls. Six anti-inflammatory and nine inflammatory cytokines were negatively
correlated to GCS scores. The anti-inflammatory cytokines most correlated to negative GCS
at 5–7 days post stroke include IGF-1 (p = 0.022, r = −0.409), HGF (p = 0.031, r = −0.388),
and EGF (p = 0.033, r = −0.384). Of the inflammatory cytokines identified, the highest
correlations to negative GCS include macrophage-derived chemokine (MDC/CCL22)
(p = 0.016, r =−0.432), interleukin 7 (IL7) (p = 0.02, r =−0.415), and GRO/CXCL1 (p = 0.027,
r = −0.398) (Figure 3). Unlike cytokines correlated to GCS in plasma, the EV surface-
bound cytokines do not follow a regression trend based on their pro- or anti-inflammatory
properties.

We identified 10 anti-inflammatory and 14 inflammatory cytokines from EV surfaces
that correlated to GOS-E. The chemokines MCP-4/CCL13 (p = 0.03, r = −0.389) and
fractalkine/CX3CL1 (p = 0.0319, r = −0.386) were shown to correlate to the most negative
regression values concerning GOS-E outcome score, followed by growth factor PlGF/PGF
(p = 0.038, r =−0.376) (Figure 4). EV surface-associated cytokines compared to GOS-E score
again did not follow any regression trend based on predicted pro- or anti-inflammatory
properties.
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Figure 3. Regression analysis of surface-bound EV cytokines correlated to GCS at 5–7 days after stroke. Six anti-inflammatory
and 9 pro-inflammatory cytokines all show negative values corresponding to lower GCS. Asterisks above figure bars indicate
statistical significance. One asterisk (*) indicates p value smaller than 0.1 (p < 0.1). Two asterisks (**) indicate p value smaller
than 0.05 (p < 0.05). Three asterisks (***) indicate p value smaller than 0.02 (p < 0.02).

Figure 4. Regression analysis of surface-bound EV cytokines correlated to GOS-E (30+ day outcome) from blood samples
taken at 5–7 days after stroke. Ten anti-inflammatory and 14 pro-inflammatory cytokines all show negative values
corresponding to lower GOS-E. Asterisks above figure bars indicate statistical significance. One asterisk (*) indicates p value
smaller than 0.1 (p < 0.1). Two asterisks (**) indicates p value smaller than 0.05 (p < 0.05).

2.4. Intra-EV Cytokines Are Mostly Correlated with Negative GOS-E Scores

Plasma EVs were stripped of surface proteins by protease K treatment, and the EVs
themselves were re-isolated by ultracentrifugation, followed by lysis to release intra-EV
cytokines. The only intra-EV cytokine detected to correlate to GCS was insulin-like growth
factor-binding protein 2 (IGFBP-2) (p = 0.086, r = −0.313), which indicated a negative
GCS (not shown). Four anti-inflammatory intra-EV cytokines were correlated to GOS-E
outcomes, including fibroblast growth factor 6 (FGF6) (p = 0.036, r = −0.379), oncostatin
M (p = 0.076, r = −0.323), stem cell factor (SCF/KITLG) (p = 0.053, r = −0.351), and
vascular endothelial growth factor (VEGF) (p = 0.033, r = −0.383) (Figure 5). The cytokine
oncostatin M may have inflammatory characteristics but has recently been shown to exhibit
neuroprotective effects after ischemic stroke [27,28]. The inflammatory cytokine MCP-
1/CCL2 (p = 0.003, r = −0.516) was identified as having the most negative affect on GOS-E,
followed by IL15 (p = 0.006, r = −0.484), RANTES/CCL5 (p = 0.006, r = −0.483), and IFN-γ
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(p = 0.008, r = −0.468). Inflammatory cytokine MIP-3 alpha/CCL20 (p = 0.099, r = 0.302)
was the only cytokine correlated to a positive GOS-E regression score (Figure 5).

Figure 5. Regression analysis of intra-EV cytokines (after stripping of EV membrane-bound/associated
proteins) at 5–7 days after stroke correlated to GOS-E (30+ days after stroke). All 4 of the anti-
inflammatory cytokines identified as significant or trending toward significance were correlated to
negative GOS-E. Of the 11 pro-inflammatory cytokines identified as significant or trending toward
significance, 10 show negative values corresponding to lower GOS-E; cytokine MIP-3 alpha/CCL20
was correlated to a positive GOS-E score (r = 0.302). Asterisks above figure bars indicate statistical
significance. One asterisk (*) indicates p value smaller than 0.1 (p < 0.1). Two asterisks (**) indicate
p value smaller than 0.05 (p < 0.05). Three asterisks (***) indicate p value smaller than 0.02 (p < 0.02).

