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Abstract: Currently, there is still no cure for multiple sclerosis (MS), which is an autoimmune and
neurodegenerative disease of the central nervous system. Treatment options predominantly consist
of drugs that affect adaptive immunity and lead to a reduction of the inflammatory disease activity.
A broad range of possible cell-based therapeutic options are being explored in the treatment of
autoimmune diseases, including MS. This review aims to provide an overview of recent and future
advances in the development of cell-based treatment options for the induction of tolerance in MS.
Here, we will focus on haematopoietic stem cells, mesenchymal stromal cells, regulatory T cells and
dendritic cells. We will also focus on less familiar cell types that are used in cell therapy, including
B cells, natural killer cells and peripheral blood mononuclear cells. We will address key issues
regarding the depicted therapies and highlight the major challenges that lie ahead to successfully
reverse autoimmune diseases, such as MS, while minimising the side effects. Although cell-based
therapies are well known and used in the treatment of several cancers, cell-based treatment options
hold promise for the future treatment of autoimmune diseases in general, and MS in particular.

Keywords: multiple sclerosis; cell-based therapy; tolerance

1. Introduction

Multiple sclerosis (MS) is an autoimmune and degenerative disease of the central
nervous system (CNS) that is characterised by demyelination, axonal degeneration and
gliosis [1]. It is the leading cause of non-traumatic neurological disability in young and
middle-aged adults [2,3]; approximately 500,000 people in Europe and 2.5 million people
worldwide have been diagnosed with MS. Intra- and interindividual heterogeneity in the
presentation and evolution of the disease are common among patients with MS. According
to Lublin et al., there are four disease courses of MS [4]. Relapsing–remitting MS (RRMS) is
characterised by inflammatory attacks resulting in new or increasing neurologic symptoms
(relapses) followed by periods of partial or complete recovery (remission). Secondary
progressive MS (SPMS), which usually occurs within 15 years in approximately half of
individuals with RRMS without treatment, is characterised by a continuous, irreversible
neurological decline, reduction in brain volume and axonal loss. A primary progressive
disease course (PPMS) is present in 10–15% of patients with MS and involves a steady
worsening of symptoms with no periodic relapses or remissions. Progressive-relapsing
MS (PRMS) is a rare form of MS that is aggressive at onset and involves frequent attacks
without recovery of symptoms [1,5–8].
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MS is a complex disease that results from a combination of genetic burden of several
risk alleles and environmental factors, including low vitamin D levels, smoking and previ-
ous infection with Epstein–Barr virus, affecting immune homeostasis in MS patients [1].
Although the aetiology of MS remains to be elucidated, a dysregulated T cell immune
response that involves T helper type 1 (Th1) and Th17 lymphocytes forms the pathophys-
iological basis of this autoimmune disease [5,9–12]. Hyperactive dendritic cells (DCs),
proinflammatory T and B cells, and functionally impaired regulatory T cells (Tregs) are
believed to contribute to the pathogenesis of the disease [13]. A significantly high number
of peripheral immune cells enters the CNS through the disrupted blood–brain barrier (BBB),
the blood–cerebrospinal fluid (CSF) barrier or the subarachnoid space [14], which results
in the attack of self-antigens, including myelin-derived proteins and unknown antigens, in
the CNS [15–19].

The strong involvement of the adaptive immune system in the pathophysiology of
MS has given rise to the development of therapies that focus on immune modulation
and are directed at reducing inflammation, thereby limiting neuronal and axonal damage.
Currently, several disease-modifying treatments (DMTs) have been approved by regula-
tory authorities and are available for the treatment of MS. All DMTs, including classic
injectable drugs, new oral substances, and monoclonal antibodies, are characterised by an
immunomodulatory action, as reviewed by Hauser and Cree [20]. Although substantial
progress has been made with current therapies, efficacy is associated with an increased
risk of side effects. Indeed, treatment-related side effects or risks can be severe, including
cardiac dysfunction, increased risk of autoimmune diseases and increased risk of infections
and cancer [14,21]. Another drawback is that typically, current treatment modalities require
life-long therapy, since they do not restore immune tolerance to the self-antigens targeted
by the autoreactive immune response in MS patients. Therefore, cell-based therapy may
provide an alternative or adjunctive approach. It is envisaged that cell-based therapy
has the potential to provide a personalised and effective treatment option that lowers
morbidity by uniting efficacy with reduced occurrence of side effects and less frequent
hospitalisations, enhancing the quality of life of patients.

To date, various cell types have been investigated to determine if they establish long-
term immune tolerance in MS (Figure 1). Some cell-based therapies aim to selectively
restore the failed immune tolerance, which is the case for regulatory T cells (Tregs) and
tolerogenic dendritic cells (tolDCs), while other cell-based therapies will be used for
immune reconstitution after generalised strong immunosuppression, for instance following
hematopoietic stem cell transplantation (HSCT). In this paper, we provide an overview of
recent and future developments in cell-based therapy.
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Figure 1. Autologous cell-based tolerance-inducing treatments in multiple sclerosis (MS). This schematic overview depicts 
the various modes of action implemented by cell-based tolerance-inducing treatments in MS. Additionally shown are the 
indirect tolerance-inducing strategies by means of inducing a regulatory phenotype in naïve T cells or by peptide-coupled 
fixed peripheral blood mononuclear cells and erythrocytes. Tolerance induction results in cytolysis, alteration in immune 
function and/or metabolic disruption of the target autoreactive T cells. The black arrows represent the functional influence. 
Abbreviations used: Breg: regulatory B cells; CTLA-4: cytotoxic T lymphocyte-associated antigen 4; HSC: haemopoietic 
stem cells; MHC: major histocompatibility complex; MSC: mesenchymal stromal cells; NKT: natural killer T cells; NK: 
natural killer cells; PBMC: peripheral blood mononuclear cells; RBC: erythrocytes; Treg: regulatory T cells; TCR: T cell 
receptor; tolDC: tolerogenic dendritic cells. Created with BioRender.com, accessed date 13 July 2021. 

2. Cell Therapy Approaches for the Treatment of Multiple Sclerosis  
2.1. Haematopoietic Stem Cells  

Haematopoietic stem cells (HSCs) expressing CD34+CD38–CD90+CD45RA–CD49f+ 
are immature pluripotent cells that can develop into all types of blood cells of both the 
lymphoid and myeloid lineages [22]. Hence, the aim of HSC transplantation (HSCT) is to 
give a one-time treatment that provides long-lasting disease stabilisation. Indeed, follow-
ing immunoablation with immunosuppressive drugs, which are used to eliminate all 
pathogenic autoreactive lymphocytes and reduce inflammation in the CNS, patients are 
treated with HSCT to support haematopoiesis, thereby renewing the immune system and 
restoring self-tolerance. HSCs can be isolated from the bone marrow or peripheral blood 
after mobilisation with drugs, such as cyclophosphamide and/or granulocyte-colony stim-
ulating factor (G-CSF), that enhance proliferation of HSCs and drive them from the bone 
marrow into the peripheral blood [23,24]. The following recommendations are made re-
garding collection of HSCs, according to the handbook of the European Society for Blood 
and Marrow Transplantation (EBMT) [25]. Bone marrow is the preferred source of HSCs. 
Multiple bone marrow aspirations of 5 mL each, with a maximum of 20 mL/kg donor 
bodyweight, are suggested to acquire a target dose of 3 × 106 CD34+ cells/kg. However, 
peripheral blood stem cell collection is favoured, as it is considered as less stressful for the 

Figure 1. Autologous cell-based tolerance-inducing treatments in multiple sclerosis (MS). This schematic overview depicts
the various modes of action implemented by cell-based tolerance-inducing treatments in MS. Additionally shown are the
indirect tolerance-inducing strategies by means of inducing a regulatory phenotype in naïve T cells or by peptide-coupled
fixed peripheral blood mononuclear cells and erythrocytes. Tolerance induction results in cytolysis, alteration in immune
function and/or metabolic disruption of the target autoreactive T cells. The black arrows represent the functional influence.
Abbreviations used: Breg: regulatory B cells; CTLA-4: cytotoxic T lymphocyte-associated antigen 4; HSC: haemopoietic
stem cells; MHC: major histocompatibility complex; MSC: mesenchymal stromal cells; NKT: natural killer T cells; NK:
natural killer cells; PBMC: peripheral blood mononuclear cells; RBC: erythrocytes; Treg: regulatory T cells; TCR: T cell
receptor; tolDC: tolerogenic dendritic cells. Created with BioRender.com, accessed date 13 July 2021.

