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Abstract: Lung fibrosis has specific computed tomography (CT) findings and represents a common
finding in advanced COVID-19 pneumonia whose reversibility has been poorly investigated. The
aim of this study was to quantify the extension of collagen deposition and aeration in postmortem
cryobiopsies of critically ill COVID-19 patients and to describe the correlations with qualitative and
quantitative analyses of lung CT. Postmortem transbronchial cryobiopsy samples were obtained,
formalin fixed, paraffin embedded and stained with Sirius red to quantify collagen deposition,
defining fibrotic samples as those with collagen deposition above 10%. Lung CT images were
analyzed qualitatively with a radiographic score and quantitatively with computer-based analysis at
the lobe level. Thirty samples from 10 patients with COVID-19 pneumonia deceased during invasive
mechanical ventilation were included in this study. The median [interquartile range] percent collagen
extension was 6.8% (4.6–16.2%). In fibrotic compared to nonfibrotic samples, the qualitative score was
higher (260 (250–290) vs. 190 (120–270), p = 0.036) while the gas fraction was lower (0.46 (0.32–0.47)
vs. 0.59 (0.37–0.68), p = 0.047). A radiographic score above 230 had 100% sensitivity (95% confidence
interval, CI: 66.4% to 100%) and 66.7% specificity (95% CI: 41.0% to 92.3%) to detect fibrotic samples,
while a gas fraction below 0.57 had 100% sensitivity (95% CI: 66.4% to 100%) and 57.1% specificity
(95% CI: 26.3% to 88.0%). In COVID-19 pneumonia, qualitative and quantitative analyses of lung
CT images have high sensitivity but moderate to low specificity to detect histopathological fibrosis.
Pseudofibrotic CT findings do not always correspond to increased collagen deposition.

Keywords: COVID-19; fibrosis; collagen; computed tomography

1. Introduction

Long-term consequences of severe acute respiratory syndrome coronavirus 2 (SARS-
Cov-2) associated with interstitial pneumonia and its complications, including acute dis-
tress respiratory syndrome (ARDS), have been recently highlighted [1,2]. Patients with
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severe COVID-19 pneumonia typically meet the clinical criteria for ARDS [3] and specific
pathophysiological aspects have been described [4,5]. In particular, concerns regarding the
fibrotic evolution of lung disease in COVID19 survivors are being raised [6,7], and a specific
fibrotic phenotype with peculiar histopathological findings and radiological morphology
has been described [8].

Postmortem studies have identified COVID-19-related lung injury characterized by
diffuse alveolar damage (DAD) with an early exudative phase with edema and hyaline
membranes, followed by an organizing phase with loose organizing fibrosis and type
II pneumocyte hyperplasia, and a final fibrotic stage found only in patients with longer
duration of disease [9,10]. The disease spectrum has also been described in postmortem
cryobiopsy lung samples [11–13]. Chest computed tomography (CT) is widely used in the
clinical management of patients with acute respiratory failure [14], including in COVID-
19 [15]. Radiographic signs compatible with lung fibrosis have been described both in
the acute phase of COVID-19 [16] and during the follow up [17]. Collagen deposition
is a hallmark of lung fibrosis [18], and its quantification could help define the evolutive
characteristics of COVID-19 patients. However, its association with CT findings has not
yet been described, and previous CT studies in ARDS have poorly explored the fibrotic
phase [8,19].

The aim of this study is to quantify the extension of collagen deposition in postmortem
cryobiopsies of critically ill COVID-19 patients and to describe sensitivity and specificity of
qualitative and quantitative analyses of lung CT. We hypothesized that collagen deposition
would be associated with qualitative and quantitative computed tomography parameters.

2. Results
2.1. Patients and Samples Inclusion

Ten COVID-19 patients were included in this analysis, of which eight were previously
included in another study [11]; clinical characteristics are reported in Table 1. All patients
had received a CT scan, and the median time from CT scan to death was 4 (3–4) days. All
patients except one had received a course of methylprednisolone during t heir hospital stay.

Table 1. Population description.

