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Abstract: During pregnancy, freely floating placental villi are adapted to fluid shear stress due to
placental perfusion with maternal plasma and blood. In vitro culture of placental villous explants
is widely performed under static conditions, hoping the conditions may represent the in utero
environment. However, static placental villous explant culture dramatically differs from the in vivo
situation. Thus, we established a flow culture system for placental villous explants and compared
commonly used static cultured tissue to flow cultured tissue using transmission and scanning
electron microscopy, immunohistochemistry, and lactate dehydrogenase (LDH) and human chorionic
gonadotropin (hCG) measurements. The data revealed a better structural and biochemical integrity
of flow cultured tissue compared to static cultured tissue. Thus, this new flow system can be used
to simulate the blood flow from the mother to the placenta and back in the most native-like in vitro
system so far and thus can enable novel study designs.

Keywords: flow culture system; placenta; explant culture under flow

1. Introduction

As a fetal organ, the placenta is temporarily present during pregnancy and serves as
the lungs, liver, kidney, and gut of the fetus [1]. The chorionic villi that enable exchange
between mother and fetus are organized as villous trees and are freely floating in maternal
plasma and blood [2]. The freely floating villi also release a bulk of substances including
vesicles, hormones, and growth factors that modulate maternal and fetal physiology [1–3].

In vitro analysis of the placenta partly allows examination of its function, regulatory
repertoire, and the feto–maternal interface [1,4]. Already in the 1960s, villous explant
culture was a prominent approach for transport studies [4,5]. More recently, villous explant
cultures were used to analyze placental hormones and factors released into the maternal
circulation [6,7]. Although the cultivation of placental explants has been adapted and
improved in terms of oxygen concentrations [8,9], the static culture method on the bottom
of plastic wells is still the most commonly used approach [4,10]. A variety of static culturing
conditions have been developed according to the study design including cultures on the
bottom of a well, on a supportive mesh, in a shaking water bath, or freely floating hanging
from a styrene block into the medium [4,11–13]. However, all these placental explant
culture approaches are static methods with no flow around the villi and thus, all of these
approaches differ dramatically from the in vivo situation.

Looking at the in vivo situation, placental villi only survive in a floating environment.
Already during the first trimester of pregnancy, a first flow of maternal blood plasma
traverses from invaded and plugged spiral arteries [14] through the intervillous space and
back into invaded uterine veins [15,16]. After dissolution of the arterial trophoblast plugs,
at the beginning of the second trimester, maternal blood enters the placenta through spiral
arteries. Perfusion of the intervillous space allows maternal blood to flow around placental
villi, allowing the exchange of nutrients and oxygen between mother and fetus [2,17,18].
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The invasion of endoarterial trophoblasts into spiral arteries results in the dilation of
the very end of the vessels [17]. This conversion is important for the subsequent blood
flow into the placenta as it results in a reduced blood flow velocity into the intervillous
space from 2–3 m/s inside normal arteries to 0.1 m/s within the intervillous space [2,17,18].
Hence, in vivo placental villi are used to a slight fluid shear stress from the beginning of
placental perfusion, with plasma during the first trimester, which is followed by blood flow
until delivery. This fits to culture experiments indicating beneficial effects of fluid shear
stress on the syncytiotrophoblast [19].

Here, we argue that in vitro culture of villous explants should take place in the most
functional and native way possible to get robust results representative of the in utero
environment. Therefore, this study aimed at establishing a flow culture system under
normal placental oxygen conditions for placental villous explants to simulate the blood
flow from the mother to the placenta and back in the most native-like in vitro system so far.

2. Results
2.1. Establishment of the Flow System

The closed flow system consists of five chambers connected in series with four placen-
tal explants per chamber (Figure 1). To prevent the floating of villous explants from the
chambers into the tubes, the villi were secured on the bottom of the chamber using small
metal plates with needles (Figure 1D,E). To mimic the physiological oxygen concentration
in the placenta during the 3rd trimester of pregnancy, O2 saturation within the bioreactor
was set to 8% and then verified in the medium. The analysis revealed an O2 saturation
of 8% within the medium after 18.9 min of circulating in the flow system at a flow rate of
1 mL/min (experimental settings are summarized in Supplemental Table S1).

Figure 1. Depiction of the experimental setup. (A) The inside of the bioreactor is shown where
temperature and gases are controlled. On the left side of the bioreactor a complete flow cycle is
assembled showing the reservoir, the tubing, and the flow chambers as well as the peristaltic pump.
On the right side, a six-well plate is used as a static control. (B) The four explants in a static well are
shown. (C) Placental villous explants with a cross-sectional diameter of about 0.5 cm are used for the
flow and the static explant culture. (D) To prevent sweeping away of the explants in the flow-cycle,
a metal plate with needles is used to fix the placental explants. (E) Then, the metal plate with fixed
placental villous explants is introduced into the flow chambers. (F,G) The flow chambers are used
upside-down (G) to facilitate the direct exposure of explants to the stream of the medium.
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2.2. Morphological Analysis
2.2.1. β-Actin