2. Cell Therapy Approaches for the Treatment of Multiple Sclerosis
2.1. Haematopoietic Stem Cells

Haematopoietic stem cells (HSCs) expressing CD34+CD38–CD90+CD45RA–CD49f+

are immature pluripotent cells that can develop into all types of blood cells of both the
lymphoid and myeloid lineages [22]. Hence, the aim of HSC transplantation (HSCT)
is to give a one-time treatment that provides long-lasting disease stabilisation. Indeed,
following immunoablation with immunosuppressive drugs, which are used to eliminate
all pathogenic autoreactive lymphocytes and reduce inflammation in the CNS, patients
are treated with HSCT to support haematopoiesis, thereby renewing the immune system
and restoring self-tolerance. HSCs can be isolated from the bone marrow or peripheral
blood after mobilisation with drugs, such as cyclophosphamide and/or granulocyte-colony
stimulating factor (G-CSF), that enhance proliferation of HSCs and drive them from the
bone marrow into the peripheral blood [23,24]. The following recommendations are made
regarding collection of HSCs, according to the handbook of the European Society for
Blood and Marrow Transplantation (EBMT) [25]. Bone marrow is the preferred source of
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HSCs. Multiple bone marrow aspirations of 5 mL each, with a maximum of 20 mL/kg
donor bodyweight, are suggested to acquire a target dose of 3 × 106 CD34+ cells/kg.
However, peripheral blood stem cell collection is favoured, as it is considered as less
stressful for the patient and leads to faster engraftment and hematologic reconstitution. For
this, the minimum target is 2 × 106 CD34+ cells/kg collected by leukapheresis. However,
higher amounts of cells are aimed for, namely 4–5 × 106 CD34+ cells/kg, resulting in
faster neutrophil and platelet recovery, and reduced hospitalisation, blood transfusion
and antibiotic therapy. Autoimmune diseases, such as MS, are generally treated with
autologous HSCT (AHSCT) for safety reasons [26].

At the clinical level, AHSCT is a rescue treatment in young patients with RRMS who
have low or medium disability grades due to an aggressive inflammatory disease course
and in whom other highly efficacious treatments have failed [27–29]. One study showed
that the proportion of patients with MS who achieved no evidence of disease activity
(NEDA) after AHSCT was very high compared with patients who received approved
DMTs [28]. In a recent meta-analysis [30], 83% of patients who received AHSCT showed
NEDA after 2 years and 67% maintained NEDA after 5 years. The main risk associated
with AHSCT is treatment-related mortality, albeit that this risk has decreased from 3.6%
to 0.3% in patients transplanted after 2005 [28]. A recent study from the Italian bone
marrow transplantation (BMT)-MS Study Group reported that there were no deaths in
patients transplanted after 2007 [31]. In a cohort of 210 MS patients with a median baseline
expanded disability status scale (EDSS) of 6.0, a high proportion had a durable disease
remission up to 5–10 years after the procedure; some of these patients had progressive
MS [31]. The Swedish Board of Health and Welfare considers AHSCT as a valid treatment
option for patients with active MS [29,32] and several consensus recommendations for the
use of AHSCT in MS have been published in the past few years [26,33–35]. However, for
patients with very advanced MS and high levels of disability, HSCT can neither reverse nor
stop the progression of the disease [36] and, therefore, is not recommended.

Until recently, most studies on AHSCT were observational or prospective single-arm
clinical trials (Table 1) [37–42]. In one randomised controlled trial, the researchers compared
AHSCT with treatment with mitoxantrone, which is rarely used to treat MS today [38].
The MS International Stem Cell Transplant (MIST)-trial (NCT00273364) demonstrated
the superiority of AHSCT versus DMTs in terms of the time to disease progression [43].
More recently, an observational cohort study compared outcomes after treatment with
alemtuzumab and AHSCT and found that the chance of maintaining NEDA was signifi-
cantly higher in the AHSCT-treated group [44]. Several clinical trials, comparing the effects
of AHSCT with high efficacy DMTs in patients with active RRMS, are ongoing (Table 1).
These include the BEAT-MS (NCT04047628), RAM-MS (NCT03477500) and STAR-MS
(ISRCTN88667898) [27]. These trials will determine the comparative efficacy of AHSCT
and currently available and highly efficacious DMTs, such as alemtuzumab, natalizumab
and ocrelizumab.
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Table 1. Clinical trials in multiple sclerosis (MS) patients. All clinical trials using haematopoietic stem cells (HSC), mesenchymal stem cells (MSC), regulatory T cells (Treg), tolerogenic
dendritic cells (tolDC), peptide-coupled peripheral blood mononuclear cells (PBMC) and peptide-coupled erythrocytes (RBC) in MS. A search was conducted in ClinicalTrials.gov on the
16th of June 2021.

ID Phase Design Status Cell Type Route Administration
Scheme Ref.

HSC

NCT00278655 II Single group assignment,
open label Terminated Autologous haematopoietic

stem cell transplantation Not provided Single infusion N/A

NCT01099930 II Single group assignment,
open label Completed Autologous haematopoietic

stem cell transplantation Intravenous Single infusion [40]

NCT00342134 II Not provided Completed Autologous haematopoietic
stem cell transplantation Intravenous Single infusion N/A

NCT00014755 I Not provided Completed
Syngeneic or autologous
haematopoietic stem cell

transplantation
Not provided Single infusion [36]

NCT00288626 II Single group assignment,
open label Completed Autologous haematopoietic

stem cell transplantation Not provided Single infusion [41]

NCT00040482 II Single group assignment,
open label Completed Autologous haematopoietic

stem cell transplantation Not provided Single infusion N/A

NCT01679041 II Single group assignment,
open label Terminated Autologous haematopoietic

stem cell transplantation Not provided Single infusion N/A

NCT00017628 I Not provided Completed Autologous haematopoietic
stem cell transplantation Not provided Single infusion N/A

NCT00273364 II Parallel assignment, open
label Completed Autologous haematopoietic

stem cell transplantation Not provided Single infusion [43]

NCT00497952 I/II Single group assignment,
open label

Active, not
recruiting

Allogenic haematopoietic
stem cell transplantation Intravenous Single infusion N/A

NCT02674217 N/A Single group assignment,
open label

Active, enrolling
by invitation

Autologous haematopoietic
stem cell transplantation Not provided Single infusion [45]

NCT03113162 I Single group assignment,
open label Active, recruiting Autologous haematopoietic

stem cell transplantation Intravenous Single infusion N/A

ClinicalTrials.gov
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Table 1. Cont.

ID Phase Design Status Cell Type Route Administration
Scheme Ref.

NCT03477500 III Parallel assignment,
open label Active, recruiting Autologous haematopoietic

stem cell transplantation Not provided Single infusion N/A

NCT03342638 III Parallel assignment,
open label Terminated Autologous haematopoietic

stem cell transplantation Intravenous Single infusion N/A

NCT04047628 III Parallel assignment,
open label Active, recruiting Autologous haematopoietic

stem cell transplantation Not provided Single infusion N/A

MSC

NCT01377870 I/II
Randomised,
double-blind,

placebo-controlled
Completed

Autologous bone
marrow-derived

mesenchymal stem cells
Intravenous Single infusion N/A

NCT02326935 I Open-label Terminated Autologous adipose-derived
mesenchymal cells Intravenous Single infusion N/A

NCT01895439 I/IIa Open-label Completed
Autologous bone
marrow-derived

mesenchymal stem cells
Intrathecal Not provided N/A

NCT02034188 I/II Open-label Completed Umbilical cord-derived
mesenchymal stem cells Intravenous 7 doses [46]

NCT01606215 I/II Placebo-controlled
crossover study Completed

Autologous bone
marrow-derived

mesenchymal stem cells
Intravenous Single infusion [47]

NCT02035514 I/II Crossover design Completed
Autologous bone
marrow-derived

mesenchymal stem cells
Intravenous Single infusion [47]

NCT01228266 II

Randomised
double-blind,

placebo-controlled
crossover study

Terminated Autologous mesenchymal
stem cell transplantation Intravenous Single infusion [48]

NCT00395200 I/IIa Open-label Completed
Autologous bone
marrow-derived

mesenchymal stem cells
Intravenous Single infusion [49]
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Table 1. Cont.