2.5. EV-Associated Cytokines Share Protein–Protein Inflammatory Pathways

The Metascape platform provides insight and understanding of common and unique
protein–protein interactions and pathways achieved by the analysis of target proteins
against 40 independent “omic” databases [29]. This platform was used to help understand
potential common pathways and mechanisms shared by the cytokines we identified and
to group them into gene ontology-type presentations. Enrichment analysis of both GCS-
and GOS-E-correlated EV cytokines revealed common pathways and enrichment clusters
involved in insulin-like growth factor signaling, inflammation, and pathogenic immune
responses. For this analysis, we used various groups of cytokines (EV membrane bound,
or internally sequestered within EVs) with correlations to GCS, GOS-E, or both. Using EV
surface cytokines and intra-EV cytokines that correlated to GCS, the analysis identified
the interactions with, and regulation of, the insulin-like growth factor receptor signaling
pathway (Log10 (P) = −2.2) (Figure 6). No additional interactions were elucidated with the
inclusion of identified plasma cytokines correlated to GCS. The analysis for membrane-
bound and intra-vesicle cytokines correlated to GOS-E showed interactions with the chronic
inflammatory response (Log10 (P) = −2.9) and its regulation (Log10 (P) = −3.0) (Figure 6),
along with pain sensation. When plasma cytokines that were correlated to GOS-E were
added to the analysis, they revealed no additional interactions. We identified four EV mem-
brane surface-bound cytokines, MDC/CCL2, M-CSF/CSF1, IL7, and MIG/CXCL9, that
had significant correlations to negative scores in both GCS and GOS-E (Figures 1 and 2).
These four cytokines were significantly linked to enrichment clusters involving both in-
fluenza A (Log10 (P) = −2.25) and herpes simplex infection (Log10 (P) = −3.85). The
regulation of phagocytosis (Log10 (P) = −3.3) was also correlated. No cytokines identified
from plasma alone or from lysed vesicles were shown to overlap between GCS and GOS-E.
The resultant protein networks and enrichment clusters we found would be influenced by
our choice to use cytokines with correlations up to p = 0.1 and their correlations to GCS
or GOS-E; any bias would be assuaged by using the cytokines that did not correlate to
GCS/GOS-E for background subtraction.
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Figure 6. Protein pathway enrichment analysis and protein–protein interactions of cytokines correlated to GCS and GOS-E
were analyzed through the Metascape platform. EV cytokines identified as significant or trending toward significance were
analyzed, and cytokines not identified were used as background subtraction. Pathway and protein–protein interactions are
considered significant at ≤−2.0 Log10 (P) by the Metascape platform. Metascape analysis revealed significant interactions
with EV surface and intra-EV cytokines correlated to GCS scores at 5–7 days after stroke, including the insulin-like growth
factor receptor signaling pathway (Log10 (P) =−2.2) and its regulation (Log10 (P) =−2.2). EV surface and intra-EV cytokines
that were correlated to GOS-E scores revealed interactions relating to the chronic inflammatory response (Log10 (P) = −3.0)
and regulation of the chronic inflammatory response (Log10 (P) = −2.9). Sensory perception of pain was also identified
(Log10 (P) =−2.9). Cytokines that were only identified as significant or trending toward significance within the plasma were
also analyzed but did not yield any additional interactions through Metascape. EV surface and intra-EV cytokines that were
correlated to both GCS and GOS-E (MDC/CCL2, M-CSF/CSF1, IL7, and MIG/CXCL9) generated common protein–protein
interactions with enrichment clusters for influenza A (Log10 (P) = −2.25) and herpes simplex infection (Log10 (P) = −3.85).
The regulation of phagocytosis (Log10 (P) = −3.3) was also correlated. Analysis of all cytokines from both EVs and plasma
correlated to GCS and GOS-E did not yield any additional interactions.

2.6. Plasma and EV-Associated Cytokines Predict Differential Changes in Immune Cell Movement
and Function

To assess potential cellular implications of cytokine levels in the plasma compartment
versus the different EV compartments, we employed Core Analyses and Comparison Anal-
yses in the Ingenuity Pathway Analysis (IPA). The cytokine array scores from each patient
or healthy donor from plasma, EV lumen, and EV surface cytokines were quantitatively
analyzed to generate log(2) fold change data of stroke patient values compared to healthy
donor values. The algorithm generated heat maps from activation z-scores listing the top
50 diseases and biofunctions (Figure 7), where we note a preponderance of categories
regarding myeloid cell and lymphocyte movement/migration, homing, proliferation, in-
duction, and activation. EV-associated cytokines (both EV lumen and EV surface) generally
have higher activation z-scores than plasma cytokines and would be affiliated with stroke
patient cytokine scores based on the nature of the comparison.

Using IPA-extracted pathway data, in Figure 8A,B we show the top two derived
networks (out of 14); network scores ranged from 25 down to 1. Scores are derived from
Fisher′s exact test and are −log (p values) indicating the probabilities of random protein
associations. Both networks or interactomes had scores of 25, and each had 13 focus
molecules or nodes from which the networks initiate. Higher cytokine scores are indicated
by red shading and lower values by green shading, which are again relative to their
representation in stroke patients vs. healthy donors.
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Figure 7. Ingenuity Pathway Analysis/Comparison Analysis shows enrichment of categories related
to myeloid cell and lymphocyte movement/migration, homing, proliferation, induction, and activa-
tion. Patient and healthy donor cytokine array scores (plasma, EV lumen, EV surface) were analyzed
to compare patient vs. healthy donor values (log(2) scale). Heat map was generated from activation
z-scores yielding the top 50 diseases and biofunctions.
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Figure 8. Ingenuity Core Analyses/Comparison Analyses generated networks (top 2 shown). The top 2 derived net-
works (out of 14; network scores from 25 down to 1) using IPA-extracted pathway data are shown. Network scores
are derived from a right-tailed Fisher’s exact test, where scores as p-score = −log10 (p values) indicate probabilities of
random protein associations based on focus molecules in a total gene group. Focus molecules are nodes from which
networks initiate. Higher cytokine scores are indicated by red shading and lower values by green shading, relative to
their representation in stroke patients vs. healthy donors. Proteins clustered within the top networks/associated functions
as derived from IPA algorithms are shown as members of “interactomes”. Proteins from the arrays are labeled in larger
bold font, with the background color described above. Solid lines (edges) = direct connections between/among proteins;
dashed lines = indirect interactions. Dark blue lines = connections between array proteins; light blue lines = known in-
teractions between array proteins and other proteins in the interactome derived from the Ingenuity Knowledgebase.
(A) Network 1, “Cellular Movement; Hematological System Development & Function; Immune Cell Trafficking”.
(B) Network 2, “Cell Signaling; Cell-Cell Signaling & Interaction; Cellular Growth & Proliferation”.

