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Grażyna Gromadzka

Received: 28 June 2021

Accepted: 16 July 2021

Published: 19 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, Kongju National University, Gongju 32588, Chungcheongnam-do, Korea;
ndkim123@kongju.ac.kr

2 Department of Chemistry Education, Kongju National University,
Gongju 32588, Chungcheongnam-do, Korea

* Correspondence: hyuckjin@kongju.ac.kr

Abstract: Redox-active metal ions, Cu(I/II) and Fe(II/III), are essential biological molecules for the
normal functioning of the brain, including oxidative metabolism, synaptic plasticity, myelination, and
generation of neurotransmitters. Dyshomeostasis of these redox-active metal ions in the brain could
cause Alzheimer’s disease (AD). Thus, regulating the levels of Cu(I/II) and Fe(II/III) is necessary
for normal brain function. To control the amounts of metal ions in the brain and understand the
involvement of Cu(I/II) and Fe(II/III) in the pathogenesis of AD, many chemical agents have been
developed. In addition, since toxic aggregates of amyloid-β (Aβ) have been proposed as one of
the major causes of the disease, the mechanism of clearing Aβ is also required to be investigated
to reveal the etiology of AD clearly. Multiple metalloenzymes (e.g., neprilysin, insulin-degrading
enzyme, and ADAM10) have been reported to have an important role in the degradation of Aβ in
the brain. These amyloid degrading enzymes (ADE) could interact with redox-active metal ions and
affect the pathogenesis of AD. In this review, we introduce and summarize the roles, distributions,
and transportations of Cu(I/II) and Fe(II/III), along with previously invented chelators, and the
structures and functions of ADE in the brain, as well as their interrelationships.

Keywords: redox-active metal ions; Cu(I/II); Fe(II/III); metal chelators; amyloid-degrading enzymes;
neprilysin; insulin-degrading enzyme; ADAM10

1. Introduction

In the human brain, various metal ions are essential as cofactors for numerous enzymes
for catalytic activities and neurotransmission including synaptic plasticity, myelination,
and synthesis of neurotransmitters [1,2]. Moreover, redox-active metal ions [i.e., Cu(I/II)
and Fe(II/III)] have critical roles in oxidative metabolism. Therefore, the homeostasis
of metal ions is tightly regulated [1–6]. Dyshomeostasis of Cu(I/II) and Fe(II/III) could
overproduce reactive oxygen species (ROS) via Fenton-like reactions to elevate oxidative
stress and induce the malfunctioning of mitochondria. Additionally, defects in energy
metabolism, aberrant axonal transport, and inflammation have been observed which
potentially lead to neurodegenerative disorders [7–10]. Once the redox-active metal ions
bind to amyloid-β (Aβ), a major risk factor of Alzheimer’s (AD), rapid peptide aggregation
and formation of toxic oligomeric species are observed, along with overproduction of
ROS [11–14]. Therefore, the redox-active metal ions, Cu(I/II) and Fe(II/III), could be
related to neuronal impairments, subsequently leading to cognitive defects. In order to
reduce the risk of neurodegeneration by Cu(I/II) and/or Fe(II/III), the metal chelation
strategy has been suggested as the treatment of AD; however, only targeting metal ions
could not cure the disease completely (vide infra).

In addition to redox-active metal ions, clearance of Aβ in the brain is critical for ame-
liorating neurotoxicity. Amyloid degrading enzymes (ADE), including neprilysin (NEP),
insulin-degrading enzyme (IDE), and ADAM10, are involved in the Aβ removal process

Int. J. Mol. Sci. 2021, 22, 7697. https://doi.org/10.3390/ijms22147697 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-8584-1823
https://orcid.org/0000-0001-8769-2967
https://doi.org/10.3390/ijms22147697
https://doi.org/10.3390/ijms22147697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22147697
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22147697?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 7697 2 of 31

to regulate the protein levels in the brain [15–17]. Since the levels and activity of ADE
have been reported to be decreased with aging, the risk of AD occurring increases [15,18].
Thus, enhancing the levels and/or actions of ADE could be a potent therapeutic strategy to
AD [18,19]. Moreover, although the redox-active metal ions could affect the activity and
levels of ADE, the influence of Cu(I/II) and Fe(II/III) on the enzymatic activity of ADE still
needs to be investigated in many aspects.

In this review, we summarize the distributions and roles of redox-active metal ions
[i.e., Cu(I/II) and Fe(II/III)] in both healthy and diseased brains, as well as previously
developed chemicals to regulate the levels of those metal ions. Moreover, the effect of
Cu(I/II) and Fe(II/III) on the activity and/or levels of ADE is also introduced.

2. Cu(I/II)
2.1. Cu(I/II) Distributions in the Nervous System

The Cu ion is the third most abundant transition metal ion (ca. 100 mg) in the
human body [20]. It works as a cofactor that binds to various metalloenzymes and assists
their activation [4,21]. Since it usually exists as cuprous ions [Cu(I)] and cupric ions
[Cu(II)], Cu(I/II) can serve as an electron transporter. Cu(I) has an electron configuration
of [Ar]3d10, and Cu(II) has [Ar]3d9 [20,22]. In addition, Cu(I/II) plays a key role in energy
metabolism, signal transduction, reproduction, and development that are very important
for physiological functions. For example, cytochrome c oxidase in mitochondria needs Cu
ions for its activation, and dopamine-β-hydroxylase utilizes it for the cellular secretory
pathway [23–26]. Cu ions can be detected in various points of the brain such as the
soma of cortical pyramidal and cerebellar granular neurons, neuropil within the cerebral
cortex, hippocampus, cerebellum, and spinal cord [27]. On average, ca. 100 µM of Cu
ions has been detected in the brain; however, some parts of the brain have a 2- to 3-fold
higher concentration than the other regions [28]. In particular, the ceruleus has a 1.3 mM
concentration, which is a part of the brain related to stress and panic. The substania
nigra, the dopamine-producing region of the brain, also has a high Cu ion concentration
(ca. 400 µM) [28].

The extracellular level of Cu ions depends on the cellular environment. In cere-
brospinal fluid (CSF), only 0.5–2.5 µM of Cu ions exists, while the synaptic cleft contains
30 µM [29–31]. Usually, the Cu ion concentration is 2–3-fold higher in neurons [32]. In
the brain, Cu ions exist in two types: (i) those tightly bound to the proteins, or (ii) those
in labile pools [33]. Several regions of the brain such as the soma of cortical pyramidal
and cerebellar granular neurons, the hippocampus, the cerebellum, and the spinal cord
have labile copper stores [27]. There are also labile pools with a low concentration in the
extracellular regions [34].

2.2. Regulations of Cu by Metallochaperones
2.2.1. Copper Chaperone for Superoxide Dismutase (CCS)

A 54 kDa metalloprotein, CCS, is found in the cytosol, mitochondria, and nucleus and
transports Cu(I) to superoxide dismutase (SOD1) which is the major antioxidant [35–37].
For its activation, SOD1 needs catalytic metal ions such as Cu or Mn ions. CCS has three
domains for its function: (i) domain I at the N-terminus with Cu binding motif MXCXXC,
(ii) domain II with a similar structure to SOD1 which can bind to SOD1, and (iii) domain
III containing Cu(I) with the CXC Cu binding motif [35,36,38]. Once docked to SOD1, a
disulfide bond is formed between Cys244 of CCS and Cys57 of SOD1, leading to activation
of SOD1. On the other hand, SOD1 activity was greatly decreased (70–90%) upon the CCS
gene [35,36].