To assess differences in tissue viability and integrity related to the different culture
conditions, diverse immunohistochemistry staining protocols were applied. β-actin stain-
ing was used to display the actin cytoskeleton of the villous tissues (Figure 2A–E). In fresh
tissue, β-actin staining showed the structured appearance of the cytoskeleton in placental
villi, especially in villous trophoblast (Figure 2A). A qualitative analysis of β-actin staining
revealed a cultivation mode as well as a time-dependent degeneration of tissues. Disin-
tegration of the actin cytoskeleton became obvious by increased accumulation of actin
microfilaments upon cultivation time (Figure 2C–E), especially in tissues cultured under
static conditions (Figure 2C,E, asterisks). Since a definite answer as to whether the flow or
static cultivation contributes to better tissue preservation cannot be stated based on the
qualitative assessment of this staining, further immunohistochemical staining, electron
microscopic analysis, as well as analysis of biochemical parameters were performed.

Figure 2. Representative immunofluorescence and (immuno-)histochemical staining of placental villous tissues. (A–E) The actin
cytoskeleton was stained in fresh as well as flow and static cultured tissues using an anti β-actin antibody. (A) In fresh
tissue, a structured appearance of the cytoskeleton was observed. (B–E) Cultivation mode and time-depended degeneration
of tissue was observed in explant culture. (C,E) Asterisks designate increased accumulation of actin microfilaments
indicating disintegration of the actin cytoskeleton in static culture. (A–E) Scale bar represents 20 µm. Six random spots
were photographed per slide and used for analysis. (F–J) H&E staining of placental villi. (F) Freshly dissected explants
show structured morphology of villi with a dense stroma and noticeable vessels and capillaries. (F,G) In fresh and flow
cultured tissue for 24 h, the syncytiotrophoblast was attached to the stroma, indicating a healthy morphology of the explants.
(H,J) Under static conditions, placental villi appeared partly damaged with augment parts of detached syncytiotrophoblast.
(I,J) The stroma of flow cultured tissue for 48 h (I) appeared dense compared to the loose and porous appearance of the
stroma in static cultured tissue for 48 h (J). Arrows indicate detached syncytiotrophoblast. (F–J) Scale bar represents 100 µm.
(K–O) CD34 class II staining was applied to visualize feto-placental endothelial cells. (K,L) Fresh tissue and flow cultured
tissue for 24 h show clearly defined and normally arranged endothelial cells. (M,O) Disrupted vessels are found in static
cultured tissue for 24 h (M), and this collapsed appearance increased after 48 h of static culture (O). (N) After 48 h of flow
culture, vessels still show structural integrity. (M,O) Arrowheads indicate damaged and collapsed vessels. (K–O) Scale bar
represents 100 µm.
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2.2.2. H&E Staining

The morphological differences were visualized, among others, using H&E staining
of the villous explants (Figure 2F–J). Freshly dissected explants showed a structured mor-
phology of villi with a dense and compact stroma embedding noticeable vessels and
capillaries (Figure 2F). The syncytiotrophoblast was attached to the stroma indicating a
healthy morphology of the villi prior to culture. In comparison to fresh tissue, the mor-
phology of explants cultured for 24 h in flow or static conditions appeared partly damaged
(Figure 2G,H). On a qualitative level, the morphology of flow cultured tissue seemed
to show more preserved parts of villi compared to static cultured tissue. Additionally,
more parts of the still attached syncytiotrophoblast seemed to appear in flow cultured
tissue after 48 h compared to static cultured tissue after 48 h of cultivation (Figure 2I,J,
arrows). Tissue cultured under static conditions for 48 h often showed degenerated parts of
villi, which were indicated by a loose and porous appearance of the stroma and collapsed
vessels (Figure 2J). In summary, a descriptive analysis of H&E staining revealed that the
preserved morphology of the flow cultured tissue represents an intermediate state between
freshly dissected tissue and static cultured tissue.

2.2.3. CD34 Class II

CD34 class II staining was used to visualize endothelial cells of vessels within villous
explants (Figure 2K–O). Freshly dissected explants displayed clearly defined and normally
arranged endothelial cells aiding to identify capillaries and larger blood vessels (Figure 2K).
In the static cultured explants for 24 h, more damaged and disrupted vessels were found,
and this collapsed appearance increased if static cultivation lasted for 48 h (Figure 2M,O,
arrowheads). In comparison to the static culture, the appearance of blood vessels within
the explants cultured under flow conditions represented a stage close to blood vessels in
freshly dissected explants. This was indicated by the presence of still preserved structural
integrity of vessel lining after 24 h and 48 h of flow cultivation (Figure 2L,N).

2.2.4. Cytokeratin 7

To visualize the villous trophoblast including the syncytiotrophoblast as well as vil-
lous cytotrophoblasts, cytokeratin 7 staining was applied (Figure 3A–E). Intact villi and
villi with detached or disrupted syncytiotrophoblast were counted and quantified. Only a
small percentage (6.8%) of damaged villi was found in freshly dissected villous explants
(Figures 3A and 4A), while there was a significant increase of villi with damaged syncy-
tiotrophoblast after 48 h of culture in both flow and static culture conditions (Figure 3B–E
and Figure 4A). The highest number of damaged villi was found in static cultured explants
for 48 h (43.5%) (Figure 4A).