We note in Figure 8A, Network 1 (“Cellular Movement; Hematological System De-
velopment & Function; Immune Cell Trafficking”), the TNFA node and inflammatory
signaling axis—IL1/IL6/TNF—and connections to the TNF receptor and lymphotoxin
(TNFB/LTA) [30]. The constituent cytokine/receptor levels change across compartments
(plasma vs. EV lumen vs. EV surface), suggesting a possible differential effect on cytokine
recipient cells depending on the plasma/plasma component source of the cytokines. Of the
CC chemokine ligands, several remain similarly elevated across the compartments (CCL13,
CCL8, CCL7, and CCL6), while others are variable (CCL26/Eotaxin-3, CCL24/Eotaxin-2,
CCL18, and CCL15). Of the CXC chemokines, CXCL6 and CXCL17 remain elevated across
compartments, while PPBP/NAP-2/CXCL7 and CXCL5 vary.
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Network 2 (Figure 8B, “Cell Signaling; Cell-Cell Signaling & Interaction; Cellular
Growth & Proliferation”) contains numerous interleukin family members and a variety
of growth factors. IL1B and the type I interferon IFNB display relatively stable and
high expression across the compartments, while the other interleukins vary. Similarly, of
the growth factors, CSF2/GM-CSF, LIF, and HGF/SF show high expression across the
compartments, while the rest vary. Curiously, all but TGFB are lowest in the plasma and
higher in the EV compartments. CXCL10/IP-10 varied as well. The network is very dense,
with the interactome showing many connections and interactions amongst the nodes. The
two networks further implicate cytokines and growth factors in immune cell signaling,
trafficking, and migration, all of which could be expected following a stroke incident.

3. Discussion

In this study, we investigated the concentrations of 80 cytokines present in circulating
plasma or associated with extracellular vesicles of hemorrhagic stroke patients approxi-
mately 1 week after a stroke event. We demonstrate that 31 hemorrhagic stroke patients
spanning five stroke etiologies may be statistically relegated to show a correlation be-
tween EV-associated cytokine concentrations and patient acute conditions and chronic
neurological outcome scores. The correlative cytokines differ in regression effect and sig-
nificance depending on their detection in the plasma or association with EVs, suggesting
that potential sequestration or delivery of cytokines by EVs is detrimental to recovery after
hemorrhagic stroke across all etiologies. The strengths of the associations of the correlation
coefficients ranged from medium in most cases to strong in a few cases. As these were
regression analyses, we used the full range of GCS and GOS-E scores available to elicit
outcome score trends correlating to cytokine levels (and their plasma vs. EV fractions). We
did not define cutoff values to make specific determinations, as this may require subjective
interpretation of individual patients’ clinical status, particularly for longer term outcomes.
This would be an ideal area of future investigation.

Extracellular RNAs, such as microRNAs, presumably from plasma EVs, have been
proposed to distinguish ischemic from hemorrhagic stroke [31]. In general, EVs are rec-
ognized as potential biomarkers for stroke but are more frequently studied as putative
therapeutics [32]. Our efforts here concerning cytokine-laden EVs as biomarkers for CVA
outcome appear to be novel.

A recent investigation by Fitzgerald et al. [19] concluded that cytokines associated
with EVs populate both inside and outside the vesicle membrane; cytokine surface binding
to the external membrane may be in the context of receptors [25], and, by other mechanisms,
cytokines may be packaged within the vesicle lumen itself [19]. Due to sequestration within
vesicles, these encapsulated cytokines may not be detected in standard cytokine assays [19].
These observations highlight two potential therapeutic avenues for hemorrhagic stroke.
First, EVs were shown to be enriched with cytokines both on the membrane surface
and sequestered within. This implicates EVs as a concentrated and protected source of
cytokines not previously considered when searching for cytokine biomarkers related to
CVA. Cytokine biomarkers (and numerous others) from both blood and cerebrospinal fluid
(CSF) have been suggested for early neurological degeneration in acute stroke settings [33]
along with other early (acute ischemic stroke setting) markers for longer term outcome [34].
Other studies in acute ischemic stroke patients implicate serum/plasma cytokines relative
to infarct size, to stroke severity (measured by the NIHSS), and to short-term prognosis
(outcome at 3 months determined by the mRS) [35]. In general, there are fewer studies
involving hemorrhagic stroke, but the relationships with pro- and anti-inflammatory
cytokines in blood and CSF and patient outcomes tend to be defined by the interplay
between macrophage and T cells [36,37].

The use of plasma EVs as reservoirs of predictive biomarkers for stroke outcome
provides a cytokine-rich diagnostic source that is relatively easy to retrieve and minimally
invasive compared to the spinal tap for CSF. Secondly, EV sequestration of cytokines
may veil the true extent of their influence in post-stroke neuroinflammation. Failure to
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detect encapsulated cytokines through traditional assays leaves a substantial gap in the
understanding of how neuroinflammation may be perpetuated, affecting CVA recovery. Cu-
riously, we have shown similar correlations to negative outcomes in both pro-inflammatory
and anti-inflammatory cytokines; however, the populations of inflammatory cytokines
correlated to a poor outcome outnumber non-inflammatory cytokines when measured as
bound to the surface of the extracellular vesicles as well as protected within. The impacts
of cytokine localization in/on EVs may have profound influences on recipient cells, which
may be determined by cytokine receptors on those cells, or modes of internalization and
intracellular release of EV luminal cytokines. While this topic goes beyond the coverage of
this study, further research is clearly needed to assess the potentially differential effects of
EV cytokine localization both at the level of recipient cells and in overall systemic impacts.

