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Abstract: Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-
methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been
isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6-16).
Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-
methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory
activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 µM, respectively, against A549 and MCF-7
cells. The colony-formation assay demonstrated that compound 1 (5 µM) obviously decreased A549
and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced
apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.

Keywords: Eupatorium fortunei; dibenzofuran; cytotoxity; apoptosis

1. Introduction

Eupatorium fortunei Turcz. (Asteraceae) is a perennial herb widely distributed in China.
The aerial part of E. fortunei (Chinese name: Pei-Lan) has been used as a traditional medicine
for the treatment of various diseases such as flu, poor appetite, constipation, nausea, and
siriasis [1]. Diverse monoterpenoids [2–6], triterpenoids [2,7], sesquiterpenoids, stereoiso-
mer, coumarins [7], pyrrolizidine alkaloids [7,8], benzofuran [4,9], and their derivatives
were isolated from this species in the past studies. Many of these isolated compounds
showed anti-inflammatory [5], anti-bacterial [3,4], anti-cancer [6], and anti-diabetic [7]
activities. In our study on the cytotoxic constituents of Chinese herbal medicines, many
species have been screened for cytotoxic effect, and E. fortunei has been found to be an
active species. Two new dibenzo[b,d]furan derivatives, eupatodibenzofuran A (1) and
eupatodibenzofuran B (2), a new 4-chromanone, 6-acetyl-8-methoxy-2,2-dimethylchroman-
4-one (3), a new acetophenone derivative, eupatofortunone (4), a new dithiecine derivative,
eupatodithiecine (5), and eleven known compounds (6–16) have been isolated and con-
firmed from the aerial part of E. fortunei. This report describes the structural elucidation
of five new compounds 1–5 and the inhibitory activities of 1 against non-small-cell lung
cancer and breast cancer cells.
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2. Results and Discussion
2.1. General

Separation of the EtOAc-soluble fraction of a MeOH extract of the aerial part of E.
fortunei by silica gel chromatography and preparative thin-layer chromatography (TLC)
afforded five new (1–5) and eleven known compounds (6–16) (Figure 1).
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2.2. Structure Elucidation of the New Compounds

Compound 1 was obtained as colorless needles. Its molecular formula C22H18O4
was deduced from a sodium adduct ion at m/z 369.11041 [M + Na]+ (calcd 369.11028) in
the HRESIMS spectrum. The presence of hydroxyl (3439 cm−1) and conjugated carbonyl
(1645 cm−1) groups were revealed from the IR spectrum. Analysis of the 1H and 13C
NMR data of 1 showed the signals for an acetyl group [δH 2.41 (3H, s, Ac-2); δC 26.2
(COMe), 203.9 (COMe)], a chelated hydroxyl group [δH 12.65 (1H, s, OH-3)], a methyl
group [δH 2.62 (3H, s, Me-6); δC 15.1 (Me-6)], a 2-hydroxy-4-methylphenyl group [δH
2.44 (3H, s, Me-4′), 4.97 (1H, s, OH-2′), 6.93 (1H, br d, J = 7.5 Hz, H-5′), 6.96 (1H, br s,
H-3′), 7.25 (1H, d, J = 7.5 Hz, H-6′); δC 21.4 (Me-4′), 116.1 (C-3′), 121.7 (C-5′), 122.4 (C-1′),
130.2 (C-6′), 140.4 (C-4′), 152.7 (C-2′)], two ortho-coupled aromatic protons [δH 7.22 (1H,
d, J = 7.5 Hz, H-8), 7.33 (1H, br d, J = 7.5 Hz, H-7); δC 125.1 (C-8), 128.6 (C-7)], and two
singlet aromatic protons [δH 7.07 (1H, s, H-4), 7.65 (1H, s, H-1); δC 99.8 (C-4), 125.4 (C-1)]
(Table 1). The position of each substituent was supported by ROESY correlations between
H-1 (δH 7.65)/Ac-2 (δH 2.41), Me-6 (δH 2.62)/H-7 (δH 7.33), OH-2′ (δH 4.97)/H-3′ (δH
6.96), H-3′ (δH 6.96)/Me-4′ (δH 2.44), and Me-4′ (δH 2.44)/H-5′ (δH 6.93) and by HMBC
correlation between ‘Ac-2 (δH 2.41)/C-2 (δC 116.6)’, ‘OH-3 (δH 12.65)/C-2 (δC 116.6), C-4
(δC 99.8)’, ‘Me-6 (δH 2.62)/C-5a (δC 155.9), C-7 (δC 128.6)’, ‘OH-2′ (δH 4.97)/C-3′ (δC 116.1)’,
and ‘Me-4′ (δH 2.44)/C-4′ (δC 140.4), C-5′ (δC 121.7)’ (Figure 2). The full assignment of
1H and 13C NMR resonances was supported by 1H–1H COSY, HSQC, ROESY (Figure 2A),
and HMBC (Figure 2B) spectral analyses. Thus, the structure of 1 was elucidated as 1-(3-
hydroxy-9-(2-hydroxy-4-methylphenyl)-6-methyldibenzo[b,d]furan-2-yl)ethenone, named
eupatodibenzofuran A.

Table 1. 1H and 13C NMR data of 1 and 2.