2.2.5. Active Caspase 8

Levels of early apoptosis were analyzed using cleaved caspase 8 staining of placental
explants cultured in flow or static conditions for 24 h or 48 h and compared to staining
levels of freshly dissected explants (Figure 3F–O). Fresh tissue displayed the lowest amount
of cleaved caspase 8 positive cells (0.4%) (Figure 4B). There was a 5.8 times higher amount
of active caspase 8 positive cells in 48 h static cultured tissue compared to fresh tissue
(Figure 4B). No differences were observed in flow cultured tissue after 24 h or 48 h of
culture compared to freshly dissected explants (Figure 4B). Although not statistically
significant, there seemed to be a trend toward an increase in active caspase 8-positive cells
in static cultured explants between 24 and 48 h (Figure 4B). In summary, these data indicate
progressive apoptosis in static cultured tissue upon cultivation time, while there is no
cultivation time-dependent increase in flow cultured explants (Figure 4B).
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Figure 3. Cytokeratin 7, active caspase 8, and Ki67 staining of villous explants. (A–E) Cytokeratin 7 staining was used
to stain the syncytiotrophoblast as well as villous cytotrophoblasts shown in red. A thick, continuous placental barrier
is shown in fresh tissue (A) and flow cultured tissue for 24 h (B). After 24 h of static culture, the syncytiotrophoblast
appeared thinner compared to the fresh tissue (C), and detached parts increased after 48 h (E). Arrows indicate detached
syncytiotrophoblast. (F–O) Active caspase 8 staining was applied to stain early apoptotic cells in the villous explants,
as indicated in red. (G–O) A zoom in for each image (F–N) is shown to better display cells with a positive staining for active
caspase 8. (P–Y) Ki67 staining was applied to stain proliferating cells in the tissues, as indicated in red. (Q–Y) A zoom in for
each image (F–N) is shown to better display cells with a positive staining for Ki67. (A–E,F–N,P–X) The scale bars represent
100 µm.
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Figure 4. Histological and biochemical integrity and degeneration of placental tissue upon cultivation. For the quantitative
analysis of each staining, twelve random spots from the explants were photographed and included for analysis. The median
and all data points are shown. The same placenta is color-coded in every condition (gray, blue, green). (A) Cytokeratin 7
staining was used to stain villous trophoblast and assess the detachment of this layer from the villous core of villi. There was
a significant increase in the amount of detached syncytiotrophoblast in cultured tissues after 48 h in both conditions.
The quantification of damaged syncytiotrophoblast around villous explants was performed manually by means of counting
villi with detached syncytiotrophoblast versus villi with intact syncytiotrophoblast. (B) The quantification of active caspase
8 was performed automatically using the software HALO and counting caspase-positive and caspase-negative cells in
the whole tissue area. A small percentage of early apoptotic cells was found in fresh tissues. In tissues cultured under
flow conditions, no significant increase of early apoptosis was found, while there was a time-dependent increase in early
apoptosis in tissues cultured under static conditions. (C) Quantification of Ki67 staining was performed automatically
using the software HALO and counting Ki67 positive and Ki67 negative nuclei in the whole tissue area. A high amount of
proliferating cells was found in fresh tissues. Significantly decreased levels of proliferating cells were found in flow and
static cultured tissue after 48 h of culture. (D) An LDH assay was performed to measure necrosis in the tissue cultivated
under flow or static conditions. Aside from some variations, there was a significant increase in the necrotic release of LDH
in static cultured tissues compared to flow cultured tissues after 48 h of culture. Three independent experiments were used
for this analysis, and measurements were done in duplicates. (E) Endocrine function was assessed by hCG measurements in
the conditioned media. There were no statistically significant differences between the samples. The same three independent
experiments as for the LDH assay were used for this analysis. * p < 0.05, ** p < 0.01.
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2.2.6. Ki67

To stain proliferating cells, an anti-Ki67 antibody was applied on the tissues used
in the flow and static experiments as well as for freshly dissected explants (Figure 3P–Y).
The highest level of proliferating cells was observed in fresh tissue (Figure 4C). There was
a statistically significant decrease of Ki67-positive cells in villous explants between fresh
tissue and 48 h cultured tissue in both culturing conditions (Figure 4C). The analysis
revealed no significant differences in cell proliferation levels between static and flow
cultured tissue for 24 h and 48 h (Figure 4C).

2.3. LDH Assay and hCG Measurement

To analyze necrosis in the cultured villous explants, an LDH assay with the condi-
tioned media was performed (Figure 4D). A statistically significant higher cytotoxicity
was observed in the media of static cultured explants for 48 h compared to cytotoxicity
rates in flow cultured tissue for 48 h (Figure 4D). No further significant differences could
be detected. This analysis indicates improved tissue integrity upon longer flow culture
compared to static cultured tissue. HCG measurements of the conditioned media were
used to analyze the endocrine function of in vitro cultured tissue (Figure 4E). The analysis
revealed no statistically significant differences between the samples.