2.2.2. Antioxidant Protein 1 (Atox1)

Atox1 is a cytosolic metallochaperone protein that delivers cytosolic Cu to ATP7A and
ATP7B via a ligand exchange [39–41]. The role of Atox1 is to protect cells from attacking
ROS. Sequestrated Cu ions by Atox1 are transferred to the trans-Golgi network (TGN)
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of secretory vesicles [42,43]. Atox1 consists of four β-sheets and two α-helices forming
a βαββαβ structure. First βα has a Cu binding motif, MXCXXC, and binding of Cu(I)
induces a conformational change to form a bent S–Cu(I)–S bond. Recently, it has been
found that tumors need a high level of Cu ions. Breast cancer cells need Atox1 for migration
and identification of partner proteins [44].

2.2.3. Cytochrome C Oxidase Assembly: Cox11, Cox17, Cox19, Sco1, and Sco2

Cox11, a 28 kDa metallochaperone, is located in the mitochondrial inner membrane. A
single transmembrane helix allows it to be tethered to the membrane [45]. The Cu(I) binding
domain is located at the C-terminus of the protein, which forms a dimer. Each monomer
can coordinate one Cu(I) via three thiolate ligands [46]. It has been reported that Cox11
helps the formation of the CuB site of cytochrome c oxidase [47]. On the other hand, Cox17,
an 8 kDa metallochaperone, delivers Cu(I) to form both CuA and CuB sites [48,49]. Cox17
is found in the cytosol and mitochondrial intermembrane space. Among the seven Cys
residues of the protein, three Cys residues are important for the function of Cox17 (CCXC
motif), and one Cox17 can bind to three Cu(I) [50]. This protein delivers Cu(I) to Sco1,
an intermediate protein on the way to cytochrome oxidase [51]. Another Cu(I)-binding
protein, Cox19, has a similar structure to Cox17, and it is located in the mitochondrial
intermembrane space as well. Cox19 is expected to contribute to the transportation of Cu
ions into cytochrome c oxidase [52,53].

Both Sco1 and Sco2 are cytochrome c oxidase assembly proteins which are Cu metal-
lochaperones [54–56]. Sco1 is a 33.8 kDa protein with three Cu binding amino acid residues
at Cys169, Cys173, and His260. It has 7 α-helices, 10 β-strands, and 2 turns [57,58]. Its
location is in the inner mitochondrial membrane, where it transports Cu ions to the CuA
site on Cox2. The other important role is controlling the localization and abundance of
Ctr1 for Cu homeostasis [59,60]. Cytochrome c oxidase assembly becomes defective when
there are mutations in Sco1 and Sco2, inducing Cu ion deficiency [61]. Sco2 is a 15.1 kDa
protein consisting of 136 amino acids and is important for transferring Cu ions to the CuA
site of cytochrome c oxidase subunit II. The redox state of the Cys residue in Sco1 is also
regulated by Sco2, which is a thiol-disulfide oxidoreductase [61,62].

2.3. Uptake of Cu(I/II) through Blood–Brain Barrier

Important regions in the brain for regulating the uptake and release of Cu(I/II) are
the blood–brain barrier (BBB) between the blood and brain interstitial fluid, and the blood–
CSF barrier (BCB) between the blood and CSF [63–65]. The intracellular concentration
of Cu ions should be tightly controlled since they can produce harmful chemical species
(e.g., ROS) during the oxidation/reduction process [64,66,67]. Copper transporter-1 (Ctr1),
ATP7A, ATP7B, glutathione (GSH), metallothioneins (MTs), and Cu chaperone regulate Cu
ion transportation [68]. Reduction of Cu(II) to Cu(I) should be required before entering
the brain [69,70]. In yeast, Fre1p and Fre2p, ferric reductases, are responsible for this
process [69–71]. Reduced Cu(I) can be transported into the brain via multiple pathways
driven by numerous proteins [72–74]. A more detailed description of this process, along
with the related proteins, is summarized in the following sections.

2.3.1. Copper Transporter-1 (Ctr1), Ctr2, and Ctr6

Ctr1 was first discovered in Saccharomyces cerevisiae as a high-affinity Cu uptake pro-
tein. It is a membrane protein composed of 190 amino acids and that is involved in the
transport of Cu ions from the blood to cells [72,73]. The N-terminus is an extracellular
part which is less conserved, while the C-terminus is a cytoplasmic part and highly con-
served. Between them, there are three transmembrane domains. Met- and His-rich motifs
(7MGMSYM12, 40MMMMPM45, 3HSHH6, and 22HHH24) at the N-terminus are involved in
Cu binding [74–76]. Fluorescence resonance energy transfer (FRET) experiments revealed
that Cu binding to the extracellular part of Ctr1 induces a conformational change in the
cytosolic part, and this conformational change is a driving force for releasing Cu ions into



Int. J. Mol. Sci. 2021, 22, 7697 4 of 31

the cytosol [77–79]. Ctr1 has a Km of 2–5 µM and does not need ATP consumption for Cu
ion transport. Ctr1 only uptakes Cu(I), not Cu(II), and Ctr1 transports Cu ions in both
the liver and intestine of mice, allowing various proteins to function in the cytosol [80].
Ctr1 is mainly present in the plasma membrane and the intracellular vesicle. Under a high
Cu concentration, Ctr1 moves from the plasma membrane to the cytosol and is decom-
posed [74]. The Ctr2 gene found in the human genome has homology with Ctr1, but it
differs from Ctr1 in that there is no extended portion of the N-terminus, but the sequences
of the transmembrane domain, which are considered essential for Cu transport, are almost
the same [81,82]. Unlike Ctr1, the proportion of Ctr2 distributed on the plasma membrane
is less than 5%, and the rest is intracellular [83,84]. Therefore, it was expected to have a
different function from Ctr1, suggesting that the absence of the N-terminus of Ctr2 would
function as Cu uptake in the plasma membrane with a low affinity. Recent studies revealed
that the vacuole can store and mobilize Cu ions [85,86]. Ctr6, a newly discovered Cu
transporter in Schizosaccharomyces pombe, is translated under Cu-deficient conditions. Both
Ctr2 and Ctr6 are localized to the vacuole, and their functions transfer Cu ions stored in
vacuoles to the cytosol [87,88].

2.3.2. ATP7A and ATP7B

ATP7A and ATP7B are homologous ATP-driven transporters, types of ATPase. Their
size is 160–170 kDa, containing eight transmembrane domains and several cytosolic do-
mains. The N-terminus is located in the cytosol and has six Cu binding motifs consisting
of GMXCXXC [89]. ATP hydrolysis occurs at the ATP binding domain located between
transmembrane domain 6 (TM6) and TM7. The A-domain between TM4 and TM5 plays a
role in inducing a conformational change during ATP hydrolysis [90–92]. Normally, they
are located in the TGN and receive Cu ions from the Cu chaperone Atox1 into the Cu
binding domain. This causes a conformational change, and Atox1 can deliver different
Cu ions to different binding sites [93,94]. Cu ions are transferred to the TM domain by
ATP hydrolysis and phosphorylation of Asp residues, which cause Cu ions to be exposed
to the lumen of TGN. ATPase is dephosphorylated while releasing Cu ions and returns
to its original state. The low pH of TGN plays a key role during this action [95]. There
is about 60% sequence homology between ATP7A and ATP7B, but the functional aspects
are not identical. ATP7A is faster, whereas ATP7B has a higher affinity for Cu [96,97].
Unlike Ctr, they are responsible for the transport of Cu ions out of the cytosol using the
energy from ATP hydrolysis. The released Cu ions move to the other tissues by ATP7A
and to the bile by ATP7B. Since neither ATPase exists in the plasma membrane, Cu ions are
not directly transported across the plasma membrane but are transported to intracellular
vesicles, allowing the vesicles to be fused with the plasma membrane for release [98–100].
Additionally, these Cu-APTases deliver Cu ions to many Cu-binding proteins. Cu-binding
proteins in the plasma membrane receive Cu ions while ATP7A and APT7B export Cu ions
through the vesicle [101].