1 2

Position δH (J in Hz) a δC
b δH (J in Hz) a δC

b

1 7.65, s 125.4 7.59, s 125.1
2 116.6 116.0
3 163.2 162.9
4 7.07, s 99.8 7.05, s 99.6
4a 161.2 161.3
5a 155.9 155.4
6 121.8 120.5
7 7.33, br d (7.5) 128.6 7.27, br d (7.6) 127.9
8 7.22, d (7.5) 125.1 7.17, d (7.6) 125.0
9 127.7 130.6
9a 121.9 121.7
9b 116.3 117.8
1′ 122.4 125.4
2′ 152.7 156.7
3′ 6.96, br s 116.1 6.91, br s 111.5
4′ 140.4 139.8
5′ 6.93, br d (7.5) 121.7 6.95, br d (7.5) 121.4
6′ 7.25, d (7.5) 130.2 7.28, d (7.5) 131.0

COMe-2 203.9 203.7
COMe-2 2.41, s 26.2 2.40, s 26.2

OH-3 12.65, s 12.62, s
Me-6 2.62, s 15.1 2.60, s 15.1
OH-2′ 4.97, s

OMe-2′ 3.70, s 55.5
Me-4′ 2.44, s 21.4 2.49, s 21.7

a Recorded in CDCl3 at 500 MHz. Values in ppm (δ). J (in Hz) in parentheses; b Recorded in CDCl3 at 125 MHz.



Int. J. Mol. Sci. 2021, 22, 7448 4 of 16

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 17 
 

 

2.2. Structure Elucidation of the New Compounds 
Compound 1 was obtained as colorless needles. Its molecular formula C22H18O4 was 

deduced from a sodium adduct ion at m/z 369.11041 [M + Na]+ (calcd 369.11028) in the 
HRESIMS spectrum. The presence of hydroxyl (3439 cm−1) and conjugated carbonyl (1645 
cm−1) groups were revealed from the IR spectrum. Analysis of the 1H and 13C NMR data 
of 1 showed the signals for an acetyl group [δH 2.41 (3H, s, Ac-2); δC 26.2 (COMe), 203.9 
(COMe)], a chelated hydroxyl group [δH 12.65 (1H, s, OH-3)], a methyl group [δH 2.62 
(3H, s, Me-6); δC 15.1 (Me-6)], a 2-hydroxy-4-methylphenyl group [δH 2.44 (3H, s, Me-4′), 
4.97 (1H, s, OH-2′), 6.93 (1H, br d, J = 7.5 Hz, H-5′), 6.96 (1H, br s, H-3′), 7.25 (1H, d, J = 7.5 
Hz, H-6′); δC 21.4 (Me-4′), 116.1 (C-3′), 121.7 (C-5′), 122.4 (C-1′), 130.2 (C-6′), 140.4 (C-4′), 
152.7 (C-2′)], two ortho-coupled aromatic protons [δH 7.22 (1H, d, J = 7.5 Hz, H-8), 7.33 
(1H, br d, J = 7.5 Hz, H-7); δC 125.1 (C-8), 128.6 (C-7)], and two singlet aromatic protons 
[δH 7.07 (1H, s, H-4), 7.65 (1H, s, H-1); δC 99.8 (C-4), 125.4 (C-1)] (Table 1). The position of 
each substituent was supported by ROESY correlations between H-1 (δH 7.65)/Ac-2 (δH 
2.41), Me-6 (δH 2.62)/H-7 (δH 7.33), OH-2′ (δH 4.97)/H-3′ (δH 6.96), H-3′ (δH 6.96)/Me-4′ (δH 

2.44), and Me-4′ (δH 2.44)/H-5′ (δH 6.93) and by HMBC correlation between ‘Ac-2 (δH 
2.41)/C-2 (δC 116.6)’, ‘OH-3 (δH 12.65)/C-2 (δC 116.6), C-4 (δC 99.8)’, ‘Me-6 (δH 2.62)/C-5a (δC 
155.9), C-7 (δC 128.6)’, ‘OH-2′ (δH 4.97)/C-3′ (δC 116.1)’, and ‘Me-4′ (δH 2.44)/C-4′ (δC 140.4), 
C-5′ (δC 121.7)’ (Figure 2). The full assignment of 1H and 13C NMR resonances was sup-
ported by 1H–1H COSY, HSQC, ROESY (Figure 2A), and HMBC (Figure 2B) spectral 
analyses. Thus, the structure of 1 was elucidated as 
1-(3-hydroxy-9-(2-hydroxy-4-methylphenyl)-6-methyldibenzo[b,d]furan-2-yl)ethenone, 
named eupatodibenzofuran A. 

 
Figure 2. Key ROESY (A) and HMBC (B) correlations of 1. 

Table 1. 1H and 13C NMR data of 1 and 2. 

 1 2 
Position δH (J in Hz) a δC b δH (J in Hz) a δC b 

1 7.65, s 125.4 7.59, s 125.1 
2  116.6  116.0 
3  163.2  162.9 
4 7.07, s 99.8 7.05, s 99.6 

4a  161.2  161.3 
5a  155.9  155.4 
6  121.8  120.5 
7 7.33, br d (7.5) 128.6 7.27, br d (7.6) 127.9 
8 7.22, d (7.5) 125.1 7.17, d (7.6) 125.0 
9  127.7  130.6 

9a  121.9  121.7 
9b  116.3  117.8 
1′  122.4  125.4 
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Compound 2 was isolated as amorphous powder with molecular formula C23H20O4,
as determined by positive-ion HRESIMS, showing an [M + Na]+ ion at m/z 383.12612 (calcd
for C23H20O4Na, 383.12593). The presence of a conjugated carbonyl group was revealed by
a band at 1645 cm−1 in the IR spectrum, and was confirmed by the resonance at δC 203.7
in the 13C NMR spectrum. The 1H NMR data of 2 were similar to eupatodibenzofuran
A (1), except that the 2′-methoxy group [δH 3.70 (3H, s), δC 55.5] of 2 replaced the 2′-
hydroxy group [δH 4.97 (1H, s)] of 1. This was supported by the ROESY correlations
between OMe-2′ (δH 3.70) and H-3′ (δH 6.91) and by the HMBC correlations between OMe-
2′ (δH 3.70) and C-2′ (δC 156.7) (Table 1). The position of each substituent was supported
by ROESY correlations between H-1 (δH 7.59)/Ac-2 (δH 2.40), Me-6 (δH 2.60)/H-7 (δH
7.27), H-7 (δH 7.27)/H-8 (δH 7.17), OMe-2′ (δH 3.70)/H-3′ (δH 6.91), H-3′ (δH 6.91)/Me-4′