Overall Population (n = 10)

General characteristics

Age, median (IQR) 72 (60–77)
Sex (male), n (%) 7 (70)

Time from onset of symptoms to ICU admission, median
(IQR), days 11 (8–16)

Time from hospital admission to ICU admission, median
(IQR), days 9 (3–13)

Time from ICU admission to death, median (IQR), days 17 (10–27)
Time from last CT scan to death, median (IQR), days 4 (3–4)

Comorbidities

Hypertension, n (%) 6 (60)
Diabetes, n (%) 1 (10)
Smoker, n (%) 2 (20)

Ischemic cardiopathy, n (%) 1 (10)

Specific treatments received

Methylprednisolone, n (%) 9 (90)

Tocilizumab, n (%) 3 (30)
Hydroxychloroquine, n (%) 8 (80)

Leading cause of death
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Table 1. Cont.

Overall Population (n = 10)

Refractory hypoxemia, n (%) 7 (70)
Cardiocirculatory failure, n (%) 3 (30)

Oxygenation

PaO2/FiO2 ratio at ICU admission, median (IQR), mmHg 173 (112–310)
PaO2/FiO2 ratio the day of death, median (IQR), mmHg 77 (55–99)

IQR: interquartile range; ICU: intensive care unit; CT: computed tomography.

Due to technical difficulties related to the cryobiopsy procedure, not all patients had
an available sample for each lung lobe: six (60%) had available samples from the LLL,
seven (70%) from the LUL and RML, eight (80%) from the RLL and four (40%) from the
RUL. Two samples were judged inadequate for analysis due to mechanical deformation
during the sampling process, for a total of 30 valid samples from 10 patients included in
this study.

2.2. Quantitative Histopathological Analysis

The median sample surface included in the analysis was 1.6 (0.9–2.4) mm2. Two
representative samples are illustrated in Figure 1.
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Figure 1. Histopathological samples stained with Sirius red in two representative patients. (A) illus-
trates a patient with early disease, normal percent collagen amount and normal alveolar airspaces.
(B) illustrates a patient with advanced disease, parenchymal disruption, pathological collagen depo-
sition and extensive loss of aeration.

The median percent collagen extension was 6.8 (4.6–16.2)%, while airspace extension
was 25 (21–35)%. Their distribution in different lobes is illustrated in Figure 2. In the healthy
historical cohort, collagen extension was 5.9 (5.0–7.4)% (mean 5.9%, standard deviation
1.9%); therefore, the cut-off for defining fibrotic samples was set to 10%. Nine samples were
classified as fibrotic, while 21 were nonfibrotic.
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Figure 2. Quantification of collagen (A) and airspaces (B) in Sirius red-stained samples. Violin plots represent distributions,
squares represent individual patient data, thick lines medians, thin dotted lines quartiles. The dotted horizontal line in
(panel (A)) represents the threshold defining fibrotic samples (collagen > 10%).

2.3. Qualitative CT Assessment and Quantitative CT Analysis

The median modified Ichikado score was 242 (230–275) and was higher in fibrotic
versus nonfibrotic samples (260 (250–290) vs. 190 (120–270), p = 0.036). As illustrated
in Figure 3, the score was higher in the lower lobes, where consolidation and traction
bronchiectasis were more represented. Honeycombing was reported in seven samples from
two patients. The median gas fraction was 0.56 (0.30–0.59), being lower in fibrotic versus
nonfibrotic samples (0.46 (0.32–0.47) vs. 0.59 (0.37–0.68), p = 0.047). Figure 4 illustrates
the distribution of the gas fraction and the extension of aeration compartments. Detailed
results of the quantitative CT analysis are reported in Table 2.
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Figure 3. Qualitative CT analysis results in the whole lungs (total) and in each lobe. Violin plots
in (A) represent distributions, squares represent individual patient data, thick lines medians, thin
dotted lines quartiles. The heatmap in (B) reports the mean estimated percent extension of each CT
finding. CT: computed tomography; LLL: left lower lobe; LUL: left upper lobe; RLL: right lower lobe;
RML: right middle lobe; RUL: right upper lobe.
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Figure 4. Quantitative CT analysis results in the whole lungs (total) and in each lobe. Violin plots in
(A) represent distributions, squares represent individual patient data, thick lines medians, thin dotted
lines quartiles. The heatmap in (B) reports the mean extension of each quantitative CT aeration
compartment expressed as percent of the total lobe tissue. CT: computed tomography; LLL: left lower
lobe; LUL: left upper lobe; RLL: right lower lobe; RML: right middle lobe; RUL: right upper lobe.
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Table 2. Quantitative computed tomography analysis.