2.3.3. Glutathione (GSH)

GSH is a tripeptide (Glu-Cys-Gly) existing in high concentrations (0.5–10 mM) which
is deeply involved in the oxidation/reduction reactions occurring in the body. As an
antioxidant, it prevents cell damage caused by ROS and heavy metals [102,103]. There are
a reduced form of GSH and an oxidized form of GSSG, and the ratio between these two
forms is a measure of the oxidative stress of cells [104]. In normal cells and tissues, the
GSH form is more than 90% [105]. Cu(II) is reduced by GSH to become Cu(I), and then it
forms a Cu(I)–GSH complex [106]. GSH plays a role in regulating the function of Cu ion
uptake by Ctr1 [107,108]. It is known that GSH also regulates the functions of ATP7A and
ATP7B, which are involved in the transport of Cu ions, by regulating the binding of Cu
ions to ATPase [109,110].



Int. J. Mol. Sci. 2021, 22, 7697 5 of 31

2.3.4. Metallothioneins (MTs)

MTs are small molecule proteins present in almost all living organisms and have very
high affinity with essential or toxic mono- and divalent transition metal cations. Due to
their Cys-rich characteristic, they form metal–thiolate clusters selectively with metal ions
having an electron configuration of d10 [111]. In particular, the binding to Zn(II) or Cu(I)
plays a biologically important role [112–114]. They protect the body by releasing highly
toxic transition metal ions and reduce oxidative stress induced by ROS and/or reactive
nitrogen species [112,115]. There are four types of mammalian copper MT, from 1 to 4,
and they consist of 61 to 68 amino acids. A total of 20 Cys are arranged in the form of
Cys-Cys, Cys-X-Cys, and Cys-X-X-Cys [116,117]. They have a shape similar to a dumbbell,
and two metal-thiolate clusters at both ends are connected by flexible sequences. MTs
also exist in the liver, kidneys, and intestines and are widely distributed in the brain and
neurons [118,119].

2.4. Cu in Normal and Diseased Conditions
2.4.1. Cu in Nervous Systems under Normal Conditions

In normal conditions, Cu ions have two important physiological roles. First, Cu(I/II)
provides a driving force for several oxidation/reduction reactions performed by enzymes.
As a cofactor for various enzymes, Cu(I/II) becomes a redox-active metal center in those en-
zymes [120]. In an electron transport chain occurring in mitochondria, Cu(I/II) can regulate
the levels and activity of enzymes for energy production. In addition, Cu(I/II) regulates
neurotransmitters, neuropeptides, and dietary amines. Second, Cu(I/II) acts as a signal and
excitotoxicity modulator in neurotransmission [120]. In the brain, specific enzymes such as
dopamine β-monooxygenase (DβM), peptidylglycine α-hydroxylating monooxygenase
(PHM), tyrosinase, and Cu amine oxidase use Cu ions for their cofactor [121]. Labile Cu
ions are also utilized for neuronal activity in the brain. Upon depolarization, micromolar
range of Cu ions is excreted to the extracellular space using hypothalamus tissues or synap-
tosomes [34,122]. The intracellular origin of these Cu ions is ATP7A activated by NMDA
receptors [123]. The basic roles of Cu(I/II) in the normal brain are summarized in Figure 1.
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Figure 1. The roles and influence of Cu(I/II) on normal (left) and AD-affected (right) conditions.

2.4.2. Cu under Diseased Conditions

It is important to maintain the homeostasis and precise compartmentalization of metal
ions in the neuronal signaling process to prevent toxic effects and dysfunctional activity [1].
Failure in homeostasis and compartmentalization can induce neuronal toxicity, eventually
leading to AD. Moreover, redox-active Cu(I/II) binds to Aβ, which can generate ROS
by Fenton chemistry and/or the Haber-Weiss reaction through the redox cycle, leading
to oxidative stress, and form toxic Cu–Aβ aggregates which could lead to neurotoxicity
and neurodegeneration [4,20,22]. About 0.4 mM of Cu ions was present in the senile
plaques composed of Aβ aggregates in the brain of AD patients [4]. The dissociation
constant for Cu(II)–Aβ is in the nanomolar range, which is found under a physiological
environment [124,125]. There are two components of Cu(II) binding to Aβ depending on
the pH; at a physiological environment, Aβ favors Cu(II) binding via component I, while
under a basic environment, Aβ prefers component II [126,127]. In the synaptic cleft, Cu
ions play an important role as a secondary messenger, and the concentration of Cu ions
is estimated as ca. 100 to 250 µM, depending on the size of the cleft [128]. In addition, it
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was observed that the degree of Cu ion excretion into the extracellular space increased
through depolarization by 50 mM of K(I) [34]. In a study about the binding of Cu ions
to Aβ at the synaptic cleft using reaction-diffusion simulation, the binding of Zn(II) was
very low, about 0.1% of the entire Aβ, while the binding of Cu ions was high enough to
reach 30%. Therefore, Zn(II) does not significantly affect the formation of Aβ dimers in
the neurotransmission process at the synaptic cleft, but it is believed that Cu ions play an
important role in the early stages of Aβ oligomerization [129].

Cu–Aβ acts as a catalyst in oxidizing monoamine-based neurotransmitters such as
dopamine, epinephrine, and serotonin. In particular, dopamine has an 85-fold higher ten-
dency than autoxidation in Cu–Aβ40 [130]. Among the various Cu–Aβs, Cu–Aβ16 showed
the greatest activity in the oxidation of several monoamine-based neurotransmitters. In
the presence of hydrogen peroxide, ROS were generated in pathological conditions, and
the catalytic capacity of Cu–Aβ was observed to increase, and it is believed that this may
affect AD by promoting the oxidation of neurotransmitters. Conversely, it was known
that direct interaction between Cu–Aβ and dopamine/dopamine derivatives can inhibit
the aggregation of Cu–Aβ [131]. According to Nam et al., dopamine and its derivatives
promote the oxidation of Aβ40 and Aβ42 in the presence of Cu(II), leading to modifying
the aggregate form of Aβ. Instead of a general fibril form, amorphous and more compact
forms were generated, or they decomposed existing Aβ aggregates [131].

In the case of Aβ found in the brain of AD patients, there are many N-terminally trun-
cated forms, especially Aβ4-x. This form contains an H2N-X-X-His (ATCUN) motif that has
a higher Cu(II) affinity than Aβ1-x [132]. Glutamate, one of the neurotransmitters, promotes
the transfer of Cu(II) from Cu–Aβ4-16 to Zn7-metallothionein-3 (Zn7-MT-3). This indicates
that glutamate, which is instantaneously elevated during neurotransmission, forms an
instant ternary complex with Cu–Aβ4-16 and promotes the transmission of Cu(II) [133].

In addition to Aβ, Cu ions can also interact with the tau protein which might be
a potential pathogen for AD. Depending on the pH and stoichiometry, the R2 and R3
domains of tau can be Cu ion binding sites [134]. The His residue in this region is sensitive
to pH changes, and it is responsible for Cu ion binding. Since R3 has two His residues close
to each other, its binding affinity to Cu ions is higher than that of R2. The His residue in the
R1 region can also bind to Cu(II), but its affinity is much weaker than the others [135,136].
The simplified effects of Cu(I/II) in the AD-affected brain are presented in Figure 1.

2.5. Regulators of Cu(I/II)

To reduce the risk of onset and/or progression of AD by Cu(I/II), various chemical
agents have been developed to regulate the levels of the metal ions (Figure 2). The chemicals
were examined by their ability to bind to Cu(I/II) in numerous studies. In this section, we
summarize the chemical agents capable of interacting with Cu(I/II).