In sum, these data indicate a progressive disintegration of static cultured placental
explants with time, while flow cultured tissues occasionally improved or at least maintained
their status during the 48 h in vitro culture period.

2.4. Ultrastructural Analysis
2.4.1. Scanning Electron Microscopy

Scanning electron microscopy was performed to analyze the surface of placental villi
in detail (Figure 5A–J). Freshly dissected explants mostly displayed a dense microvillous
surface accompanied by occasional singular, small vesicular-like structures (Figure 5A,B).
After 24 h of static culture, a clearly reduced number of microvilli was observed, which par-
tially appeared shriveled (Figure 5C,D). Moreover, vesicular-like structures occasionally
appeared withered and accumulated. The appearance of the tissue dramatically worsened
after 48 h of static culture, as indicated by the increased presence of non-released, accumulated
vesicles and the increased appearance of a stunned, disintegrated microvillous surface
(Figure 5E,F). The surface of placental explants was also affected after 24 h of flow culture
indicated by a slight increase of accumulated vesicular-like structures, mostly in niches
between villi. In addition, the number of microvilli on the surface of villi seemed to be
slightly reduced (Figure 5G,H). After 48 h of flow culture, the appearance of the tissue did
not really change or even worsen compared to the appearance of the explants in the flow
culture after 24 h (Figure 5I,J). In flow culture, the villi showed less accumulations of still
attached vesicular-like structures, indicating a washing effect of the flowing media similar
to the in vivo situation (Figure 5).
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Figure 5. Ultrastructural analysis of representative placental tissue using scanning electron microscopy. (A,B) Fresh tissue
showed a dense microvillous surface accompanied by singular, small vesicular-like structures. (C,D) After 24 h of static
culture, explants revealed a reduction of microvilli and an increased accumulation of vesicular-like structures. (E,F) After 48 h
of static culture, the structural integrity of placental explants dramatically worsened with the further increased presence of
accumulated vesicles and an elevated appearance of a stunned, disintegrated microvillous surface. (G,H) After 24 h of flow
culture, the microvillous surface was mostly preserved, while a slightly increased number of vesicular-like structures was
observed. (I,J) After 48 h of flow culture, microvilli were still observed, and the general structural integrity did not seem to
worsen between 24 h and 48 h of flow culture. Scale bar represents 100 µm (A,C,E,G,I), 20 µm (B,F), or 10 µm (D,H,J).

2.4.2. Transmission Electron Microscopy

Transmission electron microscopy was performed to get a deeper insight into the
morphology of the cultured tissue (Figure 6A–E). Fresh placental explants showed a struc-
tured morphology and no evidence of intracellular vacuoles or edema (Figure 6A). The
stroma appeared dense, and diverse cells and organelles were identifiable. Capillaries with
erythrocytes, endothelial cells and tight junctions between endothelial cells as well as vas-
cular smooth muscle cells were clearly visible (not shown). Villous cytotrophoblasts were
noticeable underneath the syncytiotrophoblast, which was easily identifiable by the more
electron-dense cytoplasm (darker gray appearance). The syncytiotrophoblast maintained
its characteristic appearance of a multinucleated continuous layer with abundant microvilli
on the surface and being attached to the basement membrane (Figure 6A).

After 24 h of static culture, there were obvious changes of tissue morphology. The stroma
partially appeared loose and disorganized (Figure 6B). Furthermore, there was an increased
appearance of lipid droplets within the cells of the explants, which were only rarely seen in
fresh tissues. In concordance to H&E and cytokeratin 7 staining, the syncytiotrophoblast
tended to detach from the basement membrane. Additionally, cytotrophoblasts appeared
loose and vacuolarized, and nuclei appeared condensed. Moreover, the increased con-
gestion of intravascular erythrocytes and disintegration of endothelial cells was observed
(Figure 6B). The degeneration of the tissue worsened after 48 h of static culture indicated
by the general vacuolated appearance (Figure 6C). Very large vacuoles within stromal cells
and the degenerating syncytiotrophoblast were seen. Microvilli on the syncytial surface
were either lost or appeared denuded (Figure 6C).
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Figure 6. Ultrastructural analysis of representative placental tissue using transmission electron microscopy. (A) In fresh
tissue, capillaries (Ca) with erythrocytes and endothelial cells were clearly visible. The stroma (S) appeared dense and
diverse cells were identifiable. The syncytiotrophoblast (ST) was visible by its dark gray and dense appearance. This layer
showed its characteristic appearance of a multinucleated continuous layer with abundant microvilli on the surface and being
attached to the basement membrane. (B) After 24 h of static culture, the syncytiotrophoblast seemed to detach from the
basal membrane and nuclei inside appeared condensed, additionally increased appearance of lipid droplets was identified.
(C) After 48 h of static culture, accumulation of lipid droplets was found in the cells of the explants. The syncytiotrophoblast
was detached from the basement membrane in great extend and appeared loose with hardly identifiable nuclei. Endothelial
cells showed vast disintegration. (D) After 24 h of flow culture, the tissue occasionally showed parts of detached and loose
syncytiotrophoblast. Capillaries and erythrocytes were still clearly visible, and the stroma mostly appeared dense. (E) After
48 h of flow culture, the stroma still appeared dense with clearly identifiable capillaries and endothelial cells, while a few
lipid droplets appeared in stromal cells. The syncytiotrophoblast was mostly attached to the basal membrane and showed
some condensed nuclei inside. Scale bar represents 2 µm. MV: Microvilli, ST: Syncytiotrophoblast, Ca: Capillary, S: Stroma,
LD: Lipid droplets.