ID Phase Design Status Cell Type Route Administration
Scheme Ref.

NCT02418351 I/II Open-label,
non-randomised Terminated

Autologous bone
marrow-derived

mononuclear stem cells
Intravenous Single infusion N/A

NCT00813969 I Open-label Recruitment
completed

Autologous mesenchymal
stem cell

MSC
transplantation Single infusion [50]

NCT02418325 I/II Open-label,
non-randomised Terminated

Allogeneic human umbilical
cord tissue-derived

mesenchymal stem cells
Intravenous Single infusion N/A

NCT01056471 I/II Triple-blind, randomised,
placebo-controlled

Recruitment
completed

Autologous mesenchymal
stem cells from adipose tissue Intravenous Single infusion [51]

NCT03069170 I Open-label Active
Autologous bone
marrow-derived

mesenchymal stem cells

Intravenous/
intrathecal Single infusion N/A

NCT02403947 I//I Not provided Active Autologous mesenchymal
stem cell transplantation Intravenous Not provided [47]

NCT03326505 I/II Randomised, single-blind Completed Umbilical cord-derived
mesenchymal stem cells Intrathecal Single infusion [52]

NCT01745783 I/II
Multicentre, randomised,
crossover, double-blind,

placebo-controlled
Active, recruiting

Autologous bone
marrow-derived

mesenchymal stem cells
Intravenous Not provided [47]

NCT02495766 I/II Randomised, cross-over,
placebo-controlled Completed

Cryopreserved autologous
adult bone-marrow

mesenchymal stromal cells
Intravenous Single infusion N/A

NCT02239393 II
Randomised,

double-blind, cross-over,
placebo-controlled

Terminated Autologous mesenchymal
stem cell transplantation Intravenous Single infusion [47]
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Table 1. Cont.

ID Phase Design Status Cell Type Route Administration
Scheme Ref.

NCT01815632 II Blinded, randomised,
cross-over design Unknown

Autologous bone
marrow-derived
cellular therapy

Intravenous Single infusion [53]

NCT01854957 I/II
Double-blinded,

randomised,
cross-over design

Unknown Autologous mesenchymal
stem cells Intravenous Single infusion [47]

NCT01730547 I/II
Double-blinded,

randomised,
cross-over design

Unknown Autologous mesenchymal
stromal cells Intravenous Not provided [47]

NCT02166021 II Randomised, cross-over,
placebo-controlled Completed Autologous mesenchymal

bone marrow stem cells
Intravenous/

intrathecal Double infusion [54]

NCT00781872 I/II Single group assignment,
open label Completed

Autologous bone marrow
derived mesenchymal

stem cells

Intravenous/
intrathecal Single infusion [55]

NCT01932593 II Single group assignment,
double-blinded Completed Autologous bone

marrow cells Intravenous Reinfusion [56]

NCT01364246 I/II Single group assignment,
open label Unknown Umbilical cord mesenchymal

stem cells Not provided Not provided N/A

Treg EudraCT
2014-004320-22 Ib/IIa Parallel assignment,

open label Completed Polyclonal
CD4+CD25hiCD127−FoxP3+ Tregs

Intravenous/
intrathecal Single infusion [57]

tolDC

NCT02283671 Ib Single group assignment,
open label Completed

Dexamethasone-tolDC
loaded with a pool of

myelin peptides
Intravenous

Dose-escalation,
3 injections:
bi-weekly

[58]

NCT02618902 I/IIa Parallel assignment,
open label

Active, not
recruiting

VitD3-tolDCs loaded with a
pool of myelin peptides Intradermal

Dose-escalation,
6 injections:

4 bi-weekly and
2 monthly

[59]
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Table 1. Cont.

ID Phase Design Status Cell Type Route Administration
Scheme Ref.

NCT02903537 I/IIa Parallel assignment,
open label Recruiting VitD3-tolDCs loaded with a

pool of myelin peptides Intranodal

Dose-escalation,
6 injections:

4 bi-weekly and
2 monthly

[59]

Peptide-
coupled
PBMC

NCT01414634 I/IIa Parallel assignment,
open label Completed Myelin-peptide coupled

autologous PBMC Intravenous Dose-escalation,
single infusion [60]

Peptide-
coupled

RBC
ETIMSRED Ib Parallel assignment,

open label Completed Myelin-peptide coupled
erythrocytes Intravenous Dose-escalation,

single infusion [61]
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The immunological effects that underlie the radical change in the disease course of
MS following AHSCT are only partially understood. It has been observed that natural
killer (NK) cells, CD8+ T cells and B cells repopulate within weeks to months, whereas the
reconstitution of CD4+ T cells can take up to 2 years [62–68]. T cells generated after AHSCT
undergo selection and maturation in the thymus and show a more diverse profile with new
T cell receptor (TCR) clones compared with the dominant clones that were present before
AHSCT and that were largely removed by the immunoablative treatment before the trans-
plantation. It has been shown that more than 90% of pre-existing T cell clones are removed
from the peripheral blood and the CSF and replaced with clonotypes from the graft [62].
This is predominantly the case for CD4+ T cells and, to a much lesser extent, for CD8+ T
cells [63–65]. Whether this limited depletion of CD8+ T cells is associated with relapses
or disease progression after AHSCT remains to be determined. In this context, mucosal-
associated invariant T (MAIT) cells, a novel CD161highCD8+ cell population originating in
the gut mucosa but expressing the CNS-homing receptor CCR6, have been found in lesions
in the brains of patients with MS [65]. Nonetheless, myelin-specific T cells are still found
after AHSCT, albeit with a strongly reduced capacity to differentiate into Th17 cells com-
pared with their ability prior to the transplantation [67]. Interestingly, changes in the gene
expression profiles of CD4+ and CD8+ T cells have been described, which suggests that the
gene expression normalises in CD8+ T cells after AHSCT [68]. The rapid reconstitution of
NK cells contributes to the suppression of Th17 cell reconstitution [66]; immune regulation
is further enhanced by the expansion of Tregs [69]. Furthermore, although all B cells, except
for plasma cells, are depleted during HSCT, one study demonstrated that oligoclonal bands
persist after the transplantation, which suggests that immunoglobulin-producing cells are
not depleted or are insufficiently depleted in the CNS [36]. This observation has been
challenged by Larsson et al. [70] who showed that intrathecal immunoglobulin production
and neurofilament light levels were lower after HSCT treatment and further decreased
over time. Whereas differences in patient characteristics, such as disease duration, disease
type, and disease heterogeneity, or treatment-related factors such as the conditioning regi-
men, may underly the observed discrepancies, studies involving larger cohorts as well as
investigating the mechanisms of B cell reconstitution after HSCT are needed.

In conclusion, HSCT can be a treatment option in select young patients with aggressive
RRMS who failed to respond to DMTs [26,27,71]. Immunological changes that occur after
HSCT in MS are suggestive of long-term induction of immune tolerance. To date, no
cellular biomarkers have been identified that can predict which patients will benefit most
from this procedure.