Clioquinol (CQ), an 8-hydroxyquinolin (8-HQ) derivative, is a candidate for treat-
ment of AD by targeting Cu(II) and Aβ (Figure 2; top row) [137–139]. The CQ–Cu(II)
complex has a square planar structure where two CQs coordinate Cu(II) in a crystal struc-
ture. In the solution phase, its symmetry is broken, and it becomes a tetragonally distorted
structure [140]. Regardless of this, the structure in solution is still closely related to that
observed in crystallography. It has nanomolar affinity for Cu(II) and can cross the BBB [141].
In 2003, Prana Biotechnology reported the results of a phase II trial on CQ in AD patients
due to its abilities of metal chelation and modulation of metal-free and metal-bound Aβ

aggregation. However, further processes were stopped during the phase II/III trial since a
toxic compound was detected during the manufacturing steps. Although it showed toxicity,
CQ has recently been examined for its potential neuroprotective effect in C. elegans [142].

PBT-2 is also an 8-HQ derivative and the next generation of CQ developed for treat-
ment of AD and Huntington’s disease (Figure 2; top row) [143,144]. It has improved BBB
penetrance and pharmacokinetics compared to CQ [145]. Interactions between Cu ions
and Aβ are disrupted by PBT-2, preventing the accumulation of toxic Aβ species in the
brain. The extracellular Cu ion concentration is reduced since PBT-2 transports Cu ions to
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the intracellular space. This effectively reduces the chance for Cu–Aβ interactions which
could trigger Aβ aggregation [146,147]. Prana started the first phase II trial of PBT-2 for
AD in 2007, and the second phase II trial in 2011. In 2014, Prana reported that there is not
much difference between treated and non-treated groups [148]. An additional phase II
trial revealed that 250 mg/day, which the patients could tolerate, of PBT-2 has positive
results in terms of cognitive ability [149,150]. The clinical trial information of PBT-2 is
summarized in Table 1.
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Table 1. Clinical trials of chemical agents. PBT-2 and deferiprone (DFP) have been examined their potential as treatments
for neurodegeneration.

Chemical Agents Clinical Trials
(Periods) Status

PBT-2

Phase 2
(December, 2006-December, 2007)

Completed
(NCT00471211)

Phase 2
(September, 2011-January, 2014)

Completed
(ACTRN12611001008910)

Phase 2
(July, 2013-January, 2015)

Completed
(ACTRN12613000777796)

Deferiprone (DFP)

Phase 2
(October, 2016-September, 2019)

Completed
(NCT02728843)

Phase 2
(November, 2017-October, 2019)

Completed
(ACTRN12617001578392)

Phase 2
(January, 2018-December, 2021

(Estimated)]

Recruiting
(NCT03234686)

DP-109 and DP-460 are lipophilic chelators that chelate Cu, Fe, and Zn in the mem-
brane [151]. In AD mice, DP-109 administration reduced amyloid plaques and the degree
of cerebral amyloid angiopathy in the brain [152]. Furthermore, both molecules slightly ex-
tended (10% and 9%, for DP-109 and DP-460, respectively) the life span of G93A-transgenic
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ALS mice [153]. However, a recent study presented that DP-460 has detrimental effects on
learning based on the Morris water maze test [154]. Moreover, bathocuproine (BC) and
bathocuproine disulfonate (BCS), presented in the middle row of Figure 2, could chelate
Cu(I) and Cu(II) by N as electron donor atoms near methyl groups. BC prefers Cu(I) to
Zn(II) due to its size [155]. BCS has two negative charges which provide water solubility
to the molecule. Thus, BCS can be used to chelate extracellular Cu(II) as well [156–158].

Multiple chelators against Cu have been developed to treat other diseases such as
Wilson’s disease. D-penicillamine is one of those Cu ion chelators (Figure 2; bottom
row) [159–161]. It chelates and reduces Cu(II), which is then excreted in the urine at up to
1.5 mg/day, which is a four-five times increased amount compared to untreated cases in pa-
tients [162]. Additionally, upon treatment of D-penicillamine in a hydrogel form, it could
improve the cognitive ability of APP/PS1 mice through the activation of ADAM10 [163].
Trientine (triethylenetetramine) is a selective Cu(II) chelator that suppresses oxidative
stress. Once Cu(II) binds to trientine, a Cu(II)–trientine complex is excreted in the urine,
but not as much as D-penicillamine (Figure 2; bottom row) [164,165].

Tetrathiomolybdate, shown in the bottom row of Figure 2, consists of a central molyb-
denum surrounded by four sulfhydryl groups and has been suggested as a therapeutic
agent for Wilson’s disease to control the levels of Cu(I/II) as well. Once it binds to Cu ions
in foods, it forms a very stable complex and is excreted in the stool [166]. Tetrathiomolyb-
date also forms a complex with serum albumin and labile Cu ions in the blood. Since
Cu–tetrathiomolybdate cannot be reabsorbed, the complex is metabolized in the liver.
The resulting metabolized fragments are excreted in bile. Moreover, upon treatment with
tetrathiomolybdate, the production of inflammatory cytokines decreased in APP/PS1
transgenic mice [167]. If tetrathiomolybdate is used at more than a specified dose of
120 mg/day, two side effects might appear, namely, anemia, and elevation of the transami-
nase level [168].

There are several multifunctional molecules where other scaffolds are conjugated to
metal-chelating moieties for reducing possible side effects or improving metal chelation for
treatment of AD [1]. Since there are many factors that cause AD, multifunctional chemical
agents that target multiple risk factors of the disease would be an effective strategy to
treat/cure AD. In particular, many chemical agents targeting both Cu(I/II) and Aβ or
Cu(I/II) and ROS have been developed. Based on multifunctionality, a few chemical agents,
although they have firstly been suggested as Cu(I/II) chelators, are still examined for their
potentials as therapeutic agents for AD in various animals (Table 2) [142,152–154,163,167].

More than ten multifunctional molecules based on 8-HQ have been developed. They
have tetra-O-benzyl-β-D-glucopyranoside, rasagiline, trehalose, glutathione, and
β-cyclodextrine conjugated to 8-HQ [169–176]. By applying thioflavin-T (ThT), an imag-
ing agent for aggregated Aβ, several multifunctional molecules were developed by con-
jugating CQ, DTPA, di-(2-picolyl)amine, and/or N-(2-pyridylmethyl)amine [177–184].
Multifunctional molecules based on p-I stilbene (pISTIB) can chelate Cu(II) to regulate
Cu(II)-induced Aβ aggregation [185–194]. Even though the exact role of triazole has not
yet been elucidated, triazole-based chemicals have been developed having a quinoline ring
and a phenol [195–197]. Multifunctional molecules affected metal-free Aβ aggregation, and
others reduced Cu(II)-induced Aβ aggregation when selegiline, aurone, and chromone
were conjugated [198–200]. An antioxidant molecule, resveratrol, was used to invent
multifunctional molecules by incorporation with CQ and deferiprone (DFP) [201,202].
DFP is a well-known Fe(II/III) chelator which is being examined for its potential to treat
neurodegeneration. The information of clinical trials (phase II) is summarized in Table 1,
and more information of DFP is discussed in Section 3.4 (vide infra).
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Table 2. Recent animal studies conducted with Cu-targeting chemical agents. Results of in vivo experiments performed
with clioquinol (CQ), DP-109, DP-460, D-penicillamine, and tetrathiomolybdate are summarized.