Variable Total Left Lower Lobe Left Upper Lobe Right Lower
Lobe

Right Middle
Lobe

Right Upper
Lobe

Volume (mL),
median (IQR) 2682 (2131–3554) 410 (395–641) 708 (518–1048) 504 (468–594) 269 (238–395) 679 (503–892)

Attenuation (HU),
median (IQR)

−555
(−595–−301) −337 (−517–−71) −629

(−696–−401) −362 (−472–−73) −559
(−699–−412)

−547
(−674–−431)

Weight (g),
median (IQR) 1460 (1239–1917) 301 (260–376) 336 (305–375) 355 (285–510) 139 (115–167) 304 (263–419)

Vgas (mL),
median (IQR) 1389 (701–2278) 132 (29–323) 414 (225–744) 176 (34–218) 148 (102–263) 374 (236–538)

Gas Fraction,
median (IQR) 0.56 (0.30–0.59) 0.34 (0.07–0.52) 0.63 (0.40–0.70) 0.36 (0.07–0.47) 0.56 (0.41–0.70) 0.55 (0.43–0.67)

Hyperaerated
tissue (%),

median (IQR)
0.6 (0.2–1.3) 0.2 (0.1–0.3) 1.1 (0.2–2.4) 0.1 (0.1–0.4) 0.7 (0.3–1.5) 0.6 (0.2–1.1)

Normally aerated
tissue (%),

median (IQR)
28.7 (12.6–49.6) 14.1 (4.1–40.3) 43.1 (20.7–53.0) 16.4 (2.4–36.3) 41.3 (17.2–57.5) 37.8 (19.4–60.4)

Poorly aerated
tissue (%),

median (IQR)
33.7 (30.6–36.0) 31.4 (28.8–37.0) 32.1 (26.2–35.4) 29.4 (27.6–37.3) 34.5 (28.8–40.7) 33.6 (31.0–40.2)

Nonaerated tissue
(%), median (IQR) 34.2 (16.3–53.8) 49.4 (23.2–69.4) 25.4 (13.3–41.0) 47.2 (26.0–70.3) 24.0 (14.2–41.5) 22.9 (11.7–45.7)

IQR: interquartile range; HU: Hounsfield units.

2.4. Receiver Operating Characteristics Analysis

The results of the receiver operating characteristics analysis are reported in Table 3.
An AUC of 0.746 (95% CI from 0.572 to 0.920) was observed for the modified Ichikado
score. A score above 230 had high sensitivity (100%, 95% CI from 66.4% to 100%) but
moderate specificity (66.7%, 95% CI from 41.0% to 92.3%) to detect fibrosis defined as
collagen deposition > 10%. Consolidation with traction bronchiectasis and honeycombing
was highly specific for fibrosis but had very low sensitivity. The AUC for the gas fraction
was 0.725 (95% CI from 0.547 to 0.903) and a value below 0.57 had high sensitivity (100%,
95% CI from 66.4% to 100%) but moderate specificity (57.1%, 95% CI from 26.3% to 88.0%)
to detect fibrotic samples.

Table 3. Receiver operating characteristic of qualitative and quantitative CT parameters for detection of fibrotic lung
samples (collagen > 10%).