(δH 2.49), and Me-4′ (δH 2.49)/H-5′ (δH 6.95) and by HMBC correlation between ‘H-1
(δH 7.59)/MeCO-2 (δC 203.7), C-3 (δC 162.9), C-4a (δC 161.3), C-9a (δC 121.7)’, ‘Ac-2 (δH
2.40)/C-2 (δC 116.0)’, ‘OH-3 (δH 12.62)/C-2 (δC 116.0)’, ‘H-4 (δH 7.05)/C-2 (δC 116.0), C-
9b (δC 117.8)’, ‘Me-6 (δH 2.60)/C-5a (δC 155.4), C-7 (δC 127.9)’, ‘H-7 (δH 7.27)/C-5a (δC
155.4)’, ‘H-8 (δH 7.17)/C-6 (δC 120.5), C-9a (δC 121.7), C-1′ (δC 125.4)’, ‘H-6′ (δH 7.28)/C-
9 (δC 130.6), C-2′ (δC 156.7), C-4′ (δC 139.8)’, ‘OMe-2′ (δH 3.70)/C-2′ (δC 156.7)’, ‘Me-4′

(δH 2.49)/C-4′ (δC 139.8), C-5′ (δC 121.4)’ (Figure 3). The full assignment of 1H and 13C
NMR resonances was confirmed by 1H–1H COSY, ROESY (Figure 3A), HSQC, and HMBC
(Figure 3B) techniques. According to the evidence above, the structure of 2 was elucidated
as 1-(3-hydroxy-9-(2-methoxy-4-methylphenyl)-6-methyldibenzo[b,d]furan-2-yl)ethan-1-
one, named eupatodibenzofuran B.
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Compound 3 was isolated as light brown amorphous powder. Its molecular formula,
C14H16O4, was determined on the basis of the positive HRESIMS at m/z 249.1123 [M + H]+

(calcd 249.1121) and was supported by the 1H and 13C NMR data. The IR absorption bands
of 3 revealed the presence of carbonyl (1686 cm−1) function. Analyses of the 1H and 13C
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NMR data of 3 showed the signals for two methyl groups [δH 1.55 (6H, s, Me-2 × 2); δC
26.5 (Me-2 × 2)], an acetyl group [δH 2.60 (3H, s, Ac-6); δC 26.2 (COMe), 196.6 (COMe)],
a methoxy group [δH 3.95 (3H, s, OMe-8); δC 56.4 (OMe-8)], two meta-coupled aromatic
protons [δH 7.70, 8.08 (each 1H, each d, J = 2.0 Hz, H-7 and H-5); δC 114.3 (C-7), 120.0
(C-5)], and two methylene protons [δH 2.79 (2H, s, H-3); δC 48.5 (C-3)] (Table 2). The
position of each substituent was supported by the ROESY correlations between Me-2 (δH
1.55)/H-3 (δH 2.79), H-5 (δH 8.08)/Ac-6 (δH 2.60), Ac-6 (δH 2.60)/H-7 (δH 7.70), and H-7 (δH
7.70)/OMe-8 (δH 3.95) and HMBC correlations between ‘Me-2 (δH 1.55)/C-2 (δC 81.0), C-3
(δC 48.5)’, ‘H-3 (δH 2.79)/C-2 (δC 81.0), C-4 (δC 191.7), Me-2 (δC 26.5)’, ‘H-5 (δH 8.08)/C-4
(δC 191.7), MeCO-6 (δC 196.6), C-7 (δC 114.3), C-8a (δC 154.0)’, ‘H-7 (δH 7.70)/C-5 (δC 120.0),
MeCO-6 (δC 196.6), C-8a (δC 154.0)’, and ‘OMe-8 (δH 3.95)/C-8 (δC 149.8)’ (Figure 4). The
full assignment of 1H and 13C NMR resonances was further confirmed by the 1H-1H COSY,
HSQC, 1D-selective NOESY (Figure 4A), and HMBC (Figure 4B) data. Consequently, the
structure of compound 3 was established as 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one.

Table 2. 1H and 13C NMR data of 3.

Position δH J (Hz) a δC
b

2 81.0
3 2.79, s 48.5
4 191.7
4a 119.6
5 8.08, d (2.0) 120.0
6 129.6
7 7.70, d (2.0) 114.3
8 149.8
8a 154.0