Diagnostically, the true inflammatory nature of these EVs may not be understood
through traditional cytokine measurements of EVs, and other methods may need to be
employed. The Metascape platform was used to gain insight into the interactions of
cytokines identified as significant or trending toward significant in correlation to GCS and
GOS-E. Among the 80 cytokines measured, those that were not correlated significantly or
trending toward significance were used as background subtraction in an effort to detect
cytokine interactions and biological pathways mediated only by those cytokines correlated
to GCS or GOS-E. For instance, insulin-like growth factor signaling is well recognized
in the context of ischemic stroke [38], suggesting the early stages of neuroprotection in
hemorrhagic stroke. On the other hand, for CVAs in general, the role of inflammation,
both acute and chronic, remains complicated [39] and dovetails into cytokine-driven
immune mechanisms and arachidonic acid metabolites [40] (e.g., “Cellular response to
organic cyclic compound”). The pathways identified through Metascape highlight the
complexity of cytokine interaction and their downstream effects, while also providing
potential direction for more focused study. Further investigation is needed to evaluate
whether the pro-inflammatory effect of EV-associated cytokines overcomes any beneficial
effects of anti-inflammatory cytokines packaged in the same vesicle. These observations
reveal the potential for great insight into post-stroke neuroinflammation from an easily
accessible source not previously considered.

GCS has been shown to correlate to overall patient outcome after brain injury [41]. We
identified four EV membrane surface-bound cytokines, MDC/CCL2, M-CSF/CSF1, IL7,
and MIG/CXCL9, whose concentrations all have significant correlation to a negative score
in both GCS and GOS-E (Figures 1 and 2). All four of these cytokines have been shown to
contribute to the polarization of TH1 or TH2 T-helper cells [35,42–45]. The commonality
in their roles suggests that polarization in T-helper cells may be a driving factor in the
sustained neuroinflammatory response continued from the acute neurological condition
(GCS) to overall patient outcomes reported by GOS-E.

A critical part of the immune response is the polarization of multipotential T-cells,
restricting them to mature into T-helper 1 (TH1) cells, which are responsible for inflam-
matory responses to infection, or T-helper 2 (TH2) cells, which aid in adaptive immunity
and are considered neuroprotective [44,46]. After polarization, TH1 and TH2 cells secrete
the hallmark cytokines IFN-γ and IL4, respectively [44]. When these concentrations were
compared to healthy controls, IL4 and IFN-γ levels detected in our three sample prepara-
tions largely varied among both groups. However, EV membrane-bound IL4 levels were
significantly correlated with stroke compared to healthy subjects (p = 0.038) (Figure S3).
This correlation further implicates EV surface-bound cytokines as drivers of EV-to-cell
inflammatory signaling in both acute (GCS) and chronic (GOS-E) neurological conditions
after hemorrhagic stroke. This is intriguing in light of the neuroprotective roles for TH2-
type cytokines and monocyte interactions believed necessary for neural repair following
stroke [47,48].

The involvement of lymphocytes and myeloid/monocytic cells in terms of develop-
ment and migration is also implied by the IPA data (Figures 7 and 8). We note the roles of
CCLs-1, -5, -8, -13, and -18 in T cell responses in immune function, particularly in trafficking
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and interactions between lymphocytes and monocyte-derived cells [49]. We highlight a
direct connection between the transcription factor AP1/JUN and IL1B in Figure 8B; in a
murine ischemia/reperfusion stroke model, downregulation of AP1 increases IL1B in asso-
ciation with brain injury [50]. Of course, IL1B (and other IL1 family members) are heavily
documented in stroke pathology and treatment [10]. Factors such as TGFB and VEGFA are
prominent nodes (Figure 8B), and the former connects with SMAD2/3. These are all in-
volved in vascular remodeling and blood–brain barrier repair via monocytes/macrophage
in hemorrhagic transformation following ischemic stroke [51]. The interplay of these
immune cell types and EVs in stroke certainly warrants further study.

Tying into the IPA data, the chemokine RANTES/CCL5 was identified to significantly
correlate to patient outcomes in both patient plasma and within EVs. Interestingly, the
concentrations of RANTES were correlated to a more positive outcome as a free soluble form
in the plasma and a more negative outcome within the EV lumen (Figures 2 and 5). RANTES
is widely recognized as an inflammatory cytokine with a major role in the recruitment
of leukocytes to inflammatory sites [52] but with complicated influences, particularly
regarding its receptor, CCR5 [53,54]. However, recent studies suggest that RANTES may
also contribute to neuroprotective processes. Tokami et al. [24] demonstrated that increased
expression of RANTES after ischemic stroke also increases the upregulation of growth
factors brain-derived neurotrophic factor (BDNF), epithelial growth factor (EGF), and VEGF
in neuronal cells [24]. Within blood plasma, our study also detected concentrations of EGF,
VEGF, and BDNF to correlate to a more positive outcome (Table S3); however, these were not
statistically significant. Concentrations of BDNF and EGF within the EVs were correlated
significantly to a more negative patient outcome. Further investigation is required, though
initial data supports the findings that RANTES may have both neuroinflammatory and
neuroprotective roles after brain injury and suggest that the differing effects of RANTES
may also rely on whether it is delivered via free form within plasma or sequestered within
EVs.