Parameter AUC (95% CI) Cut-Off Sensitivity, % (95% CI) Specificity, % (95% CI)

Qualitative Analysis

Normal lung (estimated %) 0.742 (0.567–0.919) <25 100 (66.4–100) 47.6 (10.4–84.8)
Ground glass opacities

(estimated %) 0.648 (0.451–0.845) >25 77.8 (45.1–100) 52.4 (22.0–82.7)

Consolidation (estimated %) 0.685 (0.496–0.875) >5 100.0 (66.4–100) 42.9 (10.1–75.6)
Ground glass with traction

bronchiectasis (estimated %) 0.688 (0.461–0.915) >5 55.6 (29.5–81.6) 76.2 (55.5–96.9)

Consolidation with traction
bronchiectasis (estimated %) 0.521 (0.288–0.754) >15 11.1 (0.0–33.6) 95.2 (87.0–100)

Honeycombing (estimated %) 0.563 (0.329–0.798) >5 22.2 (0.0–51.5) 90.5 (74.0–100)
Modified Ichikado score 0.746 (0.572–0.920) >230 100.0 (66.4–100) 66.7 (41.0–92.3)

Lobe weight (g) 0.624 (0.389–0.859) >263 77.8 (62.9–92.7) 52.4 (32.4–72.3)
Gas fraction 0.725 (0.547–0.903) <0.57 100.0 (66.4–100) 57.1 (26.3−88.0)

Hyperaerated tissue (%) 0.762 (0.584–0.940) <0.2 77.8 (57.0–98.6) 81.0 (62.3–99.6)
Normally aerated tissue (%) 0.667 (0.465–0.868) <40 88.9 (68.9–100) 61.9 (29.5–94.3)

Poorly aerated tissue (%) 0.661 (0.432–0.891) >41 44.4 (25.4–63.5) 95.2 (86.5–100)
Nonaerated tissue (%) 0.593 (0.356–0.829) >24 77.8 (37.9–100) 57.1 (24.0–90.3)

CT: computed tomography; AUC: area under the curve; CI: confidence interval; PPV: positive predictive value; NPV: negative predictive
value. Confidence intervals of sensitivity and specificity are adjusted for clustered measurements using the variance inflation factor method.
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2.5. Associations between Qualitative and Quantitative CT Analysis and Histopathology

Both the modified Ichikado score (R2
marginal = 0.05, R2

conditional = 0.70) and the gas
fraction (R2

marginal = 0.01, R2
conditional = 0.71) were associated with the amount of collagen

in lung samples (Figure 5). While all fibrotic samples with collagen above 10% had high
radiographic score and low gas fraction, nonfibrotic samples showed a wide range of
radiographic scores and gas fractions. The extension of airspaces was correlated with the
CT gas fraction (R2

marginal = 0.11, R2
conditional = 0.29).
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Figure 5. Qualitative (A) and quantitative (B) CT analysis as function of collagen percent extension.
The dotted horizontal line in panel A represents the threshold defining fibrotic samples (collagen >
10%), vertical dashed lines represent the cut-off identified in the receiver operating characteristics
analysis. The marginal R2 describes the proportion of variance explained by the CT parameter alone,
the conditional R2 the proportion of variance explained by both the CT parameter and the random
effect (patient). CT: computed tomography; LLL: left lower lobe; LUL: left upper lobe; RLL: right
lower lobe; RML: right middle lobe; RUL: right upper lobe.

3. Discussion

In critically ill COVID-19 patients deceased during invasive mechanical ventilation, we
found that: (1) lung collagen amount ranged from normal to extremely high; (2) qualitative
and quantitative CT analysis had weak correlation with collagen amount in postmortem
lung samples; (3) qualitative and quantitative CT parameters had high sensitivity but
moderate specificity to detect histopathological fibrosis.

In the present study the amount of collagen deposition in postmortem samples of
patients with COVID-19 pneumonia was quantitatively evaluated by using specific staining
and quantitative histopathologic image analysis. The correlations between qualitative and
quantitative lung CT findings were explored, observing that CT-derived parameters were
weakly correlated with the amount of collagen fibers. The analysis was conducted at the
lobe level, thus considering the high spatial heterogeneity of the disease. The lung CTs
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were performed near to the date of death, allowing a reliable comparison between lung
imaging and histology. The use of postmortem cryobiopsies allowed an analysis of the
lung immediately after death and during the application of positive pressure to the airways
to maintain lung aeration, thus minimizing the artifacts at histopathological analysis that
might occur during conventional autoptic exams.