Chemical Agents Animal
Models Outcomes References

Clioquinol (CQ) C. elegans Enhancement of neuroprotective effect [142]

DP-109 Transgenic
mouse

Extension of life span and
Reduction of amyloid plaques [152,153]

DP-460
Transgenic

mouse
Extension of life span and

Reduction of amyloid plaques [152,153]

Rat Detrimental effect on learning [154]

D-Penicillamine Transgenic
mouse Improvement of cognitive ability [163]

Tetrathiomolybdate Transgenic
mouse Decrease of the inflammatory cytokines [167]

3. Fe(II/III)
3.1. Fe(II/III) Distributions in the Nervous Systems

Fe is the most abundant metal in the brain [203]. Mostly, the oxidation states of Fe
are ferrous [Fe(II)] and ferric [Fe(III)]. Due to the oxidation and reduction process between
the ferrous and ferric states of Fe, it is called a redox-active metal ion, as with Cu(I/II).
This redox-active property is important for the activity of various enzymes and proteins
related to (i) O2 chemistry, (ii) electron transfer, (iii) gene regulation, and (iv) cell growth
and differentiation [204–207]. To maintain the normal functions of the brain, Fe(II/III) are
bound to the proteins in common, while labile Fe ions have been observed in intracellular
pools with a concentration of up to 100 µM [208]. The concentrations of Fe(II/III) are
different depending on the regions and cell types of the brain; 20–30 µM has been found in
blood serum, and 0.5 to 1 mM has been found in neurons [209,210].

3.2. Homeostasis of Fe

Since the Fe ion is a redox-active metal ion, regulation of its level is essential to
maintaining the normal biological functions [65]. The homeostasis of Fe(II/III) is tightly
controlled by multiple proteins: heme proteins, transporters, Fe chaperones, ferrireductases,
ferritin, transferrin (Tf), transferrin receptor 1 (TfR1), divalent metal transporter 1 (DMT1),
and ferroportin (Fpn) [211]. Generally, in the human body, Fe(II/III) are bound to heme,
ferritin, and Tf [212,213]. Two mechanisms of Fe(II/III) transportation have been reported:
with and without Tf [214–216]. Non-Tf-bound Fe(II/III) would be delivered into the
brain by astrocytes, oligodendrocytes, microglia, and/or albumin; however, heme- or
ferritin-bound Fe(II/III) are not considered as non-Tf-bound Fe [217,218].

The major role of ferritin is storing Fe(III). It forms a 24 mer complex storing up to
4500 Fe(III)s composed of two subunits (chains): heavy (H) and light (L) chains [219,220].
These two chains present different functions. At a ferroxidase site in the H chain, Fe(II)
is oxidized by coupling with O2. The ferroxidase site of human ferritin contains two
Fe(II)s [221–223]. Glu27, Glu62, and His65, along with a water molecule, coordinate to
Fe(II), and another Fe(II) is bound to Glu61, Glu62, and Glu107, with the assistance of
Tyr34 and Gln141, in order to stabilize the structure [221–223]. The L chain promotes the
nucleation of Fe core minerals such as ferrihydrite [224]. In addition to storing Fe ions,
ferritin could reduce the generation of ROS to decrease oxidative stress, as well as lowering
the toxicity induced by Fe(III) by inhibiting the interactions and reactions between Fe(III)
and other biological molecules [219,224].

3.2.1. Fe(II/III) Cross the BBB by Involvement of Tf

Most Fe ions are bound to Tf to be transported into the brain. Tf is a glycoprotein
which is generated in the liver and has two Fe(II/III) binding sites at both the N- and C-
terminal lobes composed of an aspartate, two Tyr, His residues (Asp63, Tyr95, Tyr188, and
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His249 on the N-terminal lobe; Asp392, Tyr426, Tyr517, and His585 on the C-terminal lobe),
and a carbonate ion showing a high binding affinity towards Fe(III) (ca. Ka = 1022 M−1 at
pH 7.4) [220,221,225,226]. About 34% of Tf has only one Fe(III) at the N-terminal lobe or
C-terminal lobe, and 27% of Tf contains two Fe(III)s [226,227]. The suggested mechanism
for the transportation of the Fe(III)-bound Tf complex through the BBB is receptor-mediated
endocytosis [226,228,229]. At the membrane of brain capillary endothelial cells (BCEC),
which maintain the integrity of the BBB, up to two Fe(III)–Tf complexes are captured
by transferrin receptor-1 (TfR1) [226,228,230]. Then, Fe(III)–Tf tightly interacts with the
receptor to be transported into endosomes, and the structural changes in Tf lead to opening
the cleft of the Fe binding site to release the reduced form of Fe ions, Fe(II) [229]. Although
the exact mechanism remains unclear, ferrireductases (e.g., STEAP3) have been proposed
to be involved in this process [231].

Next, the released Fe(II) from Tf is bound to divalent metal transporter 1 (DMT1) to
cross the endosomal membranes [232]. Fe(II) transport by DMT1 is an active and proton-
dependent process; DMT1 could deliver Fe(II) the most effectively under mild acidic
conditions [233,234]. Fe(II) from Tf could bind to Zrt-/Irt-like protein 8/14 (ZIP8/14) as
well [235,236]. Although ZIP8 and ZIP14 are mostly involved in regulating Zn(II) levels,
they have a significant role in the cellular uptake of Fe(II/III), with a poor understanding of
the exact mechanism [237]. Unlike DMT1, ZIP8 and ZIP14 presented their optimal ability
of Fe(II/III) transport under physiological pH [238,239].

The Fe ions are then exported to the brain by Fpn located on the cytoplasmic side of
the plasma membrane [240]. For this process, extracellular ferroxidases are required [241].
Ceruloplasmin is one of the ferroxidases interacting with Fpn to enhance the incorporation
of Fe ions into Tf, and efflux of the Fe ions from astrocytes [230,242].

3.2.2. Fe(II/III) Transport without Tf

In CSF and interstitial fluids, labile Fe(II/III) could bind to other transporters such as al-
bumin, lactoferrin, and p97 [243]. The lactoferrin receptor- and glycosylphosphatidylinositol-
anchored p97-secreted pathways have also been reported to transport Fe(II/III) through
the BBB [244,245]. Fe ions could bind to citrate and ascorbate as well. Most non-Tf-bound
Fe(III) is bound to citrate in CSF, while the Fe(II/III)–ascorbate complex is observed with
a low concentration (ca. nanomolar range). When Fe ions are not bound to Tf, known
as non-Tf-bound Fe(II/III), the toxicity could be increased due to the high propensity to
generate ROS [243].

Although numerous studies tried to reveal the exact mechanisms of Fe(II/III) transport
across the BBB, they still remain unclear [246]. In order to understand the implications of
Fe(II/III) in the brain, more details about Fe(II/III) miscompartmentalization, along with
production of ROS in the pathogenesis of neurodegeneration and transport of Fe(II/III)
without Tf, should be investigated.

3.3. Physiological and Pathological Functions of Fe in Nervous Systems
3.3.1. Fe under Normal Conditions

Fe(II/III) are used for various enzymatic activities based on their common redox
activity: mitochondrial respiration and O2 transport [247–249]. Specifically, Fe(II/III) help
to generate energy in the form of ATP by the involvement of the electron transport chain
as Fe(II/III)–S complexes and enzymatic cofactors of cytochromes. Since ATP synthesis
requires O2, both hemoglobin and myoglobin containing Fe(II/III) are related to the pro-
cess [250,251]. The generated energy is used for axonal and synaptic signaling in particular.
For normally functioning mitochondria, the energy supplied by ATP is necessary [251].

In addition, Fe(II/III) are involved in the synthesis of myelin and neurotransmit-
ters [247–249,252,253]. Myelin is a lipid-rich substance and required for fast information
transmission (electronic signaling) from neurons to neurons by insulating nerve cell axons.
For the myelination, the levels of Fe are important for the composition of myelin at the
gestation and early post-natal periods [252,253]. In the process of myelin production,
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oligodendrocytes play important roles, with high concentrations of Fe(II/III) in the form of
ferritin [254]. Cholesterol and lipids are two main components of myelin, and Fe(II/III)
have been implicated to synthesize these biomolecules as a cofactor [254].