Of all cytokines profiled, four of the five most negatively correlated to outcome were
cytokines sequestered within EVs: MCP-1/CCL2 (p = 0.003, r = −0.516), IL15 (p = 0.006,
r = −0.484), RANTES/CCL5 (p = 0.006, r = −0.483), and IFN-γ (p = 0.008, r = −0.468)
(Figure 5). Each cytokine has a substantial contribution to the immune response, including
the recruitment of monocytes, neutrophils, and lymphocytes (MCP-1, RANTES) [52,55]; the
activation of T-cells (IL15) [56]; and the activation of macrophages (IFN-γ) [57]. These data
support our original hypothesis that encapsulated cytokines within EVs may be a source of
inflammatory signaling negatively affecting patient recovery. Future therapeutic research
may benefit from further investigation of EV-delivered cytokines. We point out that our
study utilized blood/EVs at 5–7 days following the stroke event; this is a critical time period
after the secondary disruption/dysfunction of the blood–brain barrier [58]. There may be
an increased release of EVs from brain tissue that can now access the peripheral blood (and
vice versa). Further work is necessary to determine the origins of the cytokine-laden EVs
as well as their impacts on recipient cells. Indeed, EVs are speculated to mediate cross-talk
between the brain and immune responses in brain injuries such as stroke, particularly in
an inflammatory context [59].

There are certainly caveats associated with this work. One assumption made is
that EVs are inherently stable and are not spontaneously lysing to release internalized
cytokines. Previous work [19] demonstrated stable, non-degraded cytokines within EVs
collected from various sources, suggesting that our collected plasma EVs are likely stable
as well. That same study also showed using “spike-in” assays that cytokines do not seem
to adhere to EVs non-specifically. We also assume that protease K treatment effectively
digests essentially all EV surface proteins, at least to the point of epitope loss for antibody
recognition. This is considered to be a very effective proteolysis method concerning EV
surfaces [60], and the supernatants from the protease K-treated EVs that are pelleted by
ultracentrifugation do not show reactivity on the cytokine array (Figure S4). Nonetheless,
we cannot rule out that some cytokine epitopes may be preserved by EV lipids or EV surface
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carbohydrates and would thus be counted as the “internal” pool of EV cytokines. However,
this does not change the overall outcomes regarding EV-based possession and the transport
of cytokines impacting patient outcomes after CVA. Another concern may be the presence
of lipoprotein particles that co-precipitate with the ExoQuick Ultra protocol. We evaluated
this by Western blotting for the apolipoproteins APOB and APOE (Figure S2) and saw
both of these apolipoproteins in selected EV preparations. This finding is similar to that of
Brennan et al. [61] (which found APOB and APOE in serum EV preparations using a variety
of methods, including ExoQuick Plus). We point out that in APOB and APOE, preparations
from many different cell types are listed as components of EV in both the Vesiclepedia
(http://www.microvesicles.org/, accessed on 20 May 2021) and ExoCarta (http://www.
exocarta.org/, accessed on 20 May 2021) databases. Our own work identified APOA1 and
APOA4 in the proteomic analyses of EVs derived from human medulloblastoma cell lines
and murine glioma cells [62,63], with APOB and APOE identified in EVs from other tumor
cell lines (Graner, unpublished data). Further, these proteins are thought to be components
of the “protein corona” that accumulates on serum- or plasma-treated nanoparticles [64,65].
While we cannot rule out that lipoprotein complexes may co-precipitate in our plasma
EV preparations, there remains a formal possibility that apolipoproteins may be true EV
constituents, and that debate will not be settled here. Further, it is unclear that lipoprotein
complexes contain cytokines, or to what degree, and, thus, any role of lipoprotein particle-
associated cytokines remains unknown.

We also note that the relatively small number of patients in the study precludes
a robust multivariable analysis, particularly with the number of variables we already
describe, along with many that we do not. For instance, individualized treatments, ranging
from aspirin to surgical intervention, were not accounted for in this study (and we did
not necessarily have access to such information). A detailed study involving the effects of
anti-inflammatory agents or other clinical mediation in plasma/EV cytokine profiles and
patient outcomes is beyond the scope of this work but would be a worthy effort.

Edema is another clinical aspect of hemorrhagic stroke with important clinical impli-
cations [66] and a close association with inflammatory processes [67]. Edema, particularly
perihematomal edema, is dynamic and rather variable over the 2 weeks following ICH
onset [68]. Edema can also be challenging to image [69,70]; for these reasons, we chose only
to use hemorrhage volume at the earliest available time point in our data and evaluations.
However, the relationships between this ICH sequela and biofluid EV cytokine changes
would surely be a valuable future study, as the temporal impacts on inflammation may
hold clues about the pathophysiology of stroke and also potentially targetable areas of
intervention.

Further work is necessary to determine the cellular/tissue recipients of EV-delivered
cytokines, as these will likely be points of therapeutic interventions. The effects of cytokine
presence on EVs as well as within EVs is a new area of research; in conjunction with free
plasma cytokines, there is great potential to alter the landscape of inflammatory responses
during and following CVA. We point out that this is not a definitive biomarker study, given
the complexity of the study, but it provides a novel springboard for future work.

4. Materials and Methods
4.1. Inclusion Criteria

Study subjects were admitted to the University of Colorado Hospital within 8 h after
onset of a stroke event. Thirty-one hemorrhagic stroke patients and 15 healthy non-stroke
subjects were included in the study. This was the first stroke event for all stroke subjects,
and the course of clinical care was similar across all stroke subjects as per standard of
care suggested by AHA/ASA guidelines [71]. All experiments and collections of patient
samples and data were authorized by the Colorado Multiple Institutional Review Board
(COMIRB #13-2605). Patient and healthy donor demographics are available in Table S1.

http://www.microvesicles.org/
http://www.exocarta.org/
http://www.exocarta.org/
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4.2. Peripheral Blood Collection

Whole blood was collected from the patients at 5–7 days after the stroke event. Ten
milliliters of whole blood were collected in EDTA (K2) blood tubes (Becton Dickinson, GA,
USA, BD366643). Whole blood was centrifuged at 1850 RPM (780× g) (Beckman Coulter,
IN, USA, Allegra 6) for 10 min, and plasma was collected. Plasma was collected from
healthy subjects (8 males and 6 females, avg 53 years old) as well as a pooled healthy donor
plasma sample (Innovative Research, MI, USA, ISERAB-100 mL). Plasma was stored at
−80 ◦C until analyzed.