Me-2 1.55, s 26.5
COMe-6 196.6
COMe-6 2.60, s 26.2
OMe-8 3.95, s 56.4

a Recorded in CDCl3 at 500 MHz. Values in ppm (δ). J (in Hz) in parentheses. b Recorded in CDCl3 at 125 MHz.
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Compound 4 was obtained as colorless oil and the molecular formula was determined
to be C14H16O3 by HRESIMS [m/z 255.10030 [M + Na]+ (calcd for C14H16O3Na, 255.09971)].
The IR spectrum showed the presence of ester and conjugated carbonyl groups at 1736 and
1684 cm−1, respectively. Analysis of the 1H and 13C NMR data of 4 revealed the signals for
an acetyl group [δH 2.52 (3H, s, Ac-2); δC 29.4 (COMe), 197.1 (COMe)], a methyl group [δH
2.40 (3H, s, Me-5); δC 21.4 (Me-5)], a (Z)-(2-methylbut-2-enoyl)oxy group [δH 2.08 (3H, dq,
J = 7.3, 1.3 Hz, H-4′), 2.08 (3H, qd, J = 1.8, 1.3 Hz, H-5′), 6.30 (1H, qq, J = 7.3, 1.8 Hz, H-3′);
δC 16.0 (C-4′), 20.6 (C-5′), 127.0 (C-2′), 141.4 (C-3′), 166.1 (C-1′)], and three mutually coupled
aromatic protons [δH 6.94 (1H, br s, H-6), 7.12 (1H, br d, J = 8.0 Hz, H-4), and 7.74 (1H, d,
J = 8.0 Hz, H-3); δC 124.4 (C-6), 126.7 (C-4), and 130.4 (C-3)] (Table 3). The position of each
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substituent was supported by the ROESY correlations between Ac-2 (δH 2.52)/H-3 (δH 7.74),
H-3 (δH 7.74)/H-4 (δH 7.12), H-4 (δH 7.12)/Me-5 (δH 2.40), Me-5 (δH 2.40)/H-6 (δH 6.94),
H-3′ (δH 6.30)/H-4′ (δH 2.08), and H-3′ (δH 6.30)/H-5′ (δH 2.08) and by HMBC correlations
between ‘COMe-2 (δH 2.52)/C-2 (δC 128.3), COMe-2 (δC 197.1)’, ‘H-3 (δH 7.74)/C-1 (δC
149.3), COMe-2 (δC 197.1), C-5 (δC 144.7)’, ‘H-4 (δC 7.12)/C-2 (δC 128.3), C-6 (δC 124.4),
Me-5 (δC 21.4)’, ‘Me-5 (δH 2.40)/C-4 (δC 126.7), C-5 (δC 144.7), C-6 (δC 124.4)’, ‘H-6 (δH
6.94)/C-1 (δC 149.3), C-2 (δC 128.3), C-4 (δC 126.7), Me-5 (δC 21.4)’, ‘H-4′ (δH 2.08)/C-2′ (δC
127.0)’, and ‘H-5′ (δH 2.08)/C-1′ (δC 166.1), C-2′ (δC 127.0), C-3′ (δC 141.4)’ (Figure 5). The
full assignment of 1H and 13C NMR resonances was supported by 1H–1H COSY, HSQC,
ROESY (Figure 5A), and HMBC (Figure 5B) spectral analyses. According to the above data,
the structure of 4 was elucidated as (Z)-2-acetyl-5-methylphenyl 2-methylbut-2-enoate,
named eupatofortunone.

Table 3. 1H and 13C NMR data of 4.

Position δH J (Hz) a δC
b

1 149.3
2 128.3
3 7.74, d (8.0) 130.4
4 7.12, br d (8.0) 126.7
5 144.7
6 6.94, br s 124.4
1′ 166.1
2′ 127.0
3′ 6.30, qq (7.3, 1.8) 141.4
4′ 2.08, dq (7.3, 1.3) 16.0
5′ 2.08, qd (1.8, 1.3) 20.6

COMe-2 197.1
COMe-2 2.52, s 29.4

Me-5 2.40, s 21.4
a Recorded in CDCl3 at 500 MHz. Values in ppm (δ). J (in Hz) in parentheses. b Recorded in CDCl3 at 125 MHz.
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Compound 5 was isolated as light brown amorphous powder. Its molecular formula,
C20H20O4S2, was determined on the basis of the positive HRESIMS at m/z 411.07026
[M + Na]+ (calcd 411.07007) and was supported by the 1H and 13C NMR data. The IR
absorption bands of 5 revealed the presence of alkynyl (2230 cm−1) and conjugated carbonyl
(1639 cm−1) functions. Analysis of the 1H and 13C NMR data of 5 revealed the signals for
an acetyl group [δH 2.50 (3H, s, Ac-2); δC 29.4 (COMe-2), 190.2 (COMe-2)], a prop-1-yn-
1-yl group [δH 2.09 (3H, s, C≡CMe); δC 4.8 (C≡CMe), 73.2 (C≡CMe), 94.8 (C≡CMe)], a
methoxy group [δH 3.94 (3H, s, OMe-5); δC 58.8 (OMe-5)], and a singlet aromatic proton [δH
6.84 (1H, s, H-4); δC 119.1 (C-4)] (Table 4). The position of each substituent was supported
by the HMBC correlation between ‘COMe (δH 2.50)/C-2 (δC 122.6), COMe-2 (δC 190.2)’,
‘C≡CMe (δH 2.09)/C≡CMe (δC 73.2), C≡CMe (δC 94.8)’, ‘H-4 (δH 6.84)/C-2 (δC 122.6), C-3
(δC 130.6), C≡CMe (δC 73.2)’, ‘OMe-5 (δH 3.94)/C-5 (δC 159.3)’ and by the 1D selective
NOESY correlation between H-4 (δH 6.84) and OMe-5 (δH 3.94) (Figure 6). According to
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the 1H, 13C NMR, and HR-ESI-MS data, the number of resonances observed was half that
expected, suggesting that 5 had a symmetrical structure. The full assignment of 1H and 13C
NMR resonances was further confirmed by 1H-1H COSY, 1D-selective NOESY (Figure 6A),
HSQC, and HMBC (Figure 6B) data. Consequently, the structure of compound 5 was
established as 1,1′-((2E,4Z,7Z,9E)-5,7-dimethoxy-3,9-di(prop-1-yn-1-yl)-1,6-dithiecine-2,10-
diyl)diethanone, named eupatodithiecine.

Table 4. 1H and 13C NMR data of 5.