Additionally, Fe(II/III) are essential for the production of monoamine neurotransmit-
ters, dopamine and serotonin, which regulate cognitive processes including emotion and
arousal behaviors [255,256]. Dopaminergic systems, the tryptophan hydroxylases (neces-
sary for serotonin synthesis), and glutamate dehydrogenase, along with γ-aminobutyric
acid (GABA) transaminase (responsible for the synthesis and degradation of GABA), are
affected by the levels of Fe(II/III) [257]. The basic roles of Fe(II/III) in the normal brain are
summarized in Figure 3.
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Figure 3. The roles and effects of Fe(II/III) in normal (left) and AD-affected (right) brains.

3.3.2. Fe in Diseased Conditions

Under the conditions of AD, an abnormal concentration and distribution of Fe(II/III)
have been reported. In particular, once the BBB is compromised due to aging and/or
high levels of oxidative stress, the random transportation of Fe(II/III) across the BBB
leads to miscompartmentalization of the ions in the brain [258]. Based on post-mortem
analyses of AD-affected brains, accumulation of Fe(II/III) (up to 1 mM) was observed in
amyloid plaques and neurofibrillary tangles, especially at the parietal cortex, putamen,
and hippocampus, while the concentration of Fe(II/III) in the entire brain is similar to a
healthy brain [259–262]. This dyshomeostasis of Fe(II/III) could lead to the malfunction of
metalloenzymes and proteins in the brain which require Fe(II/III) as cofactors.

Moreover, both direct and indirect interactions between Fe(II/III) and Aβ/tau could
be related to the onset and/or progression of AD, as shown in Figure 3 [263–265]. Fe(II/III)
binding to Aβ could lead to the aggregation of proteins and toxicity induced by Aβ

species. In addition, once Fe(II/III) are bound to Aβ, ROS would be generated by Fenton
chemistry [264,265]. As Fe(II/III) themselves, without Aβ, could enhance the amounts of
ROS, they could cause oxidative stress [266,267]. Indirectly, a high level of Fe(II/III) could
decrease furin which increases the activity of β-secretase involving the amyloidogenic
process of APP to generate Aβ [268]. Additionally, Fe(III) could directly bind to tau,
causing its phosphorylation and aggregation of hyperphosphorylated tau [263]. Once tau
is accumulated, the expression of heme oxygenase-1 would be increased; subsequently,
more biliverdin, carbon monoxide, and labile Fe(II) catalyzed from heme would exist. These
products from the catalysis of heme could enhance oxidative stress [268,269]. Although
a recent study found that ceruloplasmin could reduce ferroptosis [270], these increased
Fe(II/III) levels could lead to ferroptosis and damage the cellular antioxidant capacity
in general [230,271]. Once the antioxidant ability has been compromised, ROS would
accumulate, causing oxidative damage to nucleic acids, lipids, and proteins [230].

3.4. Regulators of Fe(II/III)

In order to reduce the risk of neurodegeneration by Fe(II/III), numerous studies tried
to regulate the levels of metal ions, along with the antioxidant ability. Therefore, many
chemicals have been invented as Fe(II) or Fe(III) chelators and examined for their ability to
bind to Fe(II/III). In this section, we summarize the chemical agents capable of interacting
with Fe(II/III).

The oxidation state of Fe should be considered to develop Fe chelators. Since Fe(III)
is a hard acid based on the hard-soft acid and base (HSAB) principle, it prefers to bind to
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a hard base, such as an O donor atom. Fe(II), a borderline hard acid, prefers a borderline
base, such as a N donor atom. Thus, various Fe(II/III) chelators have combinations of O
and N as electron donor atoms [272–274].

Among the chemical agents, deferoxamine (DFO) and DFP are the most well-known
Fe(III) chelators (Figure 4) [272,273,275,276]. DFO is applied to Fe(II/III)-poisoning treat-
ment by chelating metal ions (Figure 4). DFO forms the hexadentate Fe(III) coordination
mode, forming an octahedral geometry [277]. Although DFO has limitations in cell per-
meability because of its hydrophilicity, it presented inhibition of Fe accumulation in rats
and mice [275,278,279]. Moreover, DFO could improve the cognitive function of APP/PS1
transgenic mice as well as healthy mice [280,281]. It also presented an improvement
in memory in an intracerebroventricular streptozotocin rat model assessed through the
Morris water maze test (Table 3) [282]. DFP could interact with Fe(III) in a 1:3 metal-
to-ligand ratio, forming an octahedral complex, and it has neuroprotective properties in
neurons [273,276,283]. In addition, based on the structure of DFP with the benzothiazole
moiety of ThT, compound 2d (from reference [284]) was developed, and it showed a strong
Fe-chelating ability [284]. Moreover, recent animal studies showed that DFP could regulate
the Aβ levels and phosphorylation of tau, leading to improved cognitive function in a
transgenic mouse model of tauopathy, rTg4510 (Table 3) [285–287]. The results of clinical
trials (phase II) of DFP are summarized in Table 1 [288]. Additionally, for chelating Fe(II),
bathophenanthroline disulfonate (BPS; Figure 4; right) has been applied [289,290]. It
could coordinate to Fe(II), forming an octahedral geometry, with a dissociation constant of
10−17 M [289,290]. Although BPS is water-soluble, due to the negative charges on sulfonate
groups, it could not penetrate the cellular membrane [291].
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Figure 4. Representatives of Fe(II/III)-targeting molecules. Left: deferoxamine (DFO),
N1-(5-aminopentyl)-N1-hydroxy-N4-(5-(N-hydroxy-4-((5-(N-hydroxyacetamido)pentyl)amino)-4-
oxobutanamido)pentyl)succinamide; middle: deferiprone (DFP), 3-hydroxy-1,2-dimethylpyridin-
4(1H)-one; right: bathophenanthroline disulfonate (BPS), 4,7-diphenyl-1,10-phenanthroline-
3,8-disulfonate.

8-HQ and its derivatives [e.g., HLA20, GS(HQ)H, Compound 8g, VK28, M30] have
been developed, and they could interact with various metal ions [295–298]. HLA20 could
form a complex with Fe(III) at a 1:3 ratio, and its binding affinity to Fe(II) was 5.4 µM,
determined by a fluorescence dequenching experiment of calcein [296]. GS(HQ)H was
invented by a combination of glutathione and 8-HQ, which could coordinate with Fe(III)
and protect SHSY-5Y human neuroblastoma cells from H2O2- and 6-OHDA-induced dam-
age [299]. Compound 8g (from reference [294]), designed by Knez and colleagues, also
has Fe(II) binding ability [297]. VK28 has been examined for its Fe(II/III)-chelating ability
across the BBB [298]. M30 containing an N-propargylamine group of rasagiline on the
structure of 8-HQ itself could bind Fe(II/III) directly with a 1:3 ratio and induce mRNA
expression levels of the major antioxidant defense system composed of catalase, SOD-1,
and glutathione peroxidase, in various brain regions [300]. Moreover, M30 and HLA20
significantly improved the cognitive deficits in a rat model [292,293,301]. In particular, M30
could induce a neuroprotective effect and improve the memory of C57BL/J6 mice once
they showed memory and behavioral impairment [294]. The information of animal studies
performed with the treatment of Fe-targeting chemical agents is summarized in Table 3.
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Table 3. Recent animal studies conducted with Fe-targeting chemical agents. Results of in vivo experiments performed
with deferoxamine (DFO), deferiprone (DFP), M30, and HLA20 are summarized.