4.3. Volumetric Analysis of Brain Hemorrhagea

Patient non-contrast head computed tomography (CT) was performed within 12 h of
hemorrhage and prior to surgical intervention per standard of care. Volumetric analysis of
CT images was conducted through manual segmentation of the visualized edema region,
using either BrainLab (BrainLab AG, Munich, Germany) or Insight Toolkit (ITK)-SNAP
(ver. 3.80) [72].

4.4. Isolation of Extracellular Vesicles

In total, 250 µL of plasma was used with the ExoQuick® Ultra EV Isolation Kit for
Serum and Plasma (System Biosciences, CA, USA, EQULTRA-20A-1) for the isolation of
EVs by precipitation per kit instructions. This includes an initial centrifugation of 3000× g
for 15 min for further removal of platelets. We utilized ExoQuick® due to the small volumes
of materials available as in [19], and we are aware of the issues involving its use, particularly
from complex biofluids such as plasma [73]. Note below that we do use ultracentrifugation
for secondary isolation of surface protein-stripped EVs. Total EV protein concentration
was measured by a bicinchoninic acid (BCA) assay (Thermo Scientific, IL, USA, A53225).

Regarding the presence of platelets in the plasma, following the 780× g centrifugation
of the whole blood to collect plasma, per ExoQuick® instructions the plasma was spun at
3000× g for 15 min; this step should remove platelets. Further, in studies where cytokines
associated with platelet EVs were measured, the vesicles were from isolated platelets that
were activated to release larger particles (frequently termed “microparticles” [26,74,75]).
As we did not isolate platelets, nor activate them, and our EVs were of considerably smaller
diameters (Figure S1), we rule out significant contributions to EV cytokine profiles from
platelets.

4.5. Validation of Extracellular Vesicle Isolation

EVs isolated from 2 healthy donor individuals and from two CVA patients were
assessed for EV protein markers using ExoCheck™ arrays (System Biosciences, CA, USA,
EXORAY210A-8) (Figure S1). Additionally, isolated extracellular vesicles from all patients
and healthy donors were analyzed for size through the nCS1TM Nanoparticle Analyzer
System (Spectradyne, CA, USA) for verification of EV sizes and concentrations (Figure S1).

Further characterization of extracellular vesicles was performed through transmission
electron microscopy (Figure S1). For each sample, 8 µL was applied to a copper mesh
grid coated with formvar and carbon (Electron Microscopy Sciences, PA, USA) for 2 min
and then gently blotted off with a piece of Whatman filter paper. The grids were rinsed
with transfers between 2 drops of MilliQ water, blotting between each transfer. Finally, the
grids were stained with 2 drops of a 0.75% uranyl formate solution—a quick rinse with the
first drop followed by 20 s of staining in the second drop. After blotting, the grids were
allowed to dry for at least 10 min. Samples were imaged on an FEI Tecnai G2 Biotwin TEM
(ThermoFisher, OR, USA) at 80 kV with an AMT side-mount digital camera (AMT Imaging,
MA, USA).

4.6. Surface Protein Stripping and Lysis of Extracellular Vesicles

Whole EVs isolated through Exoquick® Ultra were stripped of surface proteins with
2 mg/mL proteinase K (New England Biolabs, MA, USA, P8107S) in NEB buffer 2 (New
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England Biolabs, MA, USA, B7202S) and 50 mg/mL of BSA (Fisher Scientific, MA, USA,
23209) for 1 h at 37 ◦C with gentle shaking. Whole EVs were then ultra-centrifuged at
150,000× g in a Beckman Ti 70.1 rotor (k factor = 150) for 2 h at 4 ◦C (adapted from methods
from Smyth et al. [76]) to separate EVs from stripped surface proteins. The supernatant
(containing stripped and proteolyzed cytokines) was discarded. A total of 250 µL of 1x
RIPA buffer (Fisher Scientific, MA, USA, 89900) with Triton X-114 (Sigma Aldrich, MO,
USA, X114–100 mL), plus protease and phosphatase inhibitors (Roche, Mannheim, GER,
04-906-837-00, 04-693-124-00), were used to lyse vesicles with sonication (Fisher Scientific,
MA, USA, FS30) performed for 1 h at 4 ◦C. The total protein concentration of lysed EVs
was measured by BCA assay.

4.7. Plasma, EV Surface-Bound, and Intra-EV Cytokine Quantification

Cytokines in plasma, cytokines bound to membranes of isolated unlysed extracellular
vesicles, and cytokines packaged within the isolated vesicles were measured. The total
protein concentrations of these 3 preparations from subject samples were quantified using
BCA assay and adjusted to 25 µg/mL for cytokine quantification via array measuring
abundance of 80 cytokines (Raybiotech, GA, USA, AAH-CYT-5-8). Samples were analyzed
per the manufacturer’s instructions with primary antibody cocktail probing performed
overnight at 4 ◦C and secondary antibody probing for 2 h at room temperature. The
final cytokine arrays were imaged with a Cell Biosciences FluorChemQ Multiimage III
chemiluminescence imaging cabinet (FluorChemQ, ProteinSimple, CA, USA). Fluorchem
imaging software was used to quantify array signal and normalized to internal controls
included on the array. Quantification results for cytokines from the different plasma/EV
fractions are found in Table S4.

