S International Journal of
Molecular Sciences

Review

LncRNA MORT (ZNF667-AS1) in Cancer—Is There a Possible
Role in Gynecological Malignancies?

Riccardo Di Fiore 1:2*

, Sherif Suleiman 1, Rosa Drago-Ferrante 3 Ana Felix 40, Sharon A. O’Toole 5@,

9

John J. O’Leary ¢, Mark P. Ward ¢(”, James Beirne ”*, Angel Yordanov 3(®, Mariela Vasileva-Slaveva 77,

Yashwanth Subbannayya 1°

check for

updates
Citation: Di Fiore, R.; Suleiman, S.;
Drago-Ferrante, R.; Felix, A.;
O'Toole, S.A.; O'Leary, J.J.;
Ward, M.P; Beirne, J.; Yordanov, A.;
Vasileva-Slaveva, M.; et al. LncRNA
MORT (ZNF667-AS1) in Cancer—Is
There a Possible Role in
Gynecological Malignancies? Int. ].
Mol. Sci. 2021, 22, 7829.
https:/ /doi.org/10.3390/ijms22157829

Academic Editor: Paola Parrella

Received: 10 June 2021
Accepted: 17 July 2021
Published: 22 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2,12

, Francesca Pentimalli '), Antonio Giordano ?'? and Jean Calleja-Agius 1'*

Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta;
sherif.s.suleiman@um.edu.mt

Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science
and Technology, Temple University, Philadelphia, PA 19122, USA; president@shro.org

3 BioDNA Laboratories, Malta Life Sciences Park, SGN 3000 San Gwann, Malta; rosa.dragoferrante@biodna.net
Department of Pathology, Instituto Portugues de Oncologia de Lisboa, NOVA Medical School, University
NOVA of Lisbon, Campo dos Martires da Patria, 130, 1169-056 Lisbon, Portugal; ana.felix@nms.unl.pt
Departments of Obstetrics and Gynaecology, Trinity St James’s Cancer Institute, Trinity College Dublin,
D08 HD53 Dublin, Ireland; shotoole@tcd.ie

Department of Histopathology, Trinity St James’s Cancer Institute, Emer Casey Molecular Pathology
Laboratory, Trinity College Dublin and Coombe Women'’s and Infants University Hospital,

D08 RX0X Dublin, Ireland; olearyjj@tcd.ie (J.].O.); wardm6@tcd.ie (M.P.W.)

Department of Gynaecological Oncology, Trinity St James’s Cancer Institute, St James Hospital, Trinity
College Dublin, D08 X4RX Dublin, Ireland; JBeirne@stjames.ie

Department of Gynecologic Oncology, Medical University Pleven, 5800 Pleven, Bulgaria;

angel jordanov@gmail.com

Department of Breast Surgery, Acibadem City Clinic, 1750 Sofia, Bulgaria; sscvasileva@gmail.com

Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular

Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway;
yashwanth.subbannayya@ntnu.no

Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale,

80131 Napolj, Italy; f.pentimalli@istitutotumori.na.it

Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy

*  Correspondence: riccardo.difiore@um.edu.mt (R.D.E); jean.calleja-agius@um.edu.mt (J.C.-A.)

10

11

12

Abstract: Gynecological cancers (GCs) are currently among the major threats to female health.
Moreover, there are different histologic subtypes of these cancers, which are defined as ‘rare” due to
an annual incidence of <6 per 100,000 women. The majority of these tend to be associated with a
poor prognosis. Long non-coding RNAs (IncRNAs) play a critical role in the normal development
of organisms as well as in tumorigenesis. LncRNAs can be classified into tumor suppressor genes
or oncogenes, depending on their function within the cellular context and the signaling pathways
in which they are involved. These regulatory RNAs are potential therapeutic targets for cancer due
to their tissue and tumor specificity. However, there still needs to be a deeper understanding of the
mechanisms by which IncRNAs are involved in the regulation of numerous biological functions in
humans, both in normal health and disease. The IncRNA Mortal Obligate RNA Transcript (MORT;
alias ZNF667-AS1) has been identified as a tumor-related IncRNA. ZNF667-AS1 gene, located in the
human chromosome region 19q13.43, has been shown to be silenced by DNA hypermethylation in
several cancers. In this review, we report on the biological functions of ZNF667-AS1 from recent
studies and describe the regulatory functions of ZNF667-AS1 in human disease, including cancer.
Furthermore, we discuss the emerging insights into the potential role of ZNF667-AS1 as a biomarker
and novel therapeutic target in cancer, including GCs (ovarian, cervical, and endometrial cancers).