Evidence at hospital discharge shows that nearly half of survivors of COVID-19 have
impaired lung diffusing capacity for carbon monoxide, a quarter have reduced total lung
capacity, and this is correlated with the severity of disease [20]. Furthermore, 55% to 80%
of COVID-19 patients show impaired pulmonary function and radiologic abnormalities
three months after ICU discharge, while 21% show fibrotic patterns at the computed
tomography (CT) [17,21,22]. It is still unclear whether patients will show recovery over
time or irreversible fibrosis will develop. Our findings suggest that radiological signs of
fibrosis at the CT scan might not always be associated with increased collagen deposition;
one might speculate that these pseudo-fibrotic CT findings with low amounts of collagen
could be reversible and that the respiratory function might improve with time after recovery.
In ARDS from causes other than COVID-19, most survivors show progressive resolution
of pulmonary function abnormalities, while around one quarter develop a restrictive
pattern [23], which tends to stabilize over time, different from what is seen in idiopathic
pulmonary fibrosis [24,25]. Fibrotic pulmonary remodeling has also been described after
SARS pneumonia, with 15–20% of survivors showing reduced lung functional capacity
within the first year [26], and 5% having stable interstitial abnormalities at 15 years [27].
This study provides insights on the molecular mechanisms of lung damage in COVID-19
and provides a basis for clinical studies investigating the reversibility of CT and functional
parameters in survivors with suspect fibrotic evolution. Our findings might help to clarify
the role of CT imaging analysis in assessing fibrotic evolution in COVID-19; this could
have implications in studies assessing clinical evolution after hospital discharge and in
monitoring the effects of drugs with antifibrotic properties in the acute or post acute
phase [28]. Of notice, we observed that ground glass opacities, consolidation, and ground
glass opacities with traction bronchiectasis, had specificity ranging from 42.9% to 76% to
detect samples with increased collagen deposition. This suggests that the presence of these
findings at the CT scan could be part of the evolution of the pathology not necessarily
reflecting proliferative fibrosis. Quantitative CT analysis, as compared to qualitative
scoring, resulted in similar performance in the detection of increased collagen. This might
be explained by the fact that quantitative CT analysis mainly relies on the relative amount
of gas and lung tissue contained in each voxel [29], not taking into account the specific
patterns observed in lung fibrosis.

The high sensitivity, but moderate specificity, of CT findings observed in our study
could explain in part the finding that lung function in severe COVID-19 survivors may
return to normal or significantly improve over time [17,22,30]. Notwithstanding this, even
a relatively small percentage of post COVID-19 nonprogressive fibrosis, given the sheer
numbers of affected individuals, could result in considerable morbidity. A recent study re-
ported a 24% incidence of persistent CT alterations at 12 months [31]. What is known up till
now from COVID-19 autoptic series is that initial lung pathology is characterized by florid
diffuse alveolar damage associated with immune-mediated thrombotic microangiopathy,
while latter stages are characterized by an organizing phase with fibroblastic proliferation
and a late stage with fibrosis and possible honeycombing, commencing generally three
weeks after onset of symptoms [32,33]. However, no study has until now evaluated the
pathological aspects of COVID-19 survivors with fibrotic sequelae on CT scans; evaluation
of which could be performed using lung cryobiopsy procedures (and which is not available
for SARS either [27].