2.2. Mesenchymal Stromal Cells

Mesenchymal stromal cells (MSCs) are multipotent cells that have the ability of
self-renewal; MSCs can differentiate into various tissues of mesodermal origin, such
as osteocytes, chondrocytes and adipocytes, and other embryonic lineages. MSCs are
characterised by the expression of CD73, CD105 and CD90 and the absence of expression of
haematopoietic markers (i.e., CD45, CD34 and HLA-DR) and vascular markers (i.e., CD31)
markers [72,73]. Given their adult cell potency, MSCs are often called mesenchymal stem
cells, although they are more accurately called multipotent mesenchymal stromal cells.
MSCs were first described in the 1960s by Friedenstein who isolated them from rodent
bone marrow through their inherent adherence to plastic [74]. Currently, MSCs can be
isolated from blood, bone marrow, skeletal muscle, adipose tissue, synovial membranes,
and other connective tissues. Regardless of the isolation procedure, quantities of MSC
obtained from primary tissues are not sufficient for any application in clinical settings.
Hence, in vitro propagation is almost always required to achieve a sufficient cell number
for in vivo application. MSCs have generated great interest because of their therapeutic
ability to induce a profound immunosuppressive and anti-inflammatory effect in vitro and
in vivo [75]. The mechanisms by which MSCs exert their immunosuppressive effect are not
completely understood. It is thought that they change the inflammatory environment into
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an anti-inflammatory environment directly by paracrine signals and by several secreted
soluble factors, such as transforming growth factor beta (TGF-β) [76], hepatocyte growth
factor [76], indoleamine 2,3-dioxygenase (IDO) [77], nitric oxide [78], interleukin (IL)-10 [79]
and prostaglandin E2 [80], and through cell-to-cell contact via the inhibitory molecule
programmed death 1 (PD-1) [81]. MSCs also work indirectly via the recruitment of other
regulatory networks that involve antigen-presenting cells (APCs) [82] and Tregs [83].
However, it is evident that MSC-induced unresponsiveness lacks any selectivity. MSCs
mainly affect the functions of T cells; for instance, MSCs induce a cell cycle arrest in anergic
T cells or a cytokine profile shift in the Th1/Th2 balance towards the anti-inflammatory Th2
phenotype [84,85]. Furthermore, MSCs suppress the cytolytic effects of cytotoxic T cells [86].
MSCs are also capable of inhibiting NK cells [87,88], B cells and APCs. Furthermore, MSCs
have been reported to promote the formation of potent CD4+CD25+ and CD8+ Tregs
in vitro and in vivo [83,89].

Several phase I and II clinical trials used MSCs derived from allogeneic donors and
evaluated their effect on autoimmune diseases, including type 1 diabetes (T1D), rheuma-
toid arthritis (RA) and MS (Table 1) [90]. Since MSCs represent only a small fraction
(0.001–0.01%) of total nucleated cells in bone marrow and other tissues, it was mandatory
for these studies that the MSCs were expanded ex vivo from a small bone marrow aspirate
under clinical-grade conditions to significant numbers in 8–10 weeks [91,92]. Most of the re-
ported trials, to date, were uncontrolled open-label phase I studies including patients with
RR-MS, SP-MS, and PP-MS. A review of trials found that MSCs were safe and tolerated by
patients with MS [93]. More recently, a randomised placebo-controlled phase II clinical trial
found that five out of nine patients with MS who received an intravenous infusion of bone
marrow-derived MSCs had a trend to lower cumulative numbers of gadolinium-enhancing
lesions at 6 months following infusion, as shown by magnetic resonance imaging (MRI) [48].
However, there was no significant decrease in the frequency of Th1 cells in the peripheral
blood of patients treated with MSCs. Interestingly, MSCs are likely to promote neuroprotec-
tion in addition to their immunomodulatory characteristics [94–96]. Indeed, MSCs could
promote endogenous repair by recruiting local neural precursor cells, possibly through the
secretion of neurotrophic factors, thereby driving neurogenesis and remyelination [97,98].
The migratory potential and homing capacity of these cells into the CNS still needs to be
clarified.

The clinical results obtained using MSC therapy in patients with MS confirmed the
feasibility and safety of an in vivo application of MSC without major adverse events.
However, the migratory potential and homing capacity of these cells into the CNS as well
as the clinical significance of these findings need to be corroborated.

2.3. Regulatory T Cells

Tregs are a subset of CD4+ T cells that play an important role in the balance between
immunity and tolerance. These cells are characterised by the expression of high levels
of IL-2 receptor α chain (IL-2Rα/CD25) and Forkhead box P3 (FoxP3) [99], which is a
master regulator that orchestrates the transcriptional machinery that induces Treg-relevant
genes, such as il2ra (CD25) and ctla-4, by binding over 1400 genes and acting as a tran-
scriptional repressor and activator [100–102]. Its expression is inversely correlated with
the expression of IL-7R (CD127) [103]. FoxP3 Tregs are generally subdivided into thymic-
derived or naturally occurring Tregs (nTregs) and peripheral-induced Tregs (iTregs), which
have phenotypic and functional similarities, as well as differences in stability and gene
expression [99,104]. It is currently accepted that nTregs control immune responses to self-
antigens, while iTregs suppress inflammation at mucosal barriers [105]. A current study
defined Tregs as a heterogenous mixture of cellular sub-phenotypes with a high degree
of phenotypic complexity that reflected different states of maturation, differentiation and
activation [106].

Tregs are responsible for minimising the damage to the body’s own cells and tis-
sues during persistent immunity and for maintaining tolerance to self. For this, Tregs
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act predominantly by suppressing, eliminating, or inactivating effector T cells, including
autoreactive T cells, in the periphery [99,107]. Consequently, it is believed that the disrup-
tion of Treg numbers and/or function gives free rein to self-reactive T cells, which may
contribute to an increased susceptibility to autoimmune diseases [108]. Indeed, reduced
numbers or the impaired functionality of Tregs have been associated with the development
of different autoimmune diseases, including MS [5], RA [109], T1D [110], psoriasis [111],
myasthenia gravis [112] and autoimmune polyglandular syndrome type II [113]. Hence,
restoring tolerance in patients with these diseases could be the key to overcoming au-
toimmunity. In this regard, adoptive cell transfer of Tregs has proven to be effective in
preventing autoimmunity [114,115] and graft-versus-host disease (GVHD) [116,117], and
in delaying graft rejection in preclinical animal models [118,119].

The suppressive repertoire of Tregs involves the secretion of immunosuppressive
cytokines, such as IL-10, IL-35 and TGF-β, and cytotoxic molecules, such as granzyme B
and perforin, as well as contact-dependent suppression (e.g., CTLA-4). Additionally, Tregs
can indirectly affect immune tolerance by suppression of APCs, such as DCs (extensively
reviewed in [99]). Furthermore, Tregs can transfer their suppressive activity to conventional
CD4+ T cells, which is termed infectious tolerance [120]. They create a local tolerogenic
environment in which naïve T cells convert into cells with an induced Treg phenotype.
These cells are responsible for bystander suppression [121] because they induce tolerance
to cells involved in the immune reaction without direct interaction. Hence, adoptive cell
transfer of Tregs may not require long-term survival of the administered cells and may be
used to alleviate the autoimmune response in diseases where it is directed against different
self-antigens.

Currently, there is a broad range of Treg isolation and expansion protocols [122]. For
instance, effective isolation methods with high purity and efficient expansion protocols are
required to preserve the desired cell characteristics. Although Tregs are present throughout
the body, peripheral blood is the most commonly used source of Tregs [123]. However, since
Tregs comprise only 5–7% of the CD4+ T cells that develop in the thymus and in the periph-
ery [124], in vitro Treg expansion is mandatory following isolation of a highly pure Treg
population to generate sufficient cells for clinical application [122]. Molecules, including
rapamycin [125–127], TGF-β [128] and all-trans retinoic acid (ATRA) [129,130], can be used
to boost Treg expansion and stability, while preventing outgrowth of contaminating cells.

Positive preclinical outcomes, a better understanding of the characteristics of Tregs
and the possibility of obtaining enough of these cells have paved the way for more than
50 active and completed clinical studies. These studies have tested the safety, feasibility, and
efficacy of adoptive cell transfer of Tregs in the context of both autoimmunity and transplan-
tation [131]. Recently, also in MS, the clinical use of autologous CD4+CD25hiCD127−FoxP3+

Tregs was evaluated in a phase I/IIa clinical study [57]. Tregs were administered intra-
venously or intrathecally in RRMS patients, and the safety of the approach was demon-
strated (Table 1). Altogether, studies proved the safety of the clinical use of ex vivo
expanded polyclonal Tregs and showed promising results in the delay and prevention of
graft rejection and in the treatment of autoimmune responses [132].