Keywords: MORT (ZNF667-AS1); long non-coding RNA; epigenetics; ovarian cancer; cervical cancer;
endometrial cancer; epigenetic therapy; IncRNA-based therapy
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1. Introduction

Gynecological cancers (GCs) arise from the female reproductive organs and include
tubo-ovarian, cervical, uterine, vaginal, and vulvar cancers. One of the main risk factors
is the age at presentation, with increasing age being directly related to increased risk
of developing GCs [1]. Even though signs and symptoms may overlap, each GC may
present with different risk factors and might require different therapeutic approaches [2,3].
The mortality rate among patients with GCs is high because many cancers are detected at
an advanced stage [1].

Histologically, different types of tubo-ovarian, cervical, and endometrial cancers have
distinct pathological behavioral patterns that place these tumors into a ‘rare’ category,
with an annual incidence of <6 per 100,000 women [4]. Rare gynecological cancers (RGCs)
represent over 50% of all gynecologic tumors, which is in contrast with other common solid
tumors [5]. RGCs tend to be associated with poor prognosis, and given their rarity and,
thus, low incidence in the case of each respective entity, there is a greater risk of delayed
diagnosis due to clinical inexperience and the lack of availability of therapeutic options.
These are a few of the main challenges in the management of patients with RGCs [5-8].
Another major hurdle in developing standardized clinical management guidance is the
fact that the treatment of RGCs tends to be based on expert opinion, retrospective studies,
or extrapolation from other tumor sites with similar histology [5,6].

Despite many studies contributing to understanding disease pathophysiology, re-
search in the field of GCs poses particular scientific and technological difficulties. As
such, these challenges require a concerted effort by the scientific and research communities
to accelerate the advancement of prognostic, diagnostic, and therapeutic approaches [6].
Human transcriptomic analyses, by DNA tiling arrays and deep sequencing, have shown
that only a minor portion of the genome is transcribed into mRNA, while the vast majority
constitutes non-coding RNA (ncRNA) [9-12]. These ncRNAs are further subdivided into
small ncRNA and long ncRNA (IncRNA), based on the nucleotide length, with small
ncRNA containing less than 200 nucleotides and IncRNAs exceeding the 200 nucleotides
threshold. Furthermore, IncRNAs are transcribed in a similar fashion to the messenger
RNA (mRNA) using RNA polymerase II with 5’ end-capping, polyadenylation of the 3’
end tail, and ultimately splicing. Most IncRNAs are likely to be functionally important
because they are strictly regulated and evolutionarily conserved [13]. Many studies have
shown that IncRNAs have an important role in gene expression. Some short open reading
frames of IncRNAs have been shown to encode into micropeptides, which can modify
N6-methyladenosine, tumor angiogenesis, cancer metabolism, and signal transduction,
and thus have a potential clinical value [14]. Functional studies reveal that the influence on
key genes occurs via various mechanisms, such as chromatin modification, transcriptional,
and post-transcriptional regulation [15,16]. Furthermore, IncRNAs interact with microR-
NAs (miRNAs/miRs), mRNAs, proteins, and genomic DNA to bring about physiological
and, at times, pathological actions [17,18]. In tumorigenesis, IncRNAs can behave both as
tumor suppressors or oncogenes, resulting in up- or downregulation of specific IncRNAs
in comparison to corresponding normal tissues [17]. LncRNAs also play regulatory roles
in cancer-related pathways, such as the Hedgehog, Wnt, Notch, and PI3K/AKT/mTOR
pathways, and regulate the plasticity of cancer stem cells [17]. Dysregulation of several
IncRNAs has been implicated in different types of cancers, include breast, ovarian, cervical,
and prostate cancer. This suggests that IncRNAs could be fundamental as biomarkers
for detection of cancer and monitoring prognosis as well therapeutic targets for cancer
management [19].

The aim of this review article is to provide an updated overview of the emerging role
of mortal obligate RNA transcript (MORT; alias ZNF667 antisense RNA 1 (ZNF667-AS1)), not
only as a potential biomarker but also as a therapeutic target for novel oncologic treatments,
including management of GCs.
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2. LncRNA MORT (ZNF667-AS1): From Discovery to Function

In humans, the ZNF667-AS1 gene is located in the chromosome region 19q13.43
(Figure 1), at position 56,477,874-56,495,437 (Assembly GRCh38.p13) within a cluster of
zinc finger genes [20]. Its 1.53 kb RNA consists of a 16 kb intron in between 2 exons
of 260 and 1270 bp. The majority of the second ZNF667-AS1 exon consists of repetitive
elements—two LINEs (L2 and L1MB3) and an LTR (LTR47B) element [20]. Even though
the ZNF667-AS1 promoter is in a CpG island, which is shared with the non-homologous
ZNF667 gene, ZNF667-AS1 and ZNF667 genes do not overlap [20].