Our study has limitations that should be addressed. First, the sample size was small.
Our cohort, however, included a wide range of lung involvement and collagen deposition,
representative of a high proportion of the general COVID-19 population. Second, analyses
were conducted at the lobe level, and correlations should be interpreted cautiously since
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multiple samples were collected from each patient. This was necessary due to the high
heterogeneity of lung lesions observed in COVID-19, and robust statistical analyses to
compensate for repeated measurements were adopted in this study. Third, a single stain
to assess fibrosis, unable to distinguish between different collagen types, was used. This
allowed development of a simple method to quantify overall collagen deposition, represen-
tative of the extension of lung fibrosis. Finally, the use of a cryobiopsy technique, though
enabling the sampling of extremely well-preserved tissue, has the limitation of being small
in size, making lesional heterogeneity a possible limit in the correlation between imaging
and histology.

4. Methods

This study was conducted in a university-affiliated hospital in Genoa, Italy. The ethics
review board approved the protocol of the study (Comitato Etico Regione Liguria, protocol
n. 144/2020-DB, id 10460) and consent was obtained by telephone by the next of kin and
documented on clinical records by the treating intensivist. Patients deceased in the ICU
while receiving invasive mechanical ventilation were included from 6 April to 16 June 2020.
Exclusion criteria were age <18 years, previous chronic pulmonary conditions, pregnancy
and unavailability of the research staff.

4.1. Postmortem Sampling Procedure

Postmortem transbronchial cryobiopsy samples were obtained as previously de-
scribed [11]. After patient death, patient lung aeration was maintained by applying a
constant positive airway pressure equal to the positive end-expiratory pressure received
before death. As per national regulations, death was ascertained with a continuous 20-min
flat electrocardiogram, while the sampling procedure was initiated within 30 min from
death. Cryobiopsies were obtained with a 1.7 mm cryoprobe (ErbeCryo®, Erbe Elektromedi-
zin GmbH, Tuebingen, Germany) inserted through the operative channel of a single use
flexible video-bronchoscope (Ambu® aScopeTM, Ambu, Ballerup, Denmark) and operated
for 10–11 s. Biopsies were collected and immediately fixed in 10% formalin for each lobe:
right lower lobe (RLL), right middle lobe (RML), right upper lobe (RUL), left lower lobe
(LLL) and left upper lobe (LUL).

4.2. Histologic Analysis and Quantification of Collagen Deposition and Aeration on Lung Samples

From formalin-fixed paraffin-embedded tissue blocks, 4-micron thick microtome sec-
tions were stained with Sirius red as per the manufacturer’s instructions (DiaPath SPA,
Bergamo, Italy). All histopathological analyses were performed by two experienced pathol-
ogists (FG and LM), blinded to the radiographic findings, adapting the methodology from
previous experiences in liver fibrosis [34,35]. Sirius red images were acquired using the
40× objective of an Aperio AT2 scanner and Aperio Image-Scope software 9.1 (Leica Biosys-
tems, Nussloch, Germany). The samples were acquired if they met prespecified adequacy
criteria: dimensions of the samples, surface area and percentage of lung parenchyma
present in each biopsy [36]. Samples were manually revised, and three representative
regions of interest (ROIs) from a single sample from each lobe were selected, manually
excluding airway walls and vessels with diameter > 200 µm. Extensions of stained areas
and airspaces were computed with automated image analysis (Aperio color deconvolution
algorithm version 9.1, Leica Biosystems, Nussloch, Germany) [37]. After identification
of a reference point for Sirius red color in each sample, stained areas were defined based
on the default threshold levels of the image analysis software; areas were classified as
collagen with intensity below 114 (intense red staining) and as alveolar airspaces with
intensity above 240 (clear regions), with intermediate values representing lung structures
not stained by Sirius red. The percent tissue collagen and airspaces extension in each ROI
were computed as follows:

Collagen (%)ROI = 100 ·
Sur f aceCollagen

Sur f aceLung tissue
= 100 ·

Sur f aceCollagen

Sur f aceROI − Sur f aceAirspaces
(1)
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Airspaces (%)ROI = 100 ·
Sur f aceAirspaces

Sur f aceROI
(2)

Percent collagen and airspaces extension of each sample were obtained as averages
of the three ROIs. Lung samples were classified as fibrotic if their collagen deposition
was above two standard deviations from the mean of a reference value obtained from
three healthy lung samples of a historical cohort. The historical cohort included samples of
histologically normal lung parenchyma obtained from resection specimens (nonlesional
lung tissue far from pathologic areas).