However, the efficacy was not conclusive and often only modest clinical responses
were obtained [133]. This could be, at least in part, due to the use of polyclonal Tregs
which collectively target a broad mix of antigens that are not all related to the disease,
thereby potentially weakening the clinical effect. This is further confirmed in studies
in mice demonstrating limited effect of polyclonal Treg infusion in immunocompetent
individuals unless high numbers of Tregs are administered [134,135]. Moreover, the use of
polyclonal Tregs could cause a transient risk of generalised immunosuppression [136]. In
contrast, Tregs isolated from pancreatic draining lymph nodes or pulsed with pancreatic
islet antigen are significantly better at preventing disease onset or curing autoimmune-
prone non-obese diabetic (NOD) mice compared with polyclonal Tregs [137–141]. Thus,
the use of antigen-specific Tregs could help to achieve improved clinical benefit in cases
where the disease-causing antigen is known.
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More powerful Treg therapies could be engineered by enhancing Treg antigen-specificity
or functionality based on the knowledge gained from T cell therapies in oncology [142].
Most efforts involve introducing transgenic TCRs or chimeric antigen receptors (CARs) into
Tregs. Although TCRs and CARs are both synthetic receptors, transgenic TCRs maintain
the structure of the native TCR, but are designed for antigen selectivity and high affinity.
CARs are synthetic fusion molecules that express the antigen recognition domain of a
monoclonal antibody and one or more TCR costimulatory signalling domains [99,124].
Both techniques have been tested in different animal models of autoimmune diseases and
transplantation [99]. In MS, pathogenic self-reactive T cells are targeted by murine trans-
genic Tregs which express an extracellular myelin basic protein (MBP) peptide-bound major
histocompatibility complex (MHC) that is linked to an intracellular TCR-chain signalling
domain. Subsequently, this interaction mimics physiological TCR-signalling on Tregs,
resulting in the activation of transgenic Tregs and in the subsequent secretion of high levels
of anti-inflammatory cytokines [143]. Furthermore, adoptive transfer of transgenic Tregs
was able to prevent and treat MBP-induced experimental autoimmune encephalomyeli-
tis (EAE) [143,144]. Expanded human Tregs, transduced with an MBP-specific TCR, are
able to suppress MBP-specific effector T cells effectively in vitro. These transduced cells
ameliorate disease in myelin oligodendrocyte glycoprotein (MOG)-induced EAE, which is
indicative of the in vivo effect of bystander suppression mediated by soluble factors [145].
Similarly, converting antigen-specific effector T cells into Tregs through the overexpression
of FoxP3 is being investigated [146,147]. In one study, engineered Tregs, overexpressing a
MOG-specific CAR in trans with the murine FoxP3 gene, demonstrated their suppressive
function in vitro [148]. More recently, reestablishment of Treg functionality in patients
with MS was reported following in vitro expansion and MBP-specific TCR transduction of
Tregs [149].

Further research in Tregs as a cell therapy for MS, and other autoimmune diseases,
will undoubtedly provide us with interesting new insights.

2.4. Tolerogenic Dendritic Cells

DCs are the most professional APCs and are the sentinels of our immune system. They
capture and process exogenous antigens and self-antigens in peripheral tissues [150–152]
and present them to other immune cells after migration to the secondary lymphoid or-
gans [150,153]. Subsequently, DCs stimulate naïve T cells, effector T cells, memory T cells
and B cells. In doing so, DCs bridge the innate and adaptive immune systems [154] and
play an important role in the balance between immunity and tolerance [155,156]. In patients
with MS, DCs are abundantly present in brain lesions, and display a pro-inflammatory
state with an altered phenotype and/or function compared with healthy controls [157].
Specifically, the DCs of patients with MS show upregulated levels of activation markers,
such as CD86, CD80 and HLA-DR, and fail to upregulate programmed death ligand 1 (PD-
L1) [158–160] compared with their healthy counterparts. Moreover, DCs from patients
with MS secrete higher levels of immune-stimulatory cytokines, including IL-12p70, IL-18
and IL-23 [157,161,162], compared with DCs from healthy individuals. These findings
underscore a potentially important role for DCs in the pathogenesis of diseases, influencing
the effector function of auto-reactive T and B cells [163].

Alternatively, deploying the tolerogenic potential of DCs could possibly have a posi-
tive impact on the balance between immunity and tolerance in MS. For this, DC function
can be directly modulated in vivo before they can be used as an immunotherapeutic tool
to treat MS [164], or tolerance-inducing or tolerogenic DCs (tolDC) can be generated
in vitro from peripheral blood CD14+ monocytes [165]. For the latter, several immuno-
suppressive biologicals and pharmaceuticals, including corticosteroids, TGF-β, dexam-
ethasone, vitamin D3 and cyclosporine have been used. These factors have been demon-
strated to modulate the differentiation and function of DCs [166–168], as evidenced by the
maturation-resistant phenotype, intermediate expression of co-stimulatory molecules, a
shift towards anti-inflammatory cytokine production and a reduced capacity to stimulate
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T cell responses [169,170]. Interestingly, the use of vitamin D3 is one of the most widely
established approaches, as it has significant immune regulatory properties both in vitro
and in vivo [171–186]. These studies showed amongst others that myelin peptide-loaded
tolDC, generated with vitamin D3, induced stable antigen-specific hyporesponsiveness in
myelin-reactive T cells from MS patients in vitro.

In addition, to guarantee the efficiency and stability of antigen presentation by DCs,
several antigen loading strategies have been developed to induce immune responses [152].
These include (1) the in vivo loading of antigens to circulating DCs in patients [187],
(2) different ways of in vitro loading of DCs with antigens [188–195] and (3) DC transfection
with mRNA-encoding antigens [196–201].

Although the use of immune-stimulatory DCs to reinforce immune responses against can-
cer and infectious diseases has been broadly described in multiple clinical trials [202–205], the
use of tolDC as a treatment strategy for autoimmune disorders is still in its infancy. A limited
number of studies have exploited the tolerogenic capacity of DCs to treat patients diagnosed
with T1D, RA, Crohn’s disease, MS and Neuromyelitis optica (NMO) [58,156,179,206–210].
In particular, in MS (Table 1), one phase 1b clinical trial reported that the use of tolDC,
generated with dexamethasone, was safe and feasible in this patient population [58]. In
addition, two single-centre clinical phase I/IIa trials in Antwerp, Belgium (NCT02618902)
and Badalona, Spain (NCT02903537) are currently investigating the safety and feasibility
of tolDC in patients with MS; the studies are also comparing different modes of tolDC
administration, i.e., intradermal and intranodal, respectively [59]. The results from these
studies will provide new insights into the use of tolDC as a possible treatment option for
MS and other autoimmune diseases.

2.5. Other Immune Cells
2.5.1. B Cells

B cells play a pleiotropic role in the induction of immune responses. They contribute
to immunity through the production of antibodies, antigen presentation to T cells and the
secretion of cytokines. There are different subsets of B cells. For instance, early lineage
CD20+CD79+CD27+ B cells function primarily as APCs expressing MHC and costimula-
tory molecules thereby sustaining T cell-mediated cellular responses, whereas late lineage
CD138+ mature plasma cells and CD38+ plasmablasts secrete antibodies, including auto-
antibodies, related to the humoral response [211,212]. The role of B cells in autoimmunity
has been underlined by the successful therapeutic effect of B cell depletion with anti-CD20
monoclonal antibodies [213]. Rituximab, a chimeric anti-CD20 monoclonal antibody, has
proven to be highly beneficial for patients with certain autoimmune diseases, including
RA, MS and T1D. However, while plasma cells and oligoclonal bands in the CSF remain
unaffected by anti-CD20 therapies, B cell depletion aggravated the symptoms in some
patients, which suggests that B cells also have a protective role in autoimmune pathol-
ogy [214]. In this context, IL-10-producing regulatory CD1d+CD5+ B cells were found to
be able to downregulate the initiation of autoimmune diseases and the onset or severity
of EAE, collagen-induced arthritis, contact hypersensitivity and inflammatory bowel dis-
ease [215,216]. Therefore, B cell-mediated regulation of the immune system may be of great
interest for the development of new cell-based therapies for immunosuppression in the
field of autoimmune diseases. Several preclinical studies used different types of B cells as
preventive and therapeutic treatment in EAE, which provided preclinical evidence for tol-
erance induction [217–221]. The adoptive transfer of splenic IL-10-producing CD1dhiCD5+

regulatory B cells, so-called B10 cells, isolated from mice treated with anti-CD20 mono-
clonal antibodies, resulted in limited disease severity when the B10 cells were administered
before EAE induction [222,223]. More recently, administration of regulatory B cells (Bregs)
also promoted oligodendrogenesis and remyelination in an EAE [224]. To our knowledge,
no clinical trials have used B cell-based therapy in patients with MS or other autoimmune
diseases to date.
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2.5.2. Natural Killer Cells

Natural killer (NK) cells are innate cytotoxic lymphocytes derived from CD34+

haematopoietic progenitor cells which are involved in early defence mechanisms [225–227].
Human NK cells can be identified by the molecular marker CD56 in the absence of the
expression of CD3, while the combination of the expression of CD56+ and CD3+ de-
fine a mixed population of NK-like T cells (NKT) and antigen-experienced T cells [228].
CD56bright NK cells are mostly present in secondary lymphoid tissue, while large numbers
of CD56dim NK cells are found in the bone marrow, blood and spleen [225,229]. NK cells
induce apoptosis of their target cells by utilising granzyme B and perforin, and by secreting
inflammatory cytokines, such as IFN-γ, upon stimulation with IL-12 or other cytokines,
which are released by monocytes, macrophages and/or DCs [225–227]. More recently, the
generation of trained immunity, i.e., immune memory of the innate immune system, has
been described [230]. In this perspective, similar functional properties as the adaptive
immune system have been ascribed to NK cells, including the expansion of antigen-specific
cells, the generation of long-lasting memory cells that are able to persist after encounter
with an antigen, and the possible induction of a boosted secondary recall response.