The molecular function of ZNF667-AS1 remains poorly understood; however, ZNF667-
AS1 is preferentially expressed in the cell cytoplasm and may be involved in the regulation
of protein translation via interaction with RNA-binding proteins [20]. Vrba et al. have
shown that ZNF667-AS1 silencing occurs prior to malignant transformation [20]. The study
also demonstrates that ZNF667-AS1 is ubiquitously expressed in normal healthy cells,
but is lost when the cells are immortalized, and that ZNF667-AS1 gene silencing occurs
following DNA hypermethylation of its promoter. Overall, these findings suggest that
ZNF667-AS1 has a potential tumor-suppressive mechanism of action.

Human Chromosome 19
p13.3 p13.1  p12  q131  qi132 q13.4
| | | | | |

‘(q13_43)

| ZNF667 |

56,439,329 56,477,345- - MORT (ZNF667-AS1)
56,477,874 56,495,437

CpG island mm—

Figure 1. MORT (ZNF667-AS1) and ZNF667 genomic location. MORT (ZNF667-AS1) and ZNF667 are
head-to-head antisense-sense strands. MORT (ZNF667-AS1) is also located in 19q13.43 (GRCh38p13
database, chrl9: 56,477,874-56,495,437; NCBI: NR_036521.1). ZNF667 is also located in 19q13.43
(GRCh38p13 database, chrl19: 56,439,329-56,477,345; NCBI: NM_022103.4).

3. The Functional Role of LncRNA MORT (ZNF667-AS1) in Human Diseases

ZNF667-AS1 has also been associated with the pathogenesis of several other human
diseases. It has been observed that ZNF667-AS1 inhibits inflammation following spinal
cord injury and, in turn, promotes faster recovery via the suppression of the Janus kinase-
signal transducer and activator of transcription (JAK-STAT) pathway [21]. This pathway is
involved in several key biological processes, including cell differentiation, proliferation,
immune regulation, and apoptosis [21]. A deep transcriptomic profiling of macroscop-
ically normal human Achilles” tendon samples from young and old patients revealed a
significantly reduced expression of ZNF667-AS1 in older subjects. Changes observed in
IncRNAs might be a contributing factor in age-related degeneration often seen in ten-
dons [22]. A bioinformatics study using gene ontology and KEGG enrichment analysis of
genes shows that, in asthmatic patients, the level of ZNF667-AS1 is downregulated when
compared to healthy controls. This suggests that it may play a role in the pathogenesis
of asthma [23]. ZNF667-AS1 was found to be upregulated in the plasma of patients with
myocardial infarction when compared with healthy controls. ZNF667-AS1 was found to
increase cardiomyocyte cell death mediated by the downregulation of miR-93 [24]. Further-
more, high levels of ZNF667-AS1 were found to correlate with a relatively lower recurrence
rate of periodontitis. ZNF667-AS1 was found to regulate the proliferation of periodontal
ligamental stem cells isolated from periodontitis-affected teeth [25].