In comparison to the static cultured tissue, less lipid droplets appeared in the explants
cultured under flow (Figure 6D,E). Villous explants cultured under flow for 24 h and 48 h
occasionally showed parts of detached and loose syncytiotrophoblast. Erythrocytes and
endothelial cells within placental vessels still preserved their normal morphology even
after 48 h of flow culture (Figure 6D,E).

In summary, our data indicate that the commonly used static placental explant culture
results in the disintegration of placental villous morphology. This effect is diminished
through the cultivation of placental explants under flow, especially for long-term cultivation
(48 h). The ultrastructural integrity of flow cultured tissue was relatively high; thus, the flow
system improved tissue integrity by mimicking the in vivo situation of the blood flow from
the mother to the placenta and back.

3. Discussion

Diverse systems are available to decipher placental function and its impact on preg-
nancy pathologies [4,11,13,20]. In vitro culture of isolated primary cells, transfected pri-
mary cell lines, or choriocarcinoma cell lines represent useful and simple methods [21];
however, they do not reflect the in vivo micro-environment of cells in a tissue [11]. A promi-
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nent and well-established method to look at tissues in vitro is represented by placental
dual lobe perfusion [22], which enables the analysis of diverse experimental hypotheses.
Although various advantages of this method are known, it is not suitable for experiments
with first trimester placentas, and a complete intact organ, including intact blood vessels,
is required for the perfusion of the fetal and the maternal side [11,23]. It can also only be
used in short-term experiments lasting a couple of hours.

Another commonly used approach is represented by the static in vitro culture of
placental explants [4,12]. Different to the in vivo situation where blood is flowing around
placental villi, this static method of culturing placental explants finds the explants mostly
lying in medium on the bottom of the wells and thus differs dramatically from the in vivo
situation. This fact has already been discussed in various studies [11,12,24]. It is also re-
flected in our data shown here. Watson et al. have already stated the difficulties of placental
in vitro organ culture associated with the sensitivity of the syncytiotrophoblast [24], since it
represents a terminally differentiated and highly sensitive epithelium [24,25]. Therefore,
we established a gentler and still simple method to cultivate placental explants under flow
in contrast to the commonly used static approach.

The in vitro flow system for placental explants simulates the perfusion within the
intervillous space, thus mimicking an in-utero-like environment. Explants were cultured
under flow (1 mL/min, 8% O2, 5% CO2) for 24 h and 48 h in a closed humidified environ-
ment. The upside-down position of the chambers facilitated the direct exposure of explants
to the flow of medium. In the normal upside-up position of the chambers, flow only passes
on top of the explants without direct exposure of the explants to the flow of the medium.

The flow rate of 1 mL/min was used based on literature research [17,18,26–28]. So far,
the in vitro culture of trophoblast under flow was performed using single cells including
primary term trophoblasts, choriocarcinoma cells, as well as trophoblastic stem cells [27].
The flow rates used in these systems ranged from 2 µL/min to 5 mL/min. Hence, the flow
rate used here for villous explants (1 mL/min) was chosen to be in the middle of what
has been used so far. In general, maternal blood flow through the intervillous space of the
placenta starts with a relatively high velocity (0.1 m/s) [17], is hypothesized to be reduced
while passing the villous trees and may then speed up again when it is drained back into
uterine veins. Thus, it is debatable whether it is possible to calculate the actual flow rate of
blood in the intervillous space for a given placental villus, since this flow rate depends on
the position of the individual villus in the intervillous space and its distance to the spiral
arteries and the uterine veins.

In our study, the impact of the flow system on placental tissue viability and structural
integrity was analyzed using unbiased morphological and biochemical parameters. Previ-
ous studies reported superfused placental explants at a moist cellulose filter inserted in a
perfusion chamber [29–31]; however, they revealed restricted tissue viability [20]. To our
knowledge, this study is the first proving the benefits of culturing tissues under flow in
terms of biochemical and structural viability. We showed a well-preserved morphology of
flow cultured tissue compared to static cultured tissue up to 48 h of in vitro culture. All data
showed a higher tendency of tissue disintegration of static cultured tissue compared to
flow cultured tissue.