In MS, NK cells play a dual role because they have protective and pathogenic prop-
erties, as evidenced by the contradictory results obtained in EAE [228,229]. This duality
is illustrated by the fact that daclizumab, a humanized anti-CD25 monoclonal antibody,
reduces the disease activity in many patients with MS, but has led to severe CNS inflamma-
tion in 12 patients worldwide [231]. The beneficial mechanism of action of daclizumab was
mediated by the expansion of the CD56bright NK cell population, which led to the killing of
activated T cells. Regarding the increased CNS autoimmunity on the other hand, it has
been speculated that the mechanisms involved led to a decrease in Tregs [232]. Concerns
about—potentially autoimmune—hepatotoxicity resulted in the withdrawal of daclizumab
from the market in March 2018 [233–235].

Albeit that NK cell-based immunotherapy shows promising results in early stage
clinical trials in haematological malignancies and solid cancers [236], more fundamental
research is needed before NK cell-based therapies can be used in human clinical trials in MS.
This includes the identification of a regulatory NK cell subset, the optimal procedures for
cell isolation, differentiation and expansion protocols and the administration regimen [237].

2.5.3. Natural Killer T Cells

A T cell subset with regulatory properties that exhibits characteristics of NK cells has
been identified in mice and humans (extensively reviewed elsewhere [238–240]). These
NKT cells are a subset of innate lymphocytes that recognise endogenous or exogenous
glycolipids in the context of CD1d molecules expressed by APCs, such as monocytes, DCs
and myeloid-derived suppressor cells (MDSCs). Upon antigenic stimulation, NKT cells
produce a variety of immunomodulatory cytokines, which endows the cells with potent
immunoregulatory properties. Nonetheless, various subtypes of NKT cells may have
different effects in the immune system [241]. Importantly, NKT cells in MS were described
to have the potential to act as both protective and pathogenic lymphocytes [242]. The role
of NKT cells in the pathophysiology of MS needs further clarification before they could be
used as a cell-based therapy.

The role of NKT cells and their potential for modulation to increase tolerance towards
self-antigens have been investigated in vitro and in animal models of various autoimmune
diseases [243,244]. However, impaired NKT cell function in patients with autoimmune
diseases could hamper the clinical use of autologous NKT cells, unless in vitro manipula-
tion could change their function. Moreover, NKT cells constitute less than 1% of T cells in
the peripheral blood [241]. Hence, in vitro expansion is needed to achieve a sufficient cell
number for in vivo application [245].

Although NKT cell-based therapy has been investigated in the field of cancer re-
search [241], there have been no studies in animal models of autoimmune diseases. De-
ciphering the roles of NKT subsets in tolerance induction, selecting the appropriate NKT
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cell subset and evaluating the effects on animal models of autoimmune disease will be
necessary before these cells can prove their value in phase I clinical trials in humans.

2.5.4. Myeloid-Derived Suppressor Cells

MDSCs are innate immune cells from the myeloid linage and are important for
creating an immunosuppressive environment in tumours [246]. They play a protective role
in autoimmune diseases through the inhibition of T cell-mediated immune responses [246].
Two large groups of cells have been described (extensively reviewed in [247–249]). In brief,
granulocytic or polymorphonuclear MDSCs (PMN-MDSCs) are similar to neutrophils,
while monocytic MDSCs (M-MDSCs) are similar to monocytes. A third, less common
population of MDSCs has been described in humans, which is called early-stage MDSCs.

The role of these cells is more complex in autoimmune diseases. Recently, numerical,
phenotypical, and functional differences in MDSCs were demonstrated in patients with
RRMS and SPMS [250]. Patients with SPMS had a decreased frequency of M-MDSCs and
PMN-MDSCs compared with healthy controls, while the frequency of M-MDSCs and
PMN-MDSCs was increased in patients with RRMS during relapse as compared with
healthy controls. More importantly, M-MDSCs demonstrated the capacity to suppress T
cells in patients with RRMS and healthy controls, while these cells promoted autologous
T cell proliferation in patients with SPMS [250]. In EAE, the preventive and therapeutic
administration of purified antigen-presenting MDSCs led to lower percentages of activated
T cells and higher percentages of regulatory B cells, which implied that MDSCs had
tolerogenic properties [251]. More research into MS is needed before MDSCs can be
investigated as a therapeutic cell product in human clinical trials.

2.6. Use of Cells as Carriers of Antigens to Induce Tolerance
2.6.1. Peripheral Blood Mononuclear Cells

An alternative approach for effective immunosuppression in the treatment of autoim-
mune diseases involves the coupling of self-antigen-derived peptides to cellular vehicles
using chemical fixatives [252]. The induction of immunosuppression using this method
is indirect and implies that the fixed cells rapidly undergo apoptotic cell death following
fixation and subsequently carry over intact peptides to tolerogenic APCs for processing
and presentation [253,254]. Lutterotti et al. performed an open-label, single-centre, dose-
escalating phase I/IIa study to evaluate the therapeutic use of autologous peripheral
blood mononuclear cells (PBMCs) in nine patients with MS: two patients had SPMS and
seven patients had RRMS (Table 1). The PBMCs were coupled with seven myelin-derived
peptides that were associated with MS pathogenesis and against which demonstrable
responses could be detected in the patients included in the trial [60,255]. Administration
of the myelin-derived peptide-loaded PBMCs was reported to be feasible, safe and well
tolerated. Interestingly, patients who received a high cell dose showed diminished antigen-
specific T cell responses [60]. Despite the advantages associated with the limited time
for the preparation of the cell product, the correct dose and frequency of the treatment
remain unknown.

2.6.2. Erythrocytes

Erythrocytes, which are also known as red blood cells (RBCs), are the most common
type of blood cell. Their main function is to deliver oxygen to body tissues. RBCs are con-
tinuously cleared from circulation through phagocytosis without eliciting an autoimmune
response. Hence, the tolerogenic properties of these apoptotic cells can be used to engineer
tolerance-inducing RBCs. Pishesha et al. described one such technique, called sortagging,
sortase-mediated transpeptidation [256]. Engineered RBCs that were covalently linked to
MOG35–55 protect against and reverse early signs of EAE [256]. A phase Ib clinical trial
involving this approach started recruiting patients with MS in October 2017 (Table 1) [257].
Results were presented as a late-breaking abstract during ECTRIMS 2019 [61]. The investi-
gators reported that there was a reduction in antigen-specific T cell responses to myelin
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peptides in the high-dose group, whereas the proportion of type 1 regulatory T cells (Tr1)
and nTregs, and IL-10 levels increased providing evidence of immune tolerance induced
by this treatment strategy.