In cancer, ZNF667-AS1 has been implicated in both promoting tumor progression
and tumor suppression depending on the cancer type [26-37] (Table 1). In laryngeal squa-
mous cell carcinoma (LSCC), decreased ZNF667-AS1 levels were associated with increased
migration and invasion together with increased levels of mesenchymal markers and a
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reduction in epithelial markers. These data suggest that part of ZNF667-AS1’s mechanism
of action may lie in the epithelial-to-mesenchymal transition (EMT) process [26]. In oral
squamous cell carcinoma, overexpression of ZNF667-AS1 inhibits proliferation through the
downregulation of Rho-associated coiled-coil containing protein kinase 1 (ROCK1) [27].
Chen et al. has shown that overexpression of ZNF667-AS1 with subsequent binding of
miRNA-1290 resulted in increased expression of the actin-binding LIM protein 1 (ABLIM1)
and suppression of nasopharyngeal carcinoma (NPC) progression [28]. The fact that the
downregulation of ZNF667-AS1 exhibits an inhibitory effect on the viability, invasion,
and migration of esophageal cancer cells suggests that it plays a tumor suppressor role in
esophageal cancers [29]. Yang et al. investigated the role of ZNF667-AS1 and its potential
mechanism with MEGF10 [30], a type I transmembrane protein consisting of 17 EGF-like
domains in the extracellular region, which has increased expression in the central nervous
system, retina, myoblasts, and muscle satellite cells in tissues derived from uveal melanoma
(UM). A reduced expression of ZNF667-AS1 has been shown in UM tissues and its down-
regulation is correlated with poor prognosis, indicating that ZNF667-AS1 may have an
inhibitory role in the development of UM via the regulation of cellular aggressiveness [30].
Huang et al. investigated the role of ZNF667-AS1 in lung adenocarcinoma (LUAD), where
it was shown that ZNF667-AS1 is downregulated, while miRNA-223 is upregulated [31].
Moreover, the expression of ZNF667-AS1 is significantly affected by tumor metastasis, but
not by the tumor size. The expression of ZNF667-AS1 and miRNA-223 is also inversely
correlated in LUAD with overexpression of ZNF667-AS1 inhibiting the invasion and migra-
tion of LUAD cells, whereas overexpression of miRNNA-223 has an opposite effect. These
findings suggest that ZNF667-AS1 may inhibit cancer cell migration and invasion in LUAD
via the downregulation of miRNA-223. Zhuang et al. found that ZNF667-AS1 and ankyrin
2 (ANK2) were downregulated in colorectal carcinoma [32]. Downregulated ZNF667-AS1
expression is associated with disease progression and poor prognosis. In turn, ZNF667-AS1
overexpression was shown to inhibit the proliferation, invasion, and migration of VOLO
cells in vitro and in vivo, as well as down- and upregulated Janus kinase 2 (JAK2) and
ANK?2, respectively [32]. In essence, ZNF667-AS1 interaction with ANK2/JAK2 could be
an important driver of colorectal carcinogenesis. A similar study demonstrated that both
ZNF667-AS1 downregulation in the tumor tissues and low expression of ZNF667-AS1 are
associated with low overall survival rate of patients with colon cancer [33]. Moreover, the
overexpression of ZNF667-AS1 resulted in decreased invasion and migration rates of colon
cancer cells, whereas treatment with transforming growth factor 31 (TGF-f31) resulted in
increased invasion and migration rates of the same cancer cells. Therefore, it is postulated
that ZNF667-AS1 inhibits the invasion and migration of colon cancer cells by inactivating
TGF-f1 [33]. Another study demonstrated that ZNF667-AS1 is downregulated in bladder
cancer, whereas miR-146a-5p is upregulated. Moreover, miR-146a-5p and ZNF667-AS1
seem to function antagonistically with overexpression of miR-146a-5p promoting the in-
vasion, migration, and proliferation of bladder cancer cells, whereas overexpression of
ZNF667-AS1 resulted in inhibition of the migratory and proliferative capacity of the cancer
cells. Overall, the study suggests that ZNF667-AS1 may modulate the behavior of bladder
cancer cells via the downregulation of miR-146a-5p [34]. Lu et al. demonstrated that
ZNF667-AS1 expression was downregulated in hepatocellular carcinoma (HCC), while
the expression of NOTCHI was upregulated [35]. ZNF667-AS1 and NOTCH1 were also
inversely correlated across HCC tissues. Moreover, ZNF667-AS1 expression was lower
in metastatic HCC patients than nonmetastatic HCC patients. Furthermore, ZNF667-
AS1 overexpression inhibited the migration and invasion of HCC cells, while NOTCH1
overexpression promoted the migration and invasion of HCC cells. This suggests that
ZNF667-AS1 overexpression may inhibit HCC by downregulating NOTCH].
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Table 1. Pathological role of MORT (ZNF667-AS1) in cancer.
Cancer Type Role Mechanism Effect Reference
LSCC Tumor suppressor Upregulates ZNF667 R.educ;es prohf.eratlc?n, [26]
expression migration, and invasion
oscC Tumor suppressor Downregulatgs ROCKI Reduces proliferation [27]
expression
NPC Tumor suppressor Sponge for miR-1290 Red}l cesp rohfer'atlo'n both [28]
in vitro and in vivo
ESCC Tumor suppressor Upregulates ZNF667 . Reduces Vlal.nhty,. [29]
expression migration, and invasion
Upregulates MEGF10 Inhibits Fell proliferation as
UM Tumor suppressor . well as induces apoptosis [30]
expression
and cell cycle arrest
Downregulates Inhibits cancer cell
LUAD Tumor suppressor miR-223 invasion and migration 311
Regulates ANK2/JAK2 Inhibits proliferation,
expression; invasion and migration;
CRC Tumor suppressor Regulates TGF-31 Reduces migration and [32,33]
expression invasion
Downregulates Inhibits proliferation,
Bladder Tumor suppressor miR-146a-5p invasion and migration 341
HCC Tumor suppressor Downregulateg NOTCH1  Inhibits the migration and [35]
expression invasion
Enhances cell proliferation,
AML Oncogene Sponge for miR-206 invasion, tumorigenesis, [36]
and metastasis
Glioma Oncogene Unknown Enhances cell proliferation [37]

Abbreviations. LSCC: laryngeal squamous cell carcinoma; OSCC: oral squamous cell carcinoma; NPC: nasopharyngeal carcinoma; ESCC:
esophageal squamous cell carcinoma; UM: uveal melanoma; LUAD: lung adenocarcinoma; CRC: colorectal carcinoma; HCC: hepatocellular
carcinoma; AML: acute myeloid leukemia.