The endocrine function of the explants was assessed by measuring hCG levels in
conditioned media from flow and static explant cultures. In healthy pregnancies, hCG levels
exponentially rise during the first weeks of gestation and peak at around 10 weeks, which is
followed by a slow decline until the end of pregnancy [7,32]. It seems to play a role in
placental growth by triggering the fusion and differentiation of the cytotrophoblast with
the syncytiotrophoblast [33]. Notably, in our study, there was no statistically significant
time-dependent and condition-dependent effect on hCG secretion. The study of Siman et al.
showed that when using static conditions, hCG release from cultured explants is increased
from the second day onwards [12]. The authors attributed this effect on the regeneration of
the syncytiotrophoblast over time; however, they could not exclude increased damage and
thus necrotic release of hCG into the media [12].
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Electron microscopical imaging data provided further detailed insight into the mor-
phology of the tissue and revealed a cultivation-time dependent degeneration, especially
under static culture conditions. Although it should be noticed that transmission and scan-
ning electron microscopical data are primarily descriptive, a progressive degeneration
of the syncytiotrophoblast upon static in vitro culture of placental tissue was reported
before, and it was observed in first trimester [11,34] as well as third trimester tissues [11,12].
In concordance to our data, these studies showed intracellular vacuoles in the syncytiotro-
phoblast after 8 h [11] and 1 day [12] in static cultured placental tissue. By contrast, in first
trimester explants, Palmer et al. showed a newly formed trophoblast layer already after
48 h of static explant culture [34]. For explants from term placenta, Siman et al. indi-
cated syncytiotrophoblast degeneration over time upon static in vitro culture followed by
regeneration beginning at 7 days of in vitro culture [12].

Watson et al. stated that the general deterioration of the microvilli on the surface of
static cultured tissue could be symptomatic for the degeneration of the apical membrane of
the syncytiotrophoblast [24]. Due to the observed chromatin condensation and membrane
blebbing, which are major characteristic features of the apoptosis process [35], the authors
suggested that syncytiotrophoblast degeneration in static cultured tissue may be driven by
apoptosis [12]. This notion is in line with our ultrastructural analysis of the static cultured
tissue as well as confirmed with the quantification of the immunohistochemical staining
for active caspase 8, which showed increased apoptosis in static cultured tissue at 48 h.

In addition, the increased appearance of lipid droplets observed after 48 h in static
cultured tissue was observed in the study of Palmer et al. [34]. This further indicates
increased apoptosis in static cultured tissue, since the induction of apoptosis is associated
with an accumulation of cytoplasmic lipid droplets [36]. This observation could represent
a trophoblastic defense mechanism protecting the placenta against lipotoxicity [37–39].
The study of Bildirici et al. showed increased lipid accumulation in placental villi from preg-
nancies complicated by fetal growth restriction (FGR) as well as in primary trophoblasts
treated with hypoxia (<1% O2), indicating hypoxia-induced diminished fatty acid oxidation.
The authors supposed a link between increased lipid droplet storage in FGR and placental
insufficiency [37]. This notion can be supported by our findings, showing placental tissue
damage and increased lipid droplet accumulation after 48 h of static culture. In terms of
flow cultured tissue, also a slight degeneration of the syncytiotrophoblast was observed
after 24 h; however, the degeneration seemed to attenuate or at least remain at the same
level after 48 h of flow culture.

Two new and interesting aspects of the flow cultures need to be mentioned. One is
that the endothelial cells of the placental vessels within the explants only remain intact in
explants cultured under flow. Although in all explants, there is no flow within the placental
vessels, only those with flow on the outside of the villi show cellular integrity over the
48 h culture period, while those cultured under static conditions disintegrate quite soon.
The second interesting aspect can be found on the surface of the cultured villi. Under static
conditions, there is an accumulation of vesicular structures protruding from the apical
membrane of the syncytiotrophoblast. By contrast, there are less such vesicular structures
on the villous surface of those explants cultured under flow conditions. Such vesicles
remained only in niches where very little flow is expected. Hence, it seems as if these
vesicles are detached from the villous surface by means of shear stress. If this is true,
then the flow culture would be an ideal culture method to mimic the in vivo situation
regarding the release of vesicles from the syncytiotrophoblast into the maternal circulation.

Consequently, the analysis of the feto–maternal interface using placental explants
cultured under flow conditions would enable deciphering the etiologies of different preg-
nancy pathologies, including preeclampsia. A growing body of literature has already
elaborated the complexity of many serious and common pregnancy-related diseases such
as preeclampsia, fetal growth restriction, and gestational diabetes mellitus. However,
insights into the pathophysiology and diagnosis of these syndromes are still missing,
which often leads to premature births with all its consequences. In addition, also affected
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women may have long-term health problems such as risk disposition for cardiovascular
diseases [40–43]. Hence, finding specific diagnostic and curative treatments for the mother
and fetus is a demanding task, requiring systemic studies of the placenta and the feto–
maternal interface using innovative study designs. One of these new study designs could
be provided with this flow system. Indeed, there is more to come in terms of automatic
explant sampling as well as approaches for upscaling the quantity of explants per exper-
iment. Nevertheless, to our knowledge, we are the first to cultivate placental explants
under constant flow conditions. Furthermore, this approach may be used for first trimester
placental explant culture as well and also to simulate diverse conditions of pregnancy
by changing the variable conditions. Additionally, introducing endothelial cells directly
behind the villous explants in the flow system will enable mimicking the blood flow from
the placenta to the mother in the most native-like in vitro system so far.