4.8. Detection of Apolipoproteins

The presence of apolipoprotein B (APOB) and apolipoprotein E (APOE) was evaluated
by Western blot, adapted from Brennan et al. 2020 [29] (Figure S2). After lysis and
quantification of extracellular vesicles as described above, protein (4 µg) was mixed with
2X Laemmli buffer with 80 mM DTT (Biorad, Hercules, CA, USA, 1610737) and heated
to 95 ◦C for 10 min. Protein was added to wells of fixed-percentage (12%) Tris-Glycine
gels (Biorad, 5671043). Gels were run in Tris-Glycine-SDS running buffer (Biorad, 1610732)
at 200 V for 43 min. Proteins were then transferred to 0.45 µm nitrocellulose membrane
using an iBlot™ 2 blotting system (Fisher Scientific, MA, USA, IB21001) with variable
voltages of 20 V for 1 min, 23 V for 4 min, and 25 V for 2 min for a total of 7 minutes.
The membranes were blocked for 1 h at RT in 1X TBS containing 5% (w/v) bovine serum
albumin. Proteins were detected by incubation with primary antibodies against APOE
(R&D Systems, AF4144, 1 µg/mL) and APOB (R&D Systems AF3556, 1 µg/mL) in blocking
solution overnight at 4 ◦C. Following 3 × 5 min washes of TBS with 0.1% Tween-20 (TBST),
membranes were incubated in HRP-labeled rabbit anti-goat IgG secondary antibody (R&D
Systems HAF017) diluted 1:1000 in blocking solution for 1 h at RT. The blots were washed
5 times in TBST for 5 min and washed a final time in TBS for 5 min. Blots were developed
with SuperSignal™ West Pico PLUS Chemiluminescent Substrate (ThermoFisher 34579)
and were imaged with a Cell Biosciences FluorChemQ Multiimage III.

4.9. Outcome Reporting

Patient physical and neurological status was evaluated by various stroke etiology-
dependent scales, including the Glasgow Coma Scale (GCS) [41], National Institute of
Health Stroke Scale (NIHSS) [77], Hunt and Hess score [78], and Fisher scale [79] for
subarachnoid hemorrhage (SAH), and intracerebral hemorrhage score [80] on admission
by a member of the patient’s care team. At hospital discharge, the modified Rankin Scale
(mRS) [81] was used to evaluate patient outcomes (Table S1). After at least 3 months post-
stroke event, the Glasgow Outcome Scale-Extended (GOS-E) [82] was applied to gauge
patient outcome.
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4.10. Metascape Analysis

Protein–protein interactions between all cytokines that correlated to GCS or GOS-E
outcome up to p ≤ 0.1 were evaluated using the Metascape platform [83]. Cytokines
correlated up to p ≤ 0.1 were analyzed against each other. The remaining cytokines of the
80 cytokines measured that were quantified, but not correlated to GCS or GOS-E, were used
as background subtraction. Protein–protein interactions were considered significant at
values of Log10 (P) = −2.0 or less by the Metascape platform, with significance increasing
as the values decreased.

4.11. Ingenuity Pathway Analysis (IPA)

Per Qiagen format, we state that data were analyzed through the use of IPA (QIAGEN
Inc., (https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis, ac-
cessed on 14 February 2021)) [84]. We used the cytokine array scores from each patient and
healthy donor from plasma, EV lumen, and EV surface cytokines. These were quantitatively
analyzed by Core Analyses and Comparison Analyses, where we extracted a list of relevant
diseases and biofunctions and resulting networks. For Comparison Analyses, we compared
patient vs. healthy donor values (log(2) scale), and the heat map displays activation z-scores
for patients relative to controls. For the network analyses, interactome quantitation’s are
based on patient vs. healthy donor values (log(2) scale), and network scores are derived
from Fisher′s exact test and are −log (p values) indicating the probabilities of random
protein associations.

4.12. Statistical Analysis and Graphics

The statistical analysis was performed using the R suite, version 3.6 [85]. All averages
are reported with a standard deviation. Pearson correlations were computed using the
Hmisc package in R. Figures were generated using ggplot2 [83]. Univariate comparisons
for individual cytokines were assessed using the non-parametric Mann–Whitey-U test. For
all tests, the alpha was set to 0.05, and all values between 0.1–0.051 to be trending toward
significance. Where applicable, the comparisons were made between patients and control
subjects.

5. Conclusions

The inflammatory response to stroke involves a series of highly complex interactions
of cytokine signaling. Further heightening this complexity is the role of extracellular vesi-
cles in delivery of these cytokines. This investigation sought to provide a comprehensive
analysis of cytokine profiles delivered by EVs after hemorrhagic stroke. We identified
several EV-contained cytokines that persistently correlate to poor neurological condition
throughout stroke recovery. Our results also implicate the cytokine-enriched EV as a highly
inflammatory agent detrimental to patient recovery after hemorrhagic stroke. Develop-
ment of future therapies for hemorrhagic stroke should consider profiling these cell–cell
communicators as a comprehensive unit, with EVs as a vehicle in which cytokines may
be transported beyond their typical diffusion range. The impact of cytokines assisted
by EV transport after CVA could prove to be a critical component in understanding the
neuroinflammatory response after hemorrhagic stroke. Continued study of the potential
inflammatory impact of EV-trafficked cytokines is necessary to further clarify their role in
hemorrhagic stroke recovery.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22157847/s1, Figure S1. Left: Diameters and concentrations of extracellular vesicles from
the plasma of hemorrhagic stroke patients and healthy controls were analyzed through the nCS1™
Nanoparticle Analyzer System (Spectradyne). Averages of these concentrations at diameters ranging
from 50 nm to 250 nm are shown. Average concentrations of stroke patient plasma EVs (red) are
slightly higher than the averages of healthy control EVs (green) at most EV diameters. Inset: Isolated
extracellular vesicles were imaged after isolation by the ExoQuick® Ultra system. Transmission
electron microscopy was performed at 250,000 × magnification. Bar = 100 nm. Right: Isolated