ZNF667-AS1 was found to be upregulated in acute myeloid leukemia (AML) patients
and predicted poor prognosis [36]. Mechanistically, ZNF667-AS1 acts as a molecular
sponge for miR-206 and possibly potentiates AML progression via the targeting of the
miR-206/AKAP13 axis. Yuan et al. investigated both the diagnostic value and clinical
significance of the ZNF667-AS1 expression in patients with glioma, and their findings
suggest that ZNF667-AS1 could be used as a diagnostic and prognostic biomarker in
glioma patients [37].

4. Dysfunction of LncRNA MORT (ZNF667-AS1) in Gynecological Cancers

Several studies have addressed the role of IncRNAs in GCs [38]. The functional and
possible clinical roles of ZNF667-AS1 in GCs are reviewed (Table 2).
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Table 2. Expression of MORT (ZNF667-AS1) and its association with clinicopathological features in gynecological cancers.

Up- Clinico-
Related Pathological and
Cancer Type /D;):\rsrﬁziizted mRNA/miRNA Effects Sources Prognostic Ref.
Significance
MORT 72552351;:;% MORT (ZNF667-AS1)
. (ZNF667-AS1) )2 expression is affected
Ovarian . . healthy tissues; .
cancer Down miR-21 inhibits cell UWBT.289 and by tumor size, but [39]
proliferation by . not by tumor
miR-21 inhibition UWB1.289+BRCA metastasis
cells
MORT
(ZNF667-AS1) GEO datasets; 64
suppresses cancer tissues
miR-93-3 proliferation and and adjacent
. Down P metastasis via the J: Unknown [40]
Cervical PEG3 . normal tissues;
modulation of HeLa and C-33A
cancer miR-93-3p- ane
dependent
PEG3
GEO and TCGA
datasets; Low levels of MORT
MORT 60 cancer tissues (ZNF667-AS1) are
(ZNF667-AS1) and 30 normal correlated with
Down Unknown inhibits cell tissues; HeLa and decreased overall [41]
proliferation SiHa cells, and survival as well as
HcerEpic (used as  increased tumor size
control cell line)
MORT (ZNF667-AS1)
GSE6791 and could stratify CC
Down Unknown Unknown TCGA datasets  patients into the low- 421
and high-risk groups
Endometrial Sjizife:lntt’y
cancer DNA Unknown Unknown TCGA datasets Unknown [20]
(EC) methylation
Uterine carci- Sjebr;::n]:y
nosarcoma DNA Unknown Unknown TCGA datasets Unknown [43]
(Ues) methylation

4.1. Ovarian Cancer

Ovarian cancer (OC) is the gynecological malignancy with the poorest prognosis [44].
OC has a high mortality rate, which is attributed to the delayed onset of symptoms
compounded by lack of effective screening and early detection [45-49]. The incidence of
OC varies across the world, with the highest prevalence of 12 per 100,000 in non-Hispanic
white women, followed by 10.3 per 100,000 in Hispanic, 9.4 per 100,000 in non-Hispanic
black, and 9.2 per 100,000 in Asian/Pacific Islander women [50].

OC is an umbrella term for a highly heterogeneous group of tumors that are behav-
iorally, morphologically, and molecularly very different. Up to 90% of OCs are of epithelial
origin [38]. OC is commonly associated with alterations in TP53 and BRCA1/2, which
are linked with an increased risk of cancer and poor prognosis [51-53]. In spite of the
great efforts made for early detection of OC and the development of radiotherapy, novel
chemotherapy, targeted therapy, and multidisciplinary treatments, there still is five-year
overall survival rate of less than 50% patients [54]. Thus, the need for highly sensitive and
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specific diagnostic tools that identify OC at an earlier stage together with the development
of new therapeutic approaches are very much needed to improve patient survival rate.

LncRNAs have been investigated in samples of patients with OC using several molec-
ular techniques [55] and compared with samples from healthy patients or adjacent normal
tissue in patients with OC. Chen et al. found that ZNF667-AS1 is downregulated, and
miRNA-21 is upregulated in tumor tissues relative to adjacent healthy tissues of patients
with OC [39]. Such aberrant IncRNA expression has been shown to correlate clinicopatho-
logically. Functionally, the overexpression of ZNF667-AS1 has been shown to suppress the
proliferation of OC cells through miRNA-21 inhibition. Although the molecular mechanism
of the regulation of miRNA-21 by ZNF667-AS1 is still not understood, this study provides
new insights into the underlying pathogenesis of OC.