4.3. Computed Tomography Acquisition and Segmentation

The latest CT scan available for each patient was retrospectively collected. All scans
were performed during end-expiratory breath hold using a high-resolution multidetector
scanner (Siemens Definition Flash, 128 slices, Erlangen, Germany), and reconstructed at
a slice thickness of 1.25 or 0.75 mm with a sharp B80f convolution kernel. All scans were
manually segmented using open-source software (ITKSnap 3.8.0, http://www.itksnap.
org, accessed 20 May 2021) excluding large vessels and airways. The segmentation was
conducted separately for each lung lobe.

4.4. Computed Tomography Qualitative Assessment

The extension of lung disease was assessed using a radiographic score based on the
Ichikado score, modified to be computed at the lobar level instead of in six topographic
lung regions. The Ichikado score was initially proposed for grading [38] and prognostica-
tion [39] of acute interstitial pneumonia and later validated in ARDS [19]. For each lobe
the extension of six CT patterns representing evolutive pathologic phases was estimated,
rounded to the nearest 10%. Scores were classified as follows: score of 1, normal; score of 2,
ground-glass opacities; score of 3, consolidation; score of 4, ground-glass attenuation plus
traction bronchiectasis; score of 5, consolidation plus traction bronchiectasis, and score of 6,
honeycombing. The modified Ichikado score of each lobe was calculated multiplying the
percentage extension by the score value of each compartment. The whole-lung score was
computed, averaging the score of the five lobes.

4.5. Computed Tomography Quantitative Analysis

The quantitative analysis of lung images was conducted using custom-made Matlab
scripts (Mathworks Inc., Natick, MA, USA), using established methods. Lung density
was considered proportional to the gas versus tissue fraction contained within each voxel,
approximating tissue density as 1 g/mL [29]. The extent of four compartments was
measured, based on their degree of aeration based on standard Hounsfield units (HU)
thresholds: −900 HU, −500 HU and −100 HU, to define hyperaerated, normal, poorly
aerated, and nonaerated areas, respectively [40]. The gas fraction (Gf) was computed as:

G f =
Gas volume

Total volume
=

H
−1000

(3)

where H is CT attenuation in HU. Analyses were conducted on the entire lungs and at the
lobar level.

4.6. Statistical Analysis

The primary endpoint of the study was the qualitative radiographic score. Secondary
endpoints included extension of collagen deposition and qualitative and quantitative CT
analysis parameters. An a priori sample size calculation was not feasible due to the lack of
data on the extension of collagen deposition in COVID-19 patients. Data are reported as
median [interquartile range], if not otherwise specified. Receiver operating characteristics
(ROC) curves were used to evaluate the diagnostic ability of selected variables to identify

http://www.itksnap.org
http://www.itksnap.org
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fibrotic histopathological samples with increased collagen deposition. For each CT parame-
ter, the area under the curve (AUC) was computed and the sensitivity and specificity were
calculated for the cut-off value identified with the Youden method. Confidence intervals for
sensitivity and specificity were corrected for repeated measures using the variance inflation
factor method [41]. As a sensitivity analysis, associations were further investigated with
mixed linear models using patient as random effect with a random intercept and radio-
graphic findings, and lung lobe as fixed effects, reporting the marginal and conditional R2

values [42] as diagnostics. The marginal R2 describes the proportion of variance explained
by the covariate alone, and the conditional R2 the proportion of variance explained by both
covariates and random factors. All statistical analyses were performed in R 4.0.2 (The R
foundation) using the {lmerTest}, {ROCit} and {MuMIn} packages. Statistical significance
was assumed at two-tailed p < 0.05.

5. Conclusions

In COVID-19 pneumonia, qualitative and quantitative analysis of lung CT images
have high sensitivity but moderate to low specificity to detect histopathological fibrosis.
Pseudofibrotic CT findings do not always correspond to increased collagen deposition.
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