3. Key Issues When Designing Cell-Based Therapies For MS
3.1. Autologous Versus Allogeneic Therapy

Cell products for tolerance induction can be derived from the same individual (autol-
ogous) or another individual (allogeneic). From a practical point of view, there are many
advantages associated with the use of allogeneic cell therapy. For instance, allogeneic cell
therapy has a lower production cost compared with the cost related to individualised autol-
ogous cell products. There is also a higher availability of allogeneic cell products because
cryopreserved stocks can be used, which means that they are available as off-the-shelf
products [258]. However, the risk of host immune rejection due to GVHD is substantial
in allogeneic cell therapy and requires simultaneous strong immune suppression to allow
cell engraftment for immune-modulatory purposes. Autoimmune patients are unlikely
to undergo the same heavy lymphodepletion as patients with cancer, which makes it
even harder to evade the immune system with an allogeneic product. In contrast, the
risk is minimal in autologous therapy. Additionally, donor screening is much stricter for
allogeneic cell therapy in terms of infectious screening, such as for (human leukocyte
antigens) HLA typing, which results in increased costs [258]. In addition, because most
patients with autoimmune diseases do not have the same urgency to begin cell therapy as
patients with cancer, apart from a life-threatening flare-up, the benefits of an autologous
patient-specific cell therapy product may outweigh the benefits of off-the-shelf therapy in
the autoimmune setting. Given these issues, autologous therapy is often preferred over
allogeneic therapy for tolerance induction, and its long-term persistence could justify its
high price tag. For example, both European and American guidelines do not recommend
allogeneic HSCT in patients with MS [259,260]. Moreover, also allogeneic Treg therapy
has only been tested in immunosuppressed and immunocompromised individuals [122].
Nonetheless, future design of more universal cell-based therapies could potentially result
from more knowledge and research using CRISPR-Cas9 technology to render cells HLA
deficient or to induce the ectopic expression of non-canonical HLA-E or HLA-G genes,
which are expressed during maternal–foetal tolerance [124].

3.2. Antigen-Specificity

General immune modulation may be accompanied by undesired side effects, such as
opportunistic infections and secondary autoimmunity. Therefore, harnessing the immune
system to restore immune tolerance using tolerance-inducing cell strategies requires loading
the cell product with myelin antigens or receptors, depending on the cell type used, to
acquire disease-related antigen specificity.

Although substituting only 15–30% of total myelin content [261], the myelin pro-
teins are presumed to be the major antigenic targets of the MS-driving autoimmune re-
sponse [262]. The protein content within the myelin sheath is predominantly composed
of proteolipid protein and MBP, as well as other myelin proteins, such as MOG [261].
Irrespective of their abundance in the myelin sheath, epitopes from these three myelin
proteins have been shown to be encephalitogenic in different animal models [263]. Thus,
the reactivity towards a wide variety of myelin peptides can be detected in patients with
MS [264,265]. Hence, directing myelin specificity to cell-based therapies for MS may
represent a promising approach to tackle MS-related autoimmunity. In this way, the dysreg-
ulated myelin-directed immune response could be restored, without affecting the normal
surveillance and effector function of the immune system.

To date, however, few clinical trials have investigated myelin-specific cell-based
therapies. Indeed, many of the above-mentioned cellular treatments do not have a
myelin-specific mode of action, although encouraging safety results have been demon-
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strated for several antigen-specific treatment approaches in phase I and II clinical trials for
MS [58,60,266–269], including cell-based therapies with DC [58] and mononuclear cells [60].

Nevertheless, various pitfalls have limited the development of antigen-specific treat-
ment. First, even though myelin proteins are suggested to be culprit antigens, no single
antigenic target has been identified. Myelin reactivity in patients with MS is heterogeneous
and possibly dynamic because of the emergence of neo-autoreactivities due to disease
activity-related tissue damage, which is associated with epitope spreading [270–272]. There-
fore, there is no obvious single peptide or peptide mix at which tolerance reconstitution can
be aimed. Moreover, even though ex vivo reactivity can be directed towards a wide variety
of myelin peptides, some are non-pathogenic, such as the so-called cryptic or not naturally
processed epitopes [273]. These factors complicate the choice of targets for antigen-specific
therapy. Nonetheless, few side effects were reported in clinical trials with antigen-specific
therapies [16,274]. However, a risk of inducing MS exacerbation or hypersensitivity reac-
tions when trying to modulate the immune system in a myelin-specific way remains. In
this context, the administration of myelin antigens by means of carrier cells might represent
a more controlled approach to induce stable and antigen-specific immune tolerance.

Several innovative antigen-specific treatment strategies are currently in the preclinical
phase and may address some of the previously mentioned issues. New antigen-loading
strategies are being investigated as alternatives to classical peptide pulsing. For instance,
transfection with viral vectors or nucleic acids encoding full-length myelin proteins may
lead to the presentation of a wide variety of naturally processed myelin peptides. These
new strategies could be used to increase the efficacy of current cell-based antigen-specific
treatment approaches, as well as to add antigen-specificity to cell therapies that are not
yet specifically directed towards the myelin response, including MSC-, HSC- and Treg-
based strategies. These new approaches may represent an intriguing opportunity for
antigen-specific cell treatment.

3.3. Migration Across the Blood–Brain Barrier

The trafficking of cell-based therapies into the CNS can be used for targeted im-
munotherapy against various neuroinflammatory diseases [275–278]. Indeed, the triumph
of cell-based immunotherapy in inducing immune tolerance depends on the accurate de-
livery and trafficking of the therapeutic, i.e., tolerance-inducing cells, to the inflammatory
sites [279,280]. Hence, a clear understanding of the underlying mechanisms involved in
cell migration is necessary to advance the development of new therapies. However, entry
into the CNS is heavily restricted by the blood–brain barrier (BBB), a diffusion barrier that
tightly regulates homeostasis of the CNS and impedes the influx of most compounds from
the blood to the brain [281–283]. The restrictive nature of the BBB provides an obstacle
for drug delivery to the CNS. Although there have been medical advances in the care
of individuals with brain and CNS diseases, the treatment of these disorders remains
challenging and insufficient because of the BBB, which prevents many drugs in circulation
from reaching the brain. Hence, major efforts have been made in developing methods able
to modulate or bypass the BBB for delivery of therapeutics [284]. Nonetheless, several
cell types, including MSCs, Tregs and DCs, can migrate in and out of the BBB efficiently,
and BBB-transmigratory capacity of the cells could be exploited for the therapeutic tar-
geting of the inflammatory disease mechanism in the CNS. Moreover, these cells, owing
to their ease of isolation, established safety and potential to target different pathways in
neuronal regeneration [285–287], have proved to be attractive therapeutic agents and can
secrete various cytokines and growth factors with anti-apoptotic, neuroprotective and
immune-modulatory properties [277,288]. They can be used as vehicles to deliver antitu-
mor therapeutics for brain tumour treatment and recent reports have demonstrated that
they can interact and migrate across the BBB under injury or inflammation. They express a
variety of leukocyte-like homing molecules, such as chemokine receptors and adhesion
molecules [289–291] and they use a multistep homing cascade (i.e., rolling, adhesion, and
transmigration) to engage with endothelial cells [292–294]. Indeed, these cells use adhesion
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molecules, including vascular cell adhesion molecule (VCAM)-1 and β1 integrin, to trans-
migrate through the endothelial barrier and preferentially transmigrate on TNF-α-activated
endothelium rather than naïve endothelium [295,296]. Several chemokine receptors and
their ligands, including CXCL9, CXCL16, CCL20 and CCL25, are known to be explicitly
involved in the cell transmigration through the endothelial layer [285,295–298].

Although in general, these cells undertake the same migratory cascade to reach the
CNS by moving across the BBB, they still require specific mechanisms for their mode of
action. For instance, MSCs favourably transmigrate through the endothelial cells using
G-protein-coupled receptor signalling-(GPCR-) dependent pathways [285]. MSCs migrate
either by paracellular or transcellular diapedesis through discrete gaps or pores in the
endothelial monolayer that are enriched for VCAM-1 (transmigratory cups). In contrast to
leukocytes, their transmigration does not involve significant lateral crawling, presumably
due to the lack of Mac-1 expression [289]. Similarly, Tregs tend to migrate across the
brain endothelium and to suppress the effector T cell functions at the site of emerging
inflammation. Recent studies have suggested that the detection of low numbers of Tregs in
the CNS of patients with MS [299–301] and murine Tregs showed augmented migratory
capacity in vitro and in vivo via the BBB [300,301]. In addition, human FoxP3+ Tregs
migrate across in vitro human brain endothelium at higher rates than other cells. Tregs from
patients with RRMS showed impaired migratory abilities in crossing the BBB under non-
inflammatory conditions [293]. The integrin CD62L is a crucial lymphoid homing molecule
for immune cells and is also an important migration associated molecule for Tregs [302].
The migratory capacity of Tregs, through the BBB is controlled by distinct signals from
chemokines/chemokine receptors, such as CCR7 and CCR6 [296]. Additionally, DCs found
within the CNS correlate with the severity of disease, and they exhibit more efficient
transmigration than the T cells in in vitro models of the BBB [275]. Different chemokine
receptors and ligands, including CCR5, are involved in the inflammatory migration of
DCs [303] and, thus, should be targeted for the development of therapies. Crossing the BBB
is a prerequisite for all these cells to exert their therapeutic effects in treating neurological
diseases or CNS injury and is necessary for their use as vehicles for drug delivery to treat
brain tumours. Hence, the selective targeting of the trafficking and compartmentalisation
of these cell types into different sites to exert their apposite immune suppression would be
therapeutically beneficial. In this regard, efforts have been made to increase CNS migratory
capacity of cells, such as CCR5-encoding mRNA-electroporation of tolDC. Accordingly, the
capacity of mRNA-electroporated tolDCs to transmigrate toward a chemokine gradient in
an in vitro model of the BBB improved significantly, and neither the tolerogenic phenotype
nor the T cell-stimulatory function of tolDCs was affected [304].