4.2. Cervical Cancer

Cervical cancer (CC) is the second leading cause of cancer-related death in women
worldwide [56]. In 2018, over half a million new cases of cervical cancer were reported,
with more than 300,000 deaths [56]. Clinically, CC is associated with persistent infection
with ‘high-risk” human papillomaviruses (HPVs). The subtypes HPV16 and HPV18 are
responsible for the majority of precancerous cervical lesions and the development of
CC [57,58]. Conventional cytology using PAP smears and liquid-based cytology are the
main screening tests utilized for the detection of pre-invasive cervical disease [59]. Patients
with early-stage CC can be successfully treated with radical hysterectomy without the
need for adjuvant chemotherapy or radiotherapy. However, in locally advanced and
advanced CC, radical surgery does not improve the chances of survival, and combinations
of chemotherapy and radiotherapy are the cornerstone of treatment. The disease becomes
more difficult to successfully treat as the stage of presentation advances. Although the
HPV-associated carcinogenic pathway of cervical cancer is better understood than other
gynecological malignancies, further in-depth studies are necessary to aid in the discovery
of novel molecular therapeutic targets that would contribute to the management of patients
with advanced or recurrent disease.

In CC, there is an aberrant expression of various IncRNAs such as HOTAIR [60],
H19 [61], GASS5 [62], CCAT2 [63], ANRIL [64], IncRNA LET [65], and IncRNA-CCHET [66].
Li et al. showed that upregulation of ZNF667-AS1 could lead to a reduction in the prolifer-
ative and metastatic potential of CC by modulating the miR-93-3p-dependent PEG3. This
suggests that this could be a potential therapeutic target for CC treatment [40].

Epigenetic silencing of ZNF667-AS1 in CC is correlated with decreased overall survival
and increased tumor bulk [41]. Moreover, the upregulation of ZNF667-AS1 inhibits the
proliferation of CC cells. Overall, these findings suggest that ZNF667-AS1 could be used
as both a biomarker and a therapeutic target in the management of CC. Zheng et al.
established an immune-related IncRNAs (IRLs) signature with a prognostic value for cases
of CC [42]. The IRLs could help establish a system whereby CC patients are stratified CC
into low- and high-risk groups. In fact, these IRLs, including ZNF667-AS1 among other
IncRNAs, significantly correlated with the infiltration of immune cells. These results could
provide future immunotherapeutic approaches that may assist with both tumor treatment
and tumor prevention.

4.3. Endometrial Cancer

Endometrial cancer (EC) includes endometrioid endometrial cancer (80%), clear cell
cancer, and uterine serous cancer [67,68]. EC is the second most common type of gyneco-
logical tumor [69], comprising 4.8% of worldwide cancer incidence and 2.1% of mortality
related to cancer [70]. EC originates in the glandular epithelial cells of the endometrium [71].
Some of the underlying risk factors include early menarche, obesity, diabetes mellitus, di-
etetic factors nulliparity, late menopause, advanced age, nulliparity, breast cancer tamoxifen
therapy, radiotherapy, and high circulating levels of estrogen [72-74]. The standard treat-
ment is total hysterectomy and bilateral salpingo-oophorectomy, which is usually effective
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for stage I disease [75]. In advanced stages, surgery is followed by radio- and /or chemother-
apy.

There is evidence of the importance of IncRNAs and their inhibitory effects on the
proliferation and metastasis of endometrial cancer cells [76-78]. Even though the underly-
ing mechanisms of EC cancer initiation and development are not clear, emerging studies
highlight the importance of IncRNAs in cancer etiology. Two studies by Vrba et al. [20,43]
demonstrated that DNA methylation status of ZNF667-AS1 is linked to tumor progression.
Overall, these results present strong circumstantial evidence for a tumor suppressor role
for ZNF667-AS1. This gene is among the most common epigenetic aberrations present
in human cancers, including EC and uterine carcinosarcoma (UCS), which is a rare and
aggressive variant of endometrial cancer [79-81].

5. Epigenetic Silencing of LncRNA MORT (ZNF667-AS1) in Cancer

The complex multifactorial nature of cancer makes diagnosis and treatment very chal-
lenging [82]. The epigenetic basis of cancer development has revolutionized cancer genetics
and provided novel therapeutic targets [83,84]. Epigenetic mechanisms involve modifica-
tion of chromatin structure, conferring differential gene expression without changing the
DNA sequence [82]. Epimutations change the genome’s structure and stability. These have
been proposed as driver mutations in the initiation of tumors and, in combination with
genetic lesions, propagate carcinogenesis [82].