Position δH J (Hz) a δC
b

2 122.6
3 130.6
4 6.84, s 119.1
5 159.3
7 159.3
8 6.84, s 119.1
9 130.6
10 122.6

COMe-2 190.2
COMe-2 2.50, s 29.4

C≡CMe-3 73.2
C≡CMe-3 94.8
C≡CMe-3 2.09, s 4.8

OMe-5 3.94, s 58.8
OMe-7 3.94, s 58.8

C≡CMe-9 73.2
C≡CMe-9 94.8
C≡CMe-9 2.09, s 4.8
COMe-10 190.2
COMe-10 2.50, s 29.4

a Recorded in CDCl3 at 500 MHz. Values in ppm (δ). J (in Hz) in parentheses. b Recorded in CDCl3 at 125 MHz.
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2.3. Structure Identification of the Known Isolated Compounds

The known compounds were readily identified by a comparison of their physical and
spectroscopic data (UV, IR, 1H NMR, and MS) with those of authentic samples or literature
values. They include four thymol derivatives, thymyl angelate (6) [10], 8,9-dehydrothymol
3-O-tiglate (7) [4], 9-angeloyloxythymol (8) [5], and 9-O-angeloyl-8,10-dehydrothymol
(9) [11], five phenol derivatives, 2-hydroxy-4-methylacetophenone (10) [12], trans-o-coumaric
acid (11) [13], 6-hydroxy-7-methoxy-2-isopropenyl-5-acetylcumaran (12) [14], 2,4-di-tert-
butylphenol (13) [15], and 1-(2-hydroxy-5-methoxy-4-methylphenyl)ethanone (14) [16], a
coumarin (15) [17], and a triterpenoid, taraxasterol (16) [18].
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2.4. Biological Studies

The cytotoxic effects of the isolated compounds from E. fortunei were evaluated by
their activities to suppress A549 and MCF-7 cells. The cytotoxic activity data are shown
in Table 5. Among the isolated compounds, compound 1 exhibited potent inhibitory
activities with IC50 values of 5.95 ± 0.89 and 5.32 ± 0.31 µM, respectively, against A549
and MCF-7 cells. In addition, colony-formation assay was performed to estimate the
effects of compound 1 on the proliferation of A549 and MCF-7 cells. As shown in Figure 7,
compound 1 reduced colony formation in a dose-dependent manner in both cell lines. In
addition, we generated physicochemical properties (Table S1) of compound 1 using Pipeline
Pilot [19]. The ALogP98 value, molecular polar surface area, and ADMET absorption level
suggest that compound 1 is hydrophobic and may have good permeability to cross the cell
membrane, which may account for the cytotoxic effects of compound 1.

Table 5. In vitro inhibitory effects of compounds 1-16 isolated from the aerial part of E. fortunei
against A549 and MCF-7 cells.

Compound
IC50 (µM) a

A549 MCF-7

Eupatodibenzofuran A (1) 5.95 ± 0.89 ** 5.55 ± 0.23 **
Eupatodibenzofuran B (2) 93.37 ± 1.14 85.91 ± 3.94

6-Acetyl-8-methoxy-2,2-dimethylchroman-4-one (3) >100 >100
Eupatofortunone (4) 86.63 ± 10.89 * 82.15 ± 8.26 **
Eupatodithiecine (5) 39.44 ± 2.81 * 31.20 ± 4.23 *
Thymyl angelate (6) >100 >100

8,9-Dehydrothymol 3-O-tiglate (7) >100 >100
9-Angeloyloxythymol (8) 60.08 ± 3.39 * 52.11 ± 2.16 *

9-O-Angeloyl-8,10-dehydrothymol (9) 55.36 ± 0.80 * 51.70 ± 0.48 *
2-Hydroxy-4-methylacetophenone (10) >100 >100

trans-o-Coumaric acid (11) >100 >100
6-Hydroxy-7-methoxy-2-isopropenyl-5- acetylcumaran

(12) 73.97 ± 2.88 * 72.67 ± 3.51 *

2,4-Di-tert-butylphenol (13) >100 >100
1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethanone (14) >100 >100

Coumarin (15) >100 >100
Taraxasterol (16) 94.79 ± 10.23 * 93.59 ± 6.11 *

5-Fluorouracil (5FU) b 10.57 ± 1.89 ** 8.59 ± 1.03 **
a The IC50 values were calculated from the slope of the dose-response curves (SigmaPlot). Values are expressed as
average ± SEM (n = 3). * p < 0.05, ** p < 0.01 compared with the control. b 5-Fluorouracil (5-FU) was used as a
positive control against A549 and MCF-7 cells.

To further confirm whether apoptosis was triggered, annexin V/propidium iodide (PI)
assay was performed and the expression levels of apoptosis-associated proteins, Bcl-2, Bax,
and caspase-3 were analyzed by Western blot analysis after A549 and MCF-7 cells were
treated with compound 1. As shown in Figure 8A,B, compound 1 significantly induced the
cell apoptosis in A549 and MCF-7 cells, respectively. Furthermore, compound 1 increased
the expression of Bax and cleaved-caspase-3, and decreased Bcl-2 and pro-caspase-3 levels
in a dose-dependent manner in both A549 and MCF-7 cells (Figure 9A,B). The above results
confirm that compound 1 markedly induces apoptosis of A549 and MCF-7 cells through
mitochondrial- and caspase-3-dependent pathways (Scheme 1).
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Figure 7. Compound 1 inhibited the growth of human non-small-cell lung cancer cell (A549) and human breast cancer cell
(MCF-7) in a dose-dependent manner (1.25–10 µM) by the colony-formation assay. The data were expressed as mean ± SEM
(n = 3). Asterisks indicate significant differences (* p < 0.05 and *** p < 0.001) compared with the control group.