4. Materials and Methods
4.1. Human Placental Samples

This study was approved by the ethics committee of the Medical University of Graz
(31-019 ex 18/19 version 1.2). Placental tissue from 3rd trimester deliveries between weeks
34 and 40 of uncomplicated pregnancies was used for the study (n = 3) with written
informed consent from women undergoing C-sections.

4.2. General Culture of Villous Explants

Immediately after delivery, samples from three areas around the central region of the
placenta were dissected with a size of 2 cm3. Chorionic plate, maternal decidua, and areas
of visible infarcts were discarded. The remaining villous tissue was further dissected into
villous explants with a wet weight of approximately 7.5 mg (about 0.5 cm cross-sectional
diameter) and used for explant cultures.

Villous explants were washed with PBS (ThermoFisher Scientific, Waltham, MA,
USA) and transferred into pre-warmed medium (PromoCell PC-C-22120, Heidelberg,
Germany; without EGCS/h and FCS) and supplemented with 5% exosome-depleted fetal
bovine serum (Gibco by Life Technologies, ThermoFisher Scientific, Waltham, MA, USA)
and 1% penicillin/streptomycin (Gibco by Life Technologies, ThermoFisher Scientific,
Waltham, MA, USA). The tissue was cultured at 37 ◦C for 24 h or 48 h in a humidified
atmosphere containing 8% O2 and 5% CO2 under static or flow conditions using a flow
bioreactor (TEB500, EBERS Medical Technology SL, Zaragoza, Spain). O2 saturation in
the circulating medium was verified with an external O2 measurement device (PreSens,
Fibox 3, Regensburg, Germany).

Flow and Static Culture of Villous Explants

The flow chambers with a dimension of 23 mm height × 37 mm diameter and 15 mm
internal chamber width (Kirkstall Ltd., Quasi Vivo®, North Yorkshire, UK; Supplemental
Table S2) were filled with 2 mL of PromoCell medium. The chambers were connected
with tubes having a diameter of 1/16” ID for the inlet and a diameter of 3/32” ID for
the outlet tubes. Since the inlet and outlet tubes from the chamber are positioned on
the upper side of the chambers, the chambers were turned upside-down to facilitate the
exposure of explants to the direct stream of medium. Four explants were transferred
into each chamber and secured inside the chamber with stainless steel pins. One flow
cycle consisted of five chambers connected in series with approximately 30 mg of villous
tissue per chamber and a total wet weight of all explants of about 150 mg. Using the
peristaltic pump system integrated into the TEB500 system and an additional pumping
tube of 1.02 mm diameter (Tygon®, Bartelt, Graz, Austria), villous explants were perfused
with a flow rate of 1 mL/min. The flow system was filled with a total volume of 25 mL.
The specifications of the flow system are summarized in Supplemental Table S2. Depiction
of the flow system is represented in Figure 1.
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For the static culture, placental explants from the same placentas as used for the flow
cultures were cultured in 6-well plates (NUNC, ThermoFisher Scientific, Waltham, MA,
USA) filled with 4 mL of PromoCell medium and 4 villous explants per well (30 mg villous
tissue per well, 150 mg villous tissue per well plate). The static explants were placed in
the TEB500 flow bioreactor and cultured in the same humidified atmosphere as the flow
culture explants.

4.3. Histology and Immunohistochemistry

Explants were fixed in formalin (4%) for up to 48 h followed by paraffin embedding
using an Excelsior AS Tissue Processor (ThermoFisher Scientific, Waltham, MA, USA).
Five µm sections from formalin-fixed paraffin-embedded tissues (FFPE) (Microtome Mi-
crom HM 355 S, ThermoFisher Scientific, Waltham, MA, USA) were mounted on Superfrost
Plus slides (Menzel-Glaeser, Braunschweig, Germany). The sections were deparaffinized
using Histolab Clear® (Histolab®, Askim, Sweden) solution and rehydrated through a
graded series of ethanol. For each FFPE sample, a hematoxylin–eosin staining was per-
formed. Antigen retrieval was performed in a microwave oven (40 min, 150 W, Miele,
Guetersloh, Germany) using preheated 10 mM Tris EDTA buffer (pH 9) or 10 mM citrate
buffer (pH 6).

Immunohistochemistry (IHC) was performed utilizing the UltraVision LP-Detection
System HRP-Polymer (ThermoFisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions. Briefly, endogenous peroxidase was blocked for 10 min
with Hydrogen Peroxide Block (ThermoFisher Scientific, Waltham, MA, USA). After three
washing steps (Tris-buffered saline with 0.05% Tween, TBST) slides were incubated with
UltraVision Protein Block for 7 min (ThermoFisher Scientific, Waltham, MA, USA) and
then incubated with the primary antibodies diluted in antibody diluent (Dako, Santa Clara,
CA, USA) for 45 min: cytokeratin 7 (1:1000, OVTL 12/30, Invitrogen, Waltham, MA,
USA), CD34 Class II (1:500, QBEnd-10, Dako, Santa Clara, CA, USA), cleaved caspase 8
(1:100, clone 18C8, Cell signaling, Danvers, MA, USA), or Ki67 (1:50, clone MIB-1, Dako,
Santa Clara, CA, USA). Primary antibody enhancer was applied for 10 min, which was
followed by incubation for 15 min with Large Volume HRP Polymer. Then, the slides
were incubated with the substrate amino-ethyl carbazole (AEC substrate kit, Abcam,
Cambridge, UK) for 10 min. Nuclei were counterstained with Mayer’s Haemalaun for
10 min. After the staining procedure, all slides were mounted with Kaiser’s Glycerin
Gelatine (Merck, Darmstadt, Germany) and analyzed with a Leica DM 6000 B microscope
(Wetzlar, Germany) equipped with an Olympus DP 72 Camera.