In cancer, epigenetic alterations include aberrant DNA methylation (hypermethylation
and hypomethylation), histone modification (acetylation, methylation, and phosphoryla-
tion), and changes in gene expression by non-coding RNAs [85]. Moreover, several genes
that are in charge of proliferation, stem cell differentiation, and apoptosis undergo epige-
netic modifications. In particular, the aberrant DNA methylation, catalyzed by the family
of DNA methyltransferases (DNMT1, DNMT3A, and DNMT3B), is commonly linked with
genetic instability and carcinogenesis through the inactivation of specific cancer-related
genes [82]. Specifically, the abnormal methylation of CpG dinucleotides (CpG islands),
which are present in approximately 70% of human promoters, leads to direct interference
with RNA polymerase II assembly and transcription factors. DNA methylation can also
act as a platform for various chromatin remodeling enzymes, such as histone deacetylases
(HDACS), and thus lead to chromatin condensation [86,87]. However, studies show that,
during carcinogenesis, there is repression of tumor suppressor genes by hypermethylation
of their promoters [88,89].

The ZNF667-AS1 gene, as already described, was found to be a target of epigenetic
silencing, specifically at the boundary where finite lifespan human mammary epithelial
cells (HMEC) transition from mortal to immortal. An important change in gene expression
was found during the immortalization step, which involved the downregulation of ZNF667-
AS1, secondary to DNA hypermethylation of its CpG island promoter [20]. This was
supported by the ability of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine,
to reactivate the expression of ZNF667-AS1.

The DNA hypermethylation of ZNF667-AS1 and its subsequent gene silencing, has
also been identified as an early epigenetic event occurring in human carcinogenesis. This
has been observed in cohorts of patients with breast ductal carcinoma in situ, suggesting
an increased risk of breast cancer transformation and metastasis [90]. It was also reported
when comparing colon adenoma and carcinoma cohorts, further confirming that ZNF667-
AS1 silencing is likely to occur in the premalignant state [90]. ZNF667-AS1 is known to be
frequently silenced in numerous cancers such as melanoma [30], colorectal carcinoma [32],
and gastric cancer [91]. In a study characterizing the epigenetic landscape of genes encoding
IncRNAs across 6475 tumors and 455 cancer cell lines, ZNF667-AS1 was identified to be
a hypermethylated IncRNA in most tumors [92]. Overall, these studies suggest that
promoter hypermethylation may be one of the mechanisms in leading to ZNF667-AS1
silencing in cancer.
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6. Epigenetic and Gene Therapies for Gynecological Cancer Treatment

ZNF667-AS1 expression is controlled epigenetically and the ZNF667-AS1 loss due to
aberrant DNA methylation occurs in several cancers. Several studies suggest that ZNF667-
AS1 could serve as a candidate tumor suppressor gene associated with the pathogenesis and
progression of several human cancers, including GCs [20,78,90]. Thus, the expression of
ZNF667-AS1 could be restored via epigenetic modification, which may suggest therapeutic
potential for the treatment of GCs.

Novel therapeutic agents using different modes of action, having synergy with current
conventional management, are very much needed, especially in RGCs that carry a poor
prognosis. Genetic and epigenetic factors have been shown to have a central role in the
development of cancer. Gene therapy approaches have been developed, and these in-
clude suicide gene therapy, anti-angiogenic gene therapy, siRNA therapy, immunotherapy,
oncolytic virotherapy, pro-apoptotic gene therapy, and gene-directed-enzyme prodrug
therapy [93,94].

Epigenetic dysregulation frequently occurs in GCs. This includes histone modifications,
altered methylation at CpG islands within gene promoter regions, and global demethylation
leading to genome instability [95-98]. Since the epigenome can be reprogrammed, epigenetic
alterations are potentially reversible and have great plasticity, unlike genetic mutations [96-98].
Therefore, a promising therapeutic strategy, including the provision of molecular biomarkers
for diagnosis, is the possible reprogramming of the epigenome, targeting epigenetic marks and
thus changing the cell landscape [83,84,86,88,99-101]. Since epigenetic therapies simultaneously
target multiple pathways, tumors with complex mutational landscapes may be most responsive
to such therapeutic approaches as they are affected by multiple driver mutations. Furthermore,
some patients diagnosed with GCs such as ovarian, cervical, and endometrial cancers may have
biomarkers that are potentially sensitive to epigenetic drugs (epi-drugs) [95]. However, the
major challenge for epi-drugs is to translate the efficacy in vitro into effective clinical use,
which is well tolerated. Several drugs have successfully reactivated otherwise silenced
tumor suppressor genes in several cancer cell lines, but failed to achieve a significant
response in clinical trials [87,88,102]. Currently, some commonly used epi-drugs, used
alone or in combination with other anti-cancer agents, lack specificity and have generated
unwanted epigenetic modifications [103,104]. Another stumbling block is the acquired
resistance to certain epi-drugs. In the era of personalized medicine, high-throughput map-
ping technologies allow the genome and epigenome mapping of a specific cell population
from an individual patient. This facilitates testing for drug sensitivity, enabling an efficient
and specific patient-tailored treatment approach [105].