To further understand the mechanism of compound 1 in this study, we predicted
potential targets using the similarity ensemble approach server [20]. This approach predicts
possible target proteins of a compound by comparing chemical similarities. Compound 1
was predicted to target four proteins (Supplementary Materials Table S2), including PON1,
CELA1, CBR1, and NQO1. The Tanimoto coefficients (Tc) of chemical similarity were
generated for the predicted targets. The Tc is a pairwise score between the compound and
the predicted target. The Tc score ranges from 0.0 (no similarity) to 1.0 (total similarity).
The P-value indicates the prediction reliability, and a value approaching zero means a
reliable prediction. The possible targets may account for the inhibition mechanisms of
compound 1.
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Figure 8. Compound 1 induced cell apoptosis in A549 (A) and MCF-7 (B) cells. Cells were treated 
with compound 1 (0, 5, 10 μM) for 24 h. Apoptotic cells with Annexin V-FITC and PI staining were 
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significant differences (* p < 0.05) compared to the control group. 

Figure 8. Compound 1 induced cell apoptosis in A549 (A) and MCF-7 (B) cells. Cells were treated with compound 1 (0, 5,
10 µM) for 24 h. Apoptotic cells with Annexin V-FITC and PI staining were analyzed by flow cytometer. The data were
expressed as means ± SEM (n = 3). Asterisks indicate significant differences (* p < 0.05) compared to the control group.
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caspase-3 in A549 (A) and MCF-7 (B) cells. Cells were treated with 1 (1.25–10 μM) for 72 h. Bcl-2, Bax, pro-caspase-3, and 
cleaved-caspase-3 were analyzed by immunoblotting. Densitometric analysis of tested compounds was normalized to the 
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Figure 9. Compound 1 inhibited the anti-apoptotic protein Bcl-2, increased pro-apoptotic protein Bax, and activated
caspase-3 in A549 (A) and MCF-7 (B) cells. Cells were treated with 1 (1.25–10 µM) for 72 h. Bcl-2, Bax, pro-caspase-3, and
cleaved-caspase-3 were analyzed by immunoblotting. Densitometric analysis of tested compounds was normalized to
the corresponding expression of β-actin. The data were expressed as means ± SEM (n = 3). Asterisks indicate significant
differences (* p < 0.05, ** p < 0.01, and *** p < 0.001) compared to the control group.
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3. Materials and Methods
3.1. General Experimental Procedures

Ultraviolet (UV) spectra were obtained on a Jasco UV-240 spectrophotometer. Infrared
(IR) spectra (neat or KBr) were recorded on a Perkin Elmer 2000 FT-IR spectrometer.

Nuclear magnetic resonance (NMR) spectra, including correlation spectroscopy (COSY),
rotating frame nuclear Overhauser effect spectroscopy (ROESY), nuclear Overhauser effect
spectroscopy (NOESY), heteronuclear multiple-bond correlation (HMBC), and heteronuclear
single-quantum coherence (HSQC) experiments, were acquired using a BRUKER AVIII-500
spectrometer (Bruker, Bremen, Germany), operating at 500 MHz (1H) and 125 MHz (13C),
respectively, with chemical shifts given in the ppm (δ) using tetramethylsilane (TMS) as an
internal standard. Electrospray ionization (ESI) and high-resolution electrospray ionization
(HRESI)-mass spectra were recorded on a Bruker APEX II Mass Spectrometer (Bruker,
Bremen, Germany). Silica gel [70–230 mesh (63–200 µm) and 230–400 mesh (40–63 µm),
Merck] was used for column chromatography (CC). Silica gel 60 F-254 (Merck, Darm-
stadt, Germany) was used for thin-layer chromatography (TLC) and preparative thin-layer
chromatography (PTLC).

3.2. Plant Material

The aerial part of E. fortunei collected from Dihua St., Datong Dist., Taipei City, Taiwan,
in May 2019 and identified by Prof. J.-J. Chen. A voucher specimen was deposited in the
Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan.