If not stated otherwise, twelve random spots per slide were photographed with 200×
magnification by manual rotation of the stage using a joystick and then used for analy-
sis. Semi-quantitative analysis was performed using the HALO software (v3.1.1076.342,
indica labs, Albuquerque, NM, USA). For cleaved caspase 8 and Ki67, data are given as
percentage of positive cells per total number of cells in the analyzed tissue area. A pipeline
of the quantification is depicted in Supplemental Figure S1. Cytokeratin 7 was used to quan-
tify the detachment of villous trophoblast from the villous stromal core. This was achieved
by counting villi with detached or disrupted syncytiotrophoblast per total villous count.

For immunofluorescence staining, the slides were washed with PBS and incubated
with UV Block (Thermo Fisher Scientific, Waltham, MA, USA). The primary antibody
(anti-β-actin, 1:10,000, AC-15, Abcam, Cambridge, UK) was diluted in antibody diluent
(Dako, Santa Clara, CA, USA) and incubated on the slide for 30 min. After washing steps,
slides were incubated with the secondary antibody for 30 min (Alexa Fluor 555 goat-anti-
mouse, 1:200, ThermoFisher Scientific, Waltham, MA, USA), while nuclei were stained with
DAPI (1:1000, ThermoFisher Scientific, Waltham, MA, USA) for 5 min. Slides were dried
at room temperature in the dark and mounted with ProLong™ Gold Antifade Reagent
(ThermoFisher Scientific, Waltham, MA, USA). Pictures were taken with an Olympus
microscope (BX3-CBH) (Hamburg, Germany) at 400× magnification. A summary of the
used antibodies is shown in Supplemental Table S3.
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4.4. Ultrastructural Analysis

The fixation and preparation of villous explants for electron microscopy was per-
formed according to standard electron microscopy protocols. In brief, villous explants were
fixed in 2% paraformaldehyde/2.5% glutardialdehyde in 0.1 M cacodylate buffer (pH 7.4)
for 2 h and then transferred into 0.1 M cacodylate buffer. After post fixation in 2% osmium
tetroxide in 0.1 M cacodylate buffer, samples were dehydrated in a graded series of ethanol.

4.4.1. Transmission Electron Microscopy (TEM)

Samples for transmission electron microscopy were transferred into propylene oxide
as an intermedium and subsequently embedded in TAAB epoxy resin (Agar Scientific,
Stansted, Essex, UK). Ultrathin sections (70 nm) were cut using a Leica UC7 ultramicrotome
(Leica Microsystems, Vienna, Austria) and then stained with platinum blue and lead citrate.
Images were taken with 80 kV acceleration voltage using a Zeiss EM 900 transmission
electron microscope (Zeiss, Oberkochen, Germany).

4.4.2. Scanning Electron Microscopy (SEM)

After dehydration in a graded series of ethanol, samples for scanning electron mi-
croscopy were critically point dried (CPD 030; Bal-Tec, Balzers, Liechtenstein) and sputter
coated with gold palladium (SCD 500; Bal-Tec, Balzers, Liechtenstein). Images were taken
using a Zeiss Sigma 500 field emission scanning electron microscope (Zeiss, Cambridge,
UK) with a back-scattered electron detector at 5 kV acceleration voltage.

4.5. LDH Assay and hCG Measurement

For LDH and hCG measurements, the conditioned culture media from placental
villous explants were used. Prior to performing the LDH assay (LDH Cytotoxicity Detection
Kit, Takara, Japan) and the hCG measurement, the medium was centrifuged at 1500× g
for 10 min, and the supernatants were stored at −80◦C. The LDH assay was performed
according to the manufacturer’s instructions in 96-well plates (NUNC, ThermoFisher
Scientific, Waltham, MA, USA). For measuring the absorbance of the samples at 492 nm
with a reference wavelength at 620 nm, a Spark TM 10 M multimode microplate reader
(TECAN, Maennedorf, Switzerland) was used. All samples were measured in duplicates.
HCG was measured in routine immunoassay analyses at the department of Obstetrics
and Gynecology at the Medical University of Graz (Dimension Xpand; Dade Behring
Inc., Deerfield, IL, USA). Obtained values were corrected to the primarily used amount of
medium in the experiments.

4.6. Statistical Analysis

Data were analyzed and visualized using GraphPad Prism 9.0.0. (San Diego, CA, USA).
Unless stated otherwise, experiments were performed in triplicate. Statistical differences
were calculated by ordinary one-way ANOVA using a nonparametric test (Friedman Test)
without multiple comparison. A p-value of less than 0.05 was considered statistically
significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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