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.mdpi.com/article/10.3390/ijms22157847/s1
https://www.mdpi.com/article/10.3390/ijms22157847/s1
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extracellular vesicles from the plasma of 2 healthy controls and 2 stroke patients contain standard
markers of extracellular vesicles. ExoCheck™ arrays were probed with isolated extracellular vesicles,
showing positive staining for typical exosome markers (CD63, CD81, ANXA5, FLOT1, ICAM, and
TSG101) with less intensity of staining for GM130 across all 4 membranes. Membranes A and B
were probed with EVs from healthy controls. Membranes C and D were probed with EVs from
a stroke patient with a low GCS (GCS = 3), and EVs from a patient with a low outcome score
(GOS-E = 3), respectively. “Positive” and “Negative” spots refer to positive and negative controls
signals. Figure S2. Apolipoproteins APOE and APOB were detected in isolated extracellular vesicles
through Western blot. Lanes 1–4 include extracellular vesicles of healthy control subjects #s 1–4 of the
study. Lanes 5–9 include the extracellular vesicles of stroke subjects of differing stroke etiology (IPH,
ICH, IVH, SAH, and SDH, respectively). Migrations of the molecular weight ladder are depicted
at left. Figure S3. Levels of cytokines IL4 and IFN-y were compared between stroke and healthy
subjects across plasma, (whole) EV surfaces, and lysed EV preparations. Cytokine values represent
pixel density measured on blots. All sample preparations showed a wide range of IL4 and IFN-y
levels for both stroke and healthy subjects, with only EV surface levels of IL4 significantly differing
between stroke patients and healthy donors. Figure S4. Cytokine array (Raybiotech AAH-CYT-5-8)
probed with EV surface digest material. EVs were treated with protease K, and stripped vesicles
were pelleted by ultracentrifugation (100 K × g). The 100 K × g supernatant was used to probe the
arrays. Only positive controls (“+ Control”) reacted. Table S1. Patient demographic and clinical data
table. Table S2. Glasgow Coma Scale (GCS) and Glasgow Outcome Scale-Extended (GOS-E) scores
summarized to describe clinical parameters associated with a given score. Table S3. Subject data
table of p values and regression values for all 80 cytokines measured across 3 sample preparations.
Circulating plasma, whole (un-lysed) EVs, and lysed EVs stripped of membrane-bound proteins.
Table S4. Quantification of 80 cytokines in circulating plasma, from whole/EV surfaces (un-lysed
EVs), and lysed EVs stripped of membrane-bound proteins. Values for each cytokine represent the
pixel density of its corresponding blot on the membranes of Raybiotech® C5 cytokine arrays. Values
were normalized from positive and negative control blot pixel densities, and background noise was
subtracted using analysis software provided with the cytokine array kit.
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Abbreviations

AHA American Heart Association
ANAX annexin
AP1 activator protein 1
APO apolipoprotein
ASA American Stroke Association
BCA bicinchoninic acid
BDNF brain-derived neurotrophic factor
COMIRB Colorado Multiple Institutional Review Board
CCL chemokine (C-C motif) ligand
CCR chemokine (C-C motif) receptor
CD cluster of differentiation
CSF cerebrospinal fluid
CSF1 colony stimulating factor 1
CT computed tomography
CVA cerebrovascular accident
CX3CL chemokine (C-X3-C motif) ligand
CXCL chemokine (C-X-C motif) ligand
DTT dithiothreitol
EGF epidermal growth factor
EV extracellular vesicle
FGF fibroblast growth factor
FLOT flotillin
GCS Glasgow Coma Scale
GCP granulocyte chemotactic protein
GM c-s-Golgi matrix protein
GM-CSF granulocyte-macrophage colony stimulating factor
GOS-E Glasgow Coma Scale-Extended
GRO growth-activated oncogene
HGF hepatocyte growth factor
HRP horse radish peroxidase
ICAM intracellular adhesion molecule
ICH intracranial hemorrhage
IFN interferon
Ig immunoglobulin
IGF insulin-like growth factor
IGFBP insulin-like growth factor binding protein
IL interleukin
IP-10 interferon gamma-induced protein 10
IPA Ingenuity Pathway Analysis
IPH intraparenchymal hemorrhage
IVH intraventricular hemorrhage
JUN homolog of viral oncoprotein v-jun
KITLG KIT (proto-oncogene receptor tyrosine kinase) ligand
LIF leukemia inhibitor factor
LT lymphotoxin
M-CSF macrophage-colony stimulating factor
MCP monocyte chemoattractant protein
MDC macrophage-derived chemokine
MIG monokine induced by gamma interferon
MIP macrophage inflammatory protein
mm millimeter
mRS modified Rankin Scale
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NAP neutrophil activating peptide
NEB New England Biolabs
NIHSS National Institute of Health Stroke Scale
PGF placental growth factor
PlGF placental growth factor
PPBP platelet basic protein
RANTES Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted
RIPA radio-immune precipitation assay
RPM revolutions per minute
SAH subarachnoid hemorrhage
SCF stem cell factor
SD standard deviation
SDH subdural hemorrhage
SF scatter factor
SMAD homologous to SMA (small) and MAD (mothers against decapentaplegic) families
SPP secreted phosphoprotein
TBST Tris-buffered saline with Tween
TGFB transforming growth factor beta
TH T-helper cell
TIMP tissue inhibitor of metalloproteinases
TNF tumor necrosis factor
TSG tumor susceptibility gene
VEGF vascular endothelial growth factor
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