3.3. Extraction and Isolation

The aerial part of E. fortunei (5.0 kg) was pulverized and extracted three times with
MeOH (30 L each) for 3 days. The MeOH extract was concentrated under reduced pres-
sure at 35 ◦C, and the residue (123.7 g) was partitioned between EtOAc and H2O (1:1)
to provide the EtOAc-soluble fraction (fraction A, 25.6 g). Fraction A (25.6 g) was chro-
matographed on silica gel (70–230 mesh, 1.3 kg), eluting with n-hexane, gradually increas-
ing the polarity with EtOAc to give ten fractions: A1 (1 L, n-hexane/EtOAc, 100:1), A2
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(1 L, n-hexane/EtOAc, 80:1), A3 (1.5 L, n-hexane/EtOAc, 70:1), A4 (2 L, n-hexane/EtOAc,
50:1), A5 (2 L, n-hexane/EtOAc, 30:1), A6 (2 L, n-hexane/EtOAc, 10:1), A7 (3.5 L, n-
hexane/EtOAc, 5:1), A8 (2.5 L, n-hexane/EtOAc, 3:1), A9 (3 L, n-hexane/EtOAc, 1:1),
and A10 (2.5 L, EtOAc). Fraction A2 (1.8 g) was subjected to column chromatography
(CC) (85 g of silica gel, 230–400 mesh, n-hexane/acetone, 50:1–0:1, 250 mL–fractions) to
give 11 subfractions: A2-1–A2-11. Part (125 mg) of fraction A2-2 was further purified by
preparative TLC (silica gel, n-hexane/EtOAc, 30:1) to yield thymyl angelate (6) (5.2 mg)
and 8,9-dehydrothymol 3-O-tiglate (7) (4.1 mg). Part (95 mg) of fraction A2-5 was further
purified by preparative TLC (silica gel, n-hexane/CH2Cl2, 9:1) to obtain 2-hydroxy-4-
methylacetophenone (10) (3.2 mg). Part (76 mg) of fraction A2-8 was further purified by
preparative TLC (silica gel, n-hexane/EtOAc, 19:1) to afford eupatofortunone (4) (4.6 mg).
Fraction A3 (1.6 g) was subjected to CC (72 g of silica gel, 230–400 mesh, n-hexane/EtOAc,
20:1–0:1, 250 mL–fractions) to give ten subfractions: A3-1–A3-10. Part (135 mg) of frac-
tion A3-9 was further purified by preparative TLC (silica gel, n-hexane/acetone, 5:1) to
obtain coumarin (15) (7.8 mg). Fraction A4 (2.3 g) was purified by medium pressure liquid
chromatography (MPLC) (105 g of silica gel, 230–400 mesh, n-hexane/acetone, 19:1–0:1,
250 mL–fractions) to give eight subfractions: A4-1–A4-8. Fraction A4-5 (265 mg) was
purified by MPLC (11.9 g of silica gel, n-hexane/EtOAc, 7:1) to afford four subfractions
(each 150 mL, A4-5-1–A4-5-4). Fraction A4-5-3 (48 mg) was further purified by preparative
TLC (silica gel, CH2Cl2/EtOAc, 9:1) to obtain trans-O-coumaric acid (11) (8.9 mg). Frac-
tion A4-7 (53 mg) was further purified by preparative TLC (silica gel, CH2Cl2/acetone,
8:1) to obtain 2,4-di-tert-butylphenol (13) (3.2 mg). Faction A6 (2.2 g) was subjected to
MPLC (100 g of silica gel, 230–400 mesh; CH2Cl2/EtOAc, 15:1–0:1, 250 mL–fractions)
to give 13 subfractions: A6-1–A6-13. Part (92 mg) of fraction A6-6 was further purified
by preparative TLC (silica gel, CH2Cl2/acetone, 7:1) to afford eupatodibenzofuran A
(1) (4.3 mg) and eupatodibenzofuran B (2) (3.2 mg). Fraction A6-7 (226 mg) was puri-
fied by MPLC (silica gel, CH2Cl2/acetone, 4:1) to afford 5 subfractions (A6-7-1–A6-7-5,
each 150 mL). Fraction A6-7-2 (49 mg) was further purified by preparative TLC (silica
gel, CH2Cl2/EtOAc, 5:1) to obtain taraxasterol (16) (4.7 mg). Part (92 mg) of fraction
A6-10 was further purified by preparative TLC (silica gel, CH2Cl2/EtOAc, 4:1) to yield
9-angeloyloxythymol (8) (5.1 mg) and 9-O-angeloyl-8,10-dehydrothymol (9) (4.3 mg). Part
(111 mg) of fraction A6-11 was purified by preparative TLC (silica gel, CH2Cl2/EtOAc,
2:1) to obtain 6-hydroxy-7-methoxy-2-isopropenyl-5-acetylcumaran (12) (5.3 mg). Part
(75 mg) of fraction A6-13 was further purified by semipreparative normal-phase high-
performance liquid chromatography (HPLC) (silica gel, CH2Cl2/EtOAc, 4:1, 2.0 mL min−1)
to afford 1-(2-hydroxy-5-methoxy-4-methylphenyl)ethanone (14) (4.2 mg). Faction A8
(1.6 g) was subjected to CC (72 g of silica gel, 230–400 mesh, CH2Cl2/MeOH 9:1–0:1,
250 mL–fractions) to give ten subfractions: A8-1–A8-10. Fraction A8-4 (88 mg) was further
purified by semipreparative normal-phase HPLC (silica gel, CH2Cl2/MeOH, 9:1, 2.0 mL
min−1) to afford eupatodithiecine (5) (3.7 mg). Part (93 mg) of fraction A8-7 was further
purified by preparative TLC (silica gel, CH2Cl2/MeOH, 4:1) to yield 6-acetyl-8-methoxy-
2,2-dimethylchroman-4-one (3) (4.4 mg).

Eupatodibenzofuran A (1): Colorless needles; mp 153–155 ◦C (CH2Cl2); UV (MeOH)
λmax (log ε) 238 (4.09), 272 (3.97), 352 (1.43) nm; IR (KBr) υmax 3439 (OH), 1645 (C=O) cm−1;
1H and 13C NMR data, see Table 1; HRESIMS m/z 369.11041 [M + Na]+ (calcd for C22H18O4Na,
369.11028); HRESIMS, 1D-, and 2D-NMR spectra, see Supplementary Materials Figures S1–S7.

Eupatodibenzofuran B (2): Amorphous powder; UV (MeOH) λmax (log ε) 238 (4.29),
271 (4.12), 348 (3.24) nm; IR (neat) υmax 3429 (OH), 1645 (C=O) cm−1; 1H and 13C NMR
data, see Table 1; HRESIMS m/z 383.12612 [M + Na]+ (calcd for C23H20O4Na, 383.12593);
HRESIMS, 1D-, and 2D-NMR spectra, see Supplementary Materials Figures S8–S14.

6-Acetyl-8-methoxy-2,2-dimethylchroman-4-one (3): Light brown amorphous pow-
der; UV (MeOH) λmax (log ε) 247 (4.08), 280 (sh, 3.64), 329 (3.24) nm; IR (neat) υmax
1686 (C=O) cm−1; 1H and 13C NMR data, see Table 2; HRESIMS m/z 249.1123 [M + H]+
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(calcd for C14H17O4, 249.1121); HRESIMS, 1D-, and 2D-NMR spectra, see Supplementary
Materials Figures S15–S23.