Chemical Agents Animal Model Outcomes References

Deferoxamine (DFO)
Transgenic mouse Improvement of cognitive function [280]

Mouse Improvement of memory [281]
Rat Improvement of memory [282]

Deferiprone (DFP) Transgenic mouse Improvement of cognitive function [285–287]

M30
Rat Recovery of memory impairment [292,293]

Mouse Increase of neuroprotective effect
Improvement of memory [294]

HLA20 Rat Recovery of memory impairment [292,293]

In addition to targeting only Fe(II) and/or Fe(III), multi-target molecules have emerged
as a new strategy to investigate the pathology of AD and treat diseases. Multifunctional
molecules are designed to simultaneously target multiple neurodegenerative pathological
factors, which is anticipated to slow or even reverse the cognitive decline more effectively
than single-target agents [1,302]. For targeting the risk factors of AD, the derivatives of
resveratrol, compound 3i and compound 4f (from references [201,202]), were invented for
interacting with Fe(III) as well as Fe(III)-bound Aβ42 [201,202]. These compounds could
bind to Fe(III) with pFe(III) values of 20 and 19, respectively, along with having antioxidant
activity in an ABTS assay. Moreover, they could affect the aggregation of Fe(III)–Aβ42 and
disassemble preformed Fe(III)–Aβ42 aggregates [202]. Based on multifunctionality, a few
chemical agents, although they have firstly been suggested as Fe(II/III) chelators, have
recently been examined for their potentials as therapeutic agents for AD in various animals
(Table 3) [280–282,285–287,292–294].

4. Amyloid Degrading Enzymes (ADE)

Although current strategies to treat AD could relieve symptoms temporarily, the
disease cannot be cured completely. Therefore, in recent decades, inhibiting the generation
of Aβ and modulating its aggregation pathways to form less neurotoxic aggregates have
been intensively studied as potent methods to treat AD. In addition to these two aspects,
clearance of amyloidogenic proteins from the brain is also important to have less toxic
species in the brain. In Sections 4 and 5, we provide a summary of (i) multiple ADEs,
such as NEP, IDE, and ADAM10, along with their roles in the brain, and (ii) interrelations
between redox-active metal ions and ADE affecting the activity and/or levels of ADE.

4.1. Neprilysin (NEP)

NEP is a zinc-dependent metalloprotease (type II integral membrane endopeptidase)
which has been reported to be involved in the onset and/or progression of multiple diseases
such as AD, heart failure, and diabetes [303–306]. Upon generation in Golgi, NEP exists
in neutrophils, the kidney, the lungs, and the cerebral cortex in the brain [306–308]. It
is mainly composed of α-helical structures with 749 amino acids in 3 domains: an N-
terminal intracellular domain (27 amino acids), a transmembrane domain (23 amino acids),
and an extracellular catalytic site (699 amino acids) [303,305,309]. For Zn(II) binding, 2N
and 2O from His583, His587, Glu584, and Glu646 coordinate to Zn(II) with a tetrahedral
geometry [310,311].

The S1, S1′, and S2′ subsites are binding pockets located near the Zn(II) binding site in
the extracellular catalytic domain [303,305]. The pocket of the S1′ subsite specifically cleaves
large hydrophobic and aromatic side chains at the hydrophobic amino acid residues, while
the S2′ subsite could degrade bulky side chains [303,305]. NEP cleaves various vasoactive
peptides (e.g., natriuretic peptides, bradykinin, adrenomedullin, angiotensin, substance
P, enkephalins, endothelin, and Aβ) between the hydrophobic amino acids. Since Aβ has
broad hydrophobic regions, it is an ideal substrate of NEP [15,312,313]. To have a high
selectivity of substrates, the enzyme has a sterically hindered active site. The peptide bonds
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between Glu3 and Phe4, Gly9 and Tyr10, Phe19 and Phe20, and/or Ala30 and Ile31 of
monomeric Aβ could be cleaved by NEP [314–316]. About 73% of monomeric Aβ40 and
27% of monomeric Aβ42 were degraded by NEP [317]. Oligomeric Aβ species could be
degraded by NEP with a lower degree compared to monomeric Aβ, while it cannot cleave
the amyloid precursor protein (APP) [312,317,318].

Based on the amyloid hypothesis, the accumulation of Aβ aggregates in the cerebral
cortex and gray matter regions in the brain could cause AD. Therefore, the Aβ degrading
activity and concentrations of NEP could affect the onset and/or progression of AD [319].
A lower level of NEP in CSF was shown in the early stage of AD which could progress
to AD [320]. Its activity is varied based on pH. NEP presents the maximum cleavage
activity at neutral pH against small peptides containing less than 50 amino acids [321]. The
expression levels of NEP are not different between males and females [313].

In the mouse brain, higher Aβ levels were reported upon disruption of NEP expres-
sion [318]. Inactivation of NEP in a hAPP mouse model showed cognitive defects and
impaired synaptic plasticity [318,322]. In addition, NEP in CSF has been suggested as a
biochemical marker to monitor synaptic impairment since its activity was observed to be
decreased by 12% in mild AD patients [323]. Furthermore, it has been reported that the
increase in NEP levels could be a potent treatment for AD through Aβ metabolism as well
as other mechanisms such as producing neuropeptide Y fragments [324–327]. Moreover,
upon treatment of Tf-bound NEP, Wistar rats presented reduced levels of Aβ in both CSF
and the brain [328]. Based on a recent meta-analysis of the expression and function of NEP
in AD, it was reported that both the expression and activity of NEP were decreased in the
cortex of elderly AD patients, supporting the idea that targeting NEP could be a potent
strategy to treat and/or cure AD [329].

4.2. Insulin-Degrading Enzyme (IDE)

Another zinc-dependent metallopeptidase, IDE, which is a 113 kDa with 1019 amino
acids, could cleave insulin and Aβ [330,331]. IDE is composed of two similar-sized domains:
IDE-N and IDE-C. These two domains are connected by a loop containing 28 amino acids.
A number of hydrogen bonds between IDE-N and IDE-C could continue to close the
catalytic site located in IDE-N [332–334]. Since the active site is located in IDE-N, IDE-
N itself could perform the proteolytic activity, while IDE-C could not show enzymatic
activity [335]. Another difference between IDE-N and IDE-C is that the inner side of IDE-N
is neutral or negatively charged, but IDE-C is positively charged. The positive charge
of IDE-C could help the enzyme recognize the substrates [334]. The substrates of IDE
contain β-structures such as Aβ [336–338]. At the catalytic site, the 108HXXEH112 motif is
responsible for binding to Zn(II) [332]. In particular, Glu111 has an important role in the
hydrolysis of substrates by acting as a base to the active catalytic water [332].

IDE is mostly located in the cytosol as well as mitochondria, peroxisomes, the plasma
membrane, and CSF [339]. Therefore, IDE could control the levels of intracellular Aβ and
reduce the damage induced by toxic Aβ species [340–342]. IDE could cleave the peptide
bonds of Aβ between Val12 and His13, His13 and His14, His14 and Gln15, Val18 and Phe19,
Phe19 and Phe20, Phe20 and Ala21, and/or Lys28 and Gly29 [333,343]. Additionally, IDE
could act as a chaperone to interfere with the fibrillization of Aβ [344]. Furthermore, IDE
has been reported as an important enzyme for the clearance of Aβ in hippocampal lysates,
the cytoplasm, and cerebrospinal fluid [345,346]. Similar to NEP, IDE shows optimal
cleavage activity at neutral pH as well [347].

In AD-affected brains, the levels of IDE were shown to increase, while the activity
of IDE was reported to be decreased with aging, particularly in the early stage of the
disease [347,348]. IDE and Aβ plaques were shown to be colocalized in the brain, indicating
that IDE could be buried in the plaques and/or oxidized. Consequently, IDE could lose its
amyloid-degrading ability, leading to a lower clearance of Aβ and higher aggregation of
Aβ, resulting in neuronal damage [349,350]. Moreover, in vivo studies showed that IDE
knockout animals have relatively high levels of Aβ, suggesting that the action of IDE to
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remove Aβ is important to control the amount of Aβ in the brain, and regulating the Aβ

cleavage activity of IDE could be a potent strategy to treat AD [349,350].