GCs can also benefit greatly from targeted gene delivery therapies. Gene therapy
usually involves directly injecting a gene, or vectors to deliver a gene, into the cells where
that specific gene is required. The cell’s gene-reading machinery uses the information in this
injected gene to produce RNA and protein molecules [106,107]. The development of safe
vectors and optimal delivery to the region of interest determines the successful outcome
of this therapy. Several studies have indicated that transcriptional regulatory sequences
of the H19 gene are potentially important candidates for cancer gene therapy [108-111].
H19 is an oncofetal gene that is paternally imprinted and maternally expressed and that
encodes a IncRNA. The key feature of H19 is that it is expressed in many human tumor
types, but there is little to no expression in normal adult tissues. This suggests a role for
H19 in promoting angiogenesis, cancer progression, and metastasis, and targeting the H19
promoter region might be used in gene therapy [112]. This enables the directing of a tumor-
selective promoter in conjunction with a cytotoxic gene. The Luc-H19 plasmid carrying a
diphtheria toxin subunit regulated by the H19 promoter is effective in early phase studies
against several ovarian cancer cell lines and primary cells [109]. The injection of this
plasmid into tumor cells can lead to a reduction in tumor size due to the high levels of
diphtheria toxin that are produced. Some IncRNAs (e.g., PTENP1, MEG3, or ZNF667-AS1)
are downregulated in cancer samples when compared to normal tissues. Thus, in these
cases, cancer cells could be treated with the delivery of tumor suppressor RNAs, resulting
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in the increased expression of the downregulated IncRNAs with subsequent reduction in
tumor size and proliferative capacity [112]. However, IncRNA overexpression is usually
technically challenging. This is because IncRNA overexpression usually requires vectors
and delivery systems able to carry long transgenes with high efficiency of transfection. One
possible alternative to circumvent the drawbacks of cell transfection in vivo is to transfect
target cells in vitro, which are then transplanted for therapy. In fact, this is carried out in
many of the in vivo studies exploring the biological role of IncRNAs [113].

7. Conclusions and Future Directions

GCs continue to have a major impact on the female population. Despite vast im-
provements in clinical care, survival rates continue to be low for many of these cancers.
The development of novel therapies for GCs is of high priority to improve the chances
of earlier diagnosis and overall survival. There is a great potential in using IncRNAs
for cancer therapy [114]. Despite the increasing amount of research involving IncRNAs,
the understanding of their role in GCs is still in its infancy. The dysregulation of many
IncRNAs has been linked with clinical features, and this could prove useful for the future
development of novel biomarkers for both diagnosis and prognosis. Overall, the studies
outlined suggest that ZNF667-AS1 acts as a tumor suppressor in several types of cancer,
including GCs (Figure 2) and might be considered as a potential diagnostic marker. It may
even prove to be an effective therapeutic target for GCs, including “rare” forms. However,
more clinical studies are required to determine the diagnostic and prognostic potential of
ZNF667-AS1 in GCs. A deeper understanding of epigenetic changes, particularly involving
IncRNAs, are likely to enhance the efficiency of the application of IncRNAs as potential
clinical biomarkers and therapeutic targets in cancer management.

RS

Ovarian Cancer

Endometrial Cancer
and
Uterine Carcinosarcoma

Figure 2. Pathological role of MORT (ZNF667-AS1) in gynecological cancers. Underexpression of MORT (ZNF667-AS1)
could promote tumor initiation in ovarian, cervical, and endometrial cancers through different molecular mechanisms

not yet well explored. In ovarian cancer, MORT (ZNF667-AS1) downregulation and consequent miR-21 overexpression

promote the proliferation of ovarian cancer cells. In cervical cancer, downregulation of MORT (ZNF667-AS1) and consequent

overexpression of miR-93-3p reduce the expression of PEG3, thereby allowing cell proliferation and EMT. In endometrial

cancer and uterine carcinosarcoma, MORT (ZNF667-AS1) expression is silenced by aberrant DNA methylation. However,

its function mechanism in these types of cancer is unknown. BioRender has been used to create parts of this figure.
(https:/ /biorender.com, accessed on 18 May 2021).
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AML acute myeloid leukemia

CC cervical cancer

CRC colorectal carcinoma

EC endometrial cancer

ESCC esophageal squamous cell carcinoma
HCC hepatocellular carcinoma

HPV human papillomavirus

IRLs immune-related IncRNAs
LncRNA long non-coding RNA

LSCC laryngeal squamous cell carcinoma
LUAD lung adenocarcinoma
miRNA/miR  micro-RNA

MORT mortal obligate RNA transcript
ncRNA non-coding RNA

NPC nasopharyngeal carcinoma

oC ovarian cancer
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PAP Papanicolaou

RGCs rare gynecologic cancers

ucCs uterine carcinosarcoma
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