Eupatofortunone (4): Colorless oil; UV (MeOH) λmax (log ε) 211 (4.18), 246 (sh, 3.97),
284 (sh, 3.06) nm; IR (neat) υmax 1736 (C=O), 1684 (C=O) cm−1; 1H and 13C NMR data, see
Table 3; HRESIMS m/z 255.10030 [M + Na]+ (calcd for C14H16O3Na, 255.09971); HRESIMS,
1D-, and 2D-NMR spectra, see Supplementary Materials Figures S24–S30.

Eupatodithiecine (5): Light brown amorphous powder; UV (MeOH) λmax (log ε) 227
(4.03), 323 (4.26) nm; IR (neat) υmax 2230 (C≡C), 1639 (C=O) cm−1; 1H and 13C NMR
data, see Table 4; HRESIMS m/z 411.07026 [M + Na]+ (calcd for C20H20O4S2Na, 411.07007);
HRESIMS, 1D-, and 2D-NMR spectra, see Supplementary Materials Figures S31–S37.

3.4. Biological Assay
3.4.1. Cell Culture

All cell lines were cultured at 37 ◦C under a humidified atmosphere with 5% CO2.
Human non-small-cell lung cancer cell (A549) and human breast cancer cell (MCF-7) were
obtained from American Type Culture Collection (ATCC, Rockville, MD, USA) and culti-
vated in Dulbecco’s modified Eagle’s medium (DMEM) (Himedia, India) supplemented
with 10% heat-inactivated fetal bovine serum (FBS) (Avantor Seradigm/VWR, Radnor, PA,
USA), 100 U/mL penicillin and 100 µg/mL streptomycin (Himedia, India). Cells were
washed by warm phosphate buffered saline (PBS) every day and changed medium every
2–3 days [21,22].

3.4.2. Cell Viability Assay

The cell viability was conducted by the MTT assay as previously described method [23].
Briefly, 5 × 103 cells in 200 µL per well were plated in 96-well culture plates and cultured
in complete medium overnight. After 24 h, cells were treated with different concentrations
(3.125, 6.25, 12.5, 25, 50, and 100 µM) of compounds 1–16. Fluorouracil (5-FU) (Sigma-
Aldrich, St. Louis, MO, USA) was used as a positive control against A549 and MCF-
7 cells with IC50 values of 10.57 ± 1.89 and 8.59 ± 1.03 µM, respectively. The optical
density at 570 nm was measured by ELISA plate reader (µ Quant) and the IC50 value was
calculated. The optical density of formazan formed in control (untreated) cells was taken
as 100% viability.

3.4.3. Colony-Formation Assay

The colony-formation assay was determined by the reference method with a slight
modification [24]. In this assay, A549 and MCF-7 cells were seeded in 6-well plates with
1 × 103 cells per well and incubated for 12 h. The cells were then treated with the indicated
concentrations of compound 1, and cultured for 10 days. The cells were washed three
times using PBS and fixed using 95% methanol for 30 min. After washing three times with
distilled water, the cells were stained using 0.2% crystal violet dye for 20 min and rinsed
with distilled water to wash away the excess dye. The visible colonies were compared with
the control samples and photographed using a standard camera under natural light.

3.4.4. Flow Cytometry

Annexin V/PI assay was used to determine the apoptotic and necrotic cells. The A549
and MCF-7 cells were seeded on 6-well microplates at a density of 106 cells/mL respectively.
After 24 h incubation, the cells were treated with following concentrations of 0, 5, and
10 µM for compound 1. After 24 h, they were washed and re-suspended in PBS solution
(500 µL). Then, Annexin V-FITC (5 µL) and PI staining solution (5 µL) were introduced
to the mixture, and the incubation process was followed under the dark condition for
5 min at 25 ◦C. Finally, flow cytometer analysis (Beckman Coulter®, Miami, FL, USA) was
performed using an AnnexinV-FITC Apoptosis Detection Kit (Strong Biotech Corporation,
Taipei, Taiwan) and Flowjo version 7.6.1. Software.
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3.4.5. Western Blot

Western blot analysis was performed according to the method previously reported [25,26].
Briefly, A549 and MCF-7 (1 × 105 cells) were seeded into 6-wells plate and grown until 85–90%
confluent. Then different concentrations (1.25, 2.5, 5, and 10 µM) of compound 1 were added.
Cells were collected and lysed by radioimmunoprecipitation assay (RIPA) buffer. Lysates
of total protein were separated by 12.5% sodium dodecyl sulfate-polyacrylamide gels and
transferred to polyvinylidene difluoride (PVDF) membranes. After blocking, the membranes
were incubated with anti-Bax, anti-Bcl-2 (Cell Signaling Inc., Danvers, MA, USA), anti-caspase-3,
and anti-β-actin (GeneTex Inc., Irvine, CA, USA) primary antibodies at 4 ◦C overnight. Then
each membrane was washed with Tris-buffered saline containing 0.1% Tween 20 (TBST) and
incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies at room
temperature for 1 h while shaking. Finally, each membrane was developed using enhanced
chemiluminescence (ECL) detection kit, and the images were visualized by ImageQuant
LAS 4000 Mini biomolecular imager (GE Healthcare, Woburn, MA, USA). Band densities
were quantified using ImageJ software (NIH, Bethesda, MD, USA).

3.4.6. Statistical Analysis

Results were expressed as mean ± SEM, and comparisons were made applying
Student’s t-test. A probability of 0.05 or less was deemed significant. The software Microsoft
Excel 2016 was used for the statistical analysis.

4. Conclusions

Five new (including two with new carbon skeleton) and eleven known compounds
have been isolated and identified from the aerial part of E. fortunei. Among these isolated
compounds, compound 1 markedly induces apoptosis of A549 and MCF-7 cells through
mitochondrial- and caspase-3-dependent pathways. The compound 1 