4.3. ADAM10

The ADAM family, composed of zinc-dependent transmembrane metalloproteases,
has been reported to cleave APP as well as cell adhesion and the proteolytic activity of
signaling molecules and receptors [351–354]. Usually, ADAM contains ca. 750 amino
acids as a signal peptide, a prodomain, a metalloprotease-like domain, a disintegrin-like
domain, a Cys-rich domain, an EGF-like domain, a transmembrane domain, and cytoplamic
tail [353]. The disintegrin-like domain acts as a ligand for integrin binding; however, this
domain is not necessary for ADAM10 protease activity [355,356]. Among the ADAM family,
ADAM9, ADAM10, and ADAM17 are involved in the generation of Aβ, and ADAM10
contributes the most to the proteolytic actions on APP [357,358].

ADAM10 is produced in the ER and matured and activated in Golgi by remov-
ing the prodomain. The size of matured ADAM10 is 68 kDa without activation (with
the prodomain) [359,360]. While proADAM10 is located in Golgi, most of the activated
ADAM10 is located on the plasma membrane [361]. ADAM10 exists as a dimeric form,
and 383HEVGHNFGSPHD344 forms a Zn(II) binding site which contains the 383HEXXH387

motif. Three His residues play an important role in Zn(II) binding, and Gly between Phe
and Ser constitutes a turn, whilst Glu acts as an acid/base catalyst [355,362]. Recently, the
catalytic activity of ADAM10 has been revealed, and the activity of the enzymes could be
regulated by a modulatory antibody. The C-terminal Cys-rich domain hinders the active
site until there is direct binding of the proteolytic substrates [362–365].

APP, the target of ADAM10, undergoes a proteolytic cleavage reaction by β- and
γ-secretases to generate Aβ [356,366]. ADAM10 acts as an α-secretase cleaving APP at
different sites from β- and γ-secretases and produces non-toxic soluble APP (sAPPα),
which has a neuroprotective function [355]. Therefore, upregulation of ADAM10 could be a
promising strategy to treat AD by reducing toxic Aβ species and increasing neuroprotective
sAPPα [355,367].

Furthermore, in neuronal systems, ADAM10 has a role in regulating synaptic pro-
teins [368]. In particular, neuronal surface ADAM10 could be associated with AP2 for
endocytosis. In AD patients, the level of ADAM–AP2 in the hippocampus was increased,
while the activity of ADAM10 decreased upon interaction with AP2 in hippocampal neu-
rons [368,369]. Moreover, in ADAM10 knockout mice, synaptic impairments, decreased
neuromotor abilities, and reduced learning abilities were observed, indicating that the low
level of ADAM10 could induce postsynaptic defects [370].

5. Redox-Active Metal Ions with ADE

Since both redox-active metal ions and ADE are related to the etiology of AD, investi-
gation of their interactions along with enzymatic activity is necessary to further understand
AD pathology. First, Cu ions could interact with NEP; in particular, the extracellular
Cu(II) could reduce the levels of NEP in cells [371]. Similar results were obtained using a
transgenic drosophila experiment that has a silent Ctr1 protein, along with a dissociation
constant of NEP for Cu(II) determined as 1.04 (±0.07) µM. Even 100 µM of Zn(II) was not
able to restore the activity of NEP [372,373]. Downregulation of NEP activity by Cu(II) was
also observed in mouse neuroblastoma N2a cells. NEP activity was not inhibited at the
transcription level. Rather, NEP turnover was blocked by specific proteasome inhibitors
such as MG132 and lactacystin, suggesting a possible mechanism of NEP degradation
would be the proteosome pathway [371]. Additionally, Fe could be related to decreased
NEP activity. Once a chelator, deferasirox, chelates an Fe out from treated 18-month-old
rats for 4 months, the Aβ42-degrading activity of NEP was recovered compared to the same
aged rats [374].

Cu ions could downregulate the activity of IDE as well [372,375]. Inhibition of IDE
activity by Cu(II) is reversible, and addition of Zn(II) restores IDE activity. However,
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inhibition of IDE activity by Cu(I) is irreversible [375]. Cu(I) binding to IDE blocks two Cys
residues, Cys812 and Cys819, rendering the hydrophobic core destabilized. As a result,
the Zn(II) binding site is closed, which is irreversibly inactivated [375]. Additionally, the
proteolytic activity of IDE was inhibited by Cu(II); however, ubiquitin-activating (E1-like)
activity was not affected up to 20 µM [376].

The interactions between Cu ions and ADAM10 have also been reported. There was
no significant change in the ADAM10 level after 3-month Cu exposure of transgenic mice,
while the ADAM10 level was dramatically increased after 9-month Cu exposure [377].
Unlike Cu ions, the overload of Fe ions could not significantly affect the expression levels of
ADAM10, while the expression of ADAM17 increased. Additionally, Fe ions in the presence
of peroxidative stress (treating with Fenton) could induce the expression of ADAM10 [378].
Moreover, Fe(II) could induce the mRNA levels of ADAM10 in cells along with the gener-
ation of sAPPα [379]. Recently, application of a Cu chelator, tetrathiomolybdate (shown
in Figure 2; bottom row), to transgenic mice increased the levels of ADAM10, indicating
that Cu chelators could activate the non-amyloidogenic processing of APP (less genera-
tion of Aβ) [380]. Nasal injection of a hydrogel containing another Cu-binding molecule,
D-penicillamine (presented in Figure 2; bottom row), showed regulation of the ADAM10
level via the MT1/2 pathway, and enhanced lower production of Aβ in a transgenic mice
experiment [163].

6. Conclusions

Redox-active metal ions, such as Cu(I/II) and Fe(II/III), are considered as major
contributors to the complex chemical and biological reactions in the brain. In particular,
Cu(I/II) and Fe(II/III) are important for oxygen consumption and the oxidative capacity of
the neurons and glia in the brain. However, accumulation or miscompartmentalization
of metal ions could be involved in the onset and/or progression of AD. Although vari-
ous metal chelators have been developed for (i) regulating metal ions in the brain and
(ii) investigating the involvement of metal ions in neurodegeneration, these have not been
clearly revealed yet. Due to the complexity of the interrelationships between redox-active
metal ions and other biological molecules (i.e., proteins, enzymes), multiple chemical
agents have been examined as multifunctional molecules, reducing cytotoxicity associated
with Cu(I/II), Fe(II/III), and Aβ. This strategy is promising; however, it is not the perfect
way to treat the disease. Therefore, for treating AD, it is necessary to investigate and
reveal the involvement of metalloenzymes, which can regulate the levels of Aβ in the
brain such as ADE, in the pathogenesis of the disease, along with redox-active metal ions.
In particular, Cu(I/II) and Fe(II/III) have potentials to interact with ADE and affect the
enzymatic activity; however, their relationships still remain unclear. Current knowledge
of the influence of Cu(I/II) and Fe(II/III) on the expression levels and activity of ADE is
summarized in Table 4.

Table 4. The reported relations between redox-active metal ions and ADE. The changes in expression
levels and/or activity of NEP, IDE, and ADAM10 associated with Cu(I/II) and Fe(II/III).

NEP IDE ADAM10

Cu(I/II)
Expression

Levels Decreased Need to study Increased

Activity Decreased Decreased Need to study

Fe(II/III)
Expression

Levels Need to study Need to study Increased

Activity Decreased Need to study Need to study

Through this review, we summarized (i) the roles, distributions, homeostasis, and
transport of Cu(I/II) and Fe(II/III) in both healthy and AD-affected brains, (ii) chemi-
cals designed for targeting metal ions, (iii) functions of multiple IDEs in the brain, and
(iv) interrelationships between redox-active metal ions and ADE. Further understanding
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of the interrelationships between redox-active metal ions and ADE could lead to reveal-
ing the etiology of AD more clearly than before and developing successful treatments of
the disease.
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