Furthermore, the ability to monitor the migration and fate of these cells under in vivo
conditions is helpful in devising rational therapeutic strategies and is also critical for
optimisation of these strategies. For this, some non-invasive in vivo cell tracking techniques
are used such as in vivo bioluminescence imaging [305]. This is an indirect cell labelling
technique with reporter genes which allows cell tracking in small animal models. The
mobility of the cells, including MSCs, DCs and Tregs, to the target tissue can be easily
verified using in vivo bioluminescence imaging reporter gene strategies as well [306–308].

There is a need for the ongoing and future clinical studies to focus on the use of various
therapeutic strategies that exploit the migration-associated molecules for various cell
types [47,309–311]. The majority of current clinical studies use intradermal or subcutaneous
routes of administration with different outcomes [312,313]. Based on these reports, the
effect of the administration route on the efficiency of the therapeutic vaccine remains
unclear and a topic of debate. Further optimisation is required to enhance the overall
vaccine outcome.

4. Discussion and Conclusions

Effective treatment of MS should target the causative mechanisms of disease and
induce long-lasting effects. As immune-mediated demyelination and axonal degeneration
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are essential components of the neurodegenerative process of the disease, the ideal treat-
ment for MS would convert the function of B and T lymphocytes from disease-causing
to disease-regulating, without affecting the rest of the immune system. In this context,
several cell-based, tolerance-inducing therapies have been developed, including MSCs,
Tregs and DCs.

While translating cell-based therapies from the bench to the bedside, several challenges
arise: manufacturing of the cell-product, administration route and time, dosing, etc. As
most of the cells presented in this review are not abundantly present in the blood or
tissues, in vitro propagation is almost always required to achieve a sufficient cell number
for in vivo application. Different biological agents have been used to induce in vitro
cell expansion, such as rapamycin [125–127]. Rapamycin, also known as sirolimus, is
an immunosuppressant routinely used in preventing the rejection of kidney transplants.
Interestingly, it has been demonstrated in patients treated with rapamycin that this agent
also has a direct in vivo effect on immune-regulatory cells. For instance, rapamycin restored
Treg function in six patients with IPEX syndrome treated with rapamycin [314], or induced
the upregulation of ILT3 and ILT4 on DCs, thereby promoting the immunoregulatory
function of DCs [315]. Similarly, also all-trans retinoid acid (ATRA), which has been used
for in vitro expansion of Tregs [129,130], demonstrated a direct in vivo effect on the number
of Tregs and IL-10 and FoxP3 expression levels [316].

When considering the route of delivery of these cell-based therapies, one needs to con-
sider that different routes lead to different sites of accumulation of the cells administered.
Cell-based therapies that can be directed to the lymph nodes and the site of inflammation
present an effectual promise of innovative cell-based immunotherapies to battle diseases,
such as MS, and to provide a long-lasting cure. In this perspective, we recently presented a
novel method to facilitate the migration of cell therapeutic products. Indeed, by introduc-
ing messenger RNA (mRNA) encoding CCR5 by means of electroporation (EP), tolDCs
transiently displayed increased levels of CCR5 protein expression [304]. Accordingly, the
capacity of mRNA electroporated tolDCs to transmigrate toward a chemokine gradient in
an in vitro model of the BBB improved significantly, indicative for improved migration of
CCR5-expressing tolDCs to inflammatory sites and allowing in situ down-modulation of
autoimmune responses in the CNS. In vivo “cell tracking” techniques can pave the way to
further optimise current and upcoming cell-based therapies in MS, ranging from preclinical
to clinical applications, by improving our understanding of complex mechanisms of action.
In vivo bioluminescence imaging allows non-invasive imaging in cell biology and small
animal studies [305–308]. Interestingly, imaging data obtained from mice receiving vitamin
D3-generated tolDC which were labelled with NIR815 (n = 9), showed that the cells reached
the lungs immediately after intravenous administration. Importantly, 24 h after tolDC
administration, cells were also found at an elevated concentration in the liver and spleen,
up to 7 days post administration [185]. In addition, also in vivo imaging can be deployed
in different ways, for instance to stratify patients into responders and non-responders and
to predict efficacy or indicate potential loss of efficacy in patients [317].

In addition, the heterogeneity in the pathology of MS as well as in its clinical course
has presented challenges for the design of therapeutic trials. On top of that, disease
heterogeneity has only been partially explained by genetic polymorphisms [318–320] and
immunological differences in patients [321,322], which can be linked to a higher relapse
rate or to a clinical phenotype with more spinal or brain lesions. Hence, well-defined
patient selection will account for improved outcome measures. However, currently, there
are no biomarkers that adequately predict the individual disease course [323], albeit that
some biomarkers, such as neurofilament light, may exert that role in the future [324].

Another critical parameter in cell therapy research is the timing when the treatment
starts. The window of opportunity for the treatment of patients with MS, directed at
downregulating or even silencing the aberrant immune response towards myelin-antigens,
is early in the disease course when there is a permeable BBB, a limited amount of axonal
damage, before epitope spreading occurs and when the peripheral immune system drives
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the inflammation in the CNS [325–327]. Thus, all cell therapies that intervene with the
peripheral-driven immune response should be applied in a timely manner. In addition,
targeted cell therapy should ideally be given to patients who show an abnormal T cell
response towards these antigens in vitro, which can be found in a subset of MS patients
that show inflammatory disease activity [19]. Altogether, the adequate selection of patients
for these treatments or for clinical trials is of utmost importance.

Ideally, cell-based therapies must induce increased durability along time. This means
that the ability to regulate the autoimmune response must be permanent or at least persist
for years following intervention. However, to date, only results demonstrating the safety of
tolerance-inducing cell-based therapies in the short-term are available (Figure 2). Indeed, a
recent systematic review and meta-analysis evaluating the safety of tolerance-inducing cell-
based therapies in autoimmune diseases and transplantation showed that the occurrence of
serious adverse events (SAE) is a rare event following treatment with cell-based therapeutic
products [328]. Nonetheless, long-term follow-up of participants in well-designed and
adequately powered controlled clinical trials is needed to provide evidence of efficacy and
long-term safety.
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While it can be hypothesised that reducing the autoreactive, inflammatory assaults
in MS may allow for more repair, very little is known about the function of the above-
mentioned cell-based therapies in remyelination. Interestingly, since inflammation resolv-
ing effects of Tregs frequently occur with tissue regeneration, Dombrowski and colleagues
recently revealed a novel proregenerative function for Tregs, as drivers of oligodendrocyte
differentiation and remyelination, beyond immunomodulation. This confers a regen-
erative role for Treg complementary to, but distinct from, known immunomodulatory
functions [329,330]. In addition, also MSCs are likely to promote neuroprotection next
to their immunomodulatory characteristics [94–96], by promoting endogenous repair via
local neural precursor cells recruitment. This can possibly be facilitated by the secretion
of neurotrophic factors, thereby driving neurogenesis and remyelination [97,98]. These
findings will open doors to further optimise cell-based therapies in MS.

Although the first clinical trials reported promising results on the level of safety of
administering the cell therapies, discussed in this review, in patients with autoimmune
disease in general, and in patients with MS in particular, numerous questions remain
unanswered. Ongoing and future studies will help to define the dose, treatment schedule
and route of administration of antigen-specific cell therapy in patients with MS regarding
safety, efficacy, and treatment-related costs. In conclusion, all aspects of the disease and
therapeutic cell product should be considered during cell therapy research, especially
within the context of personalised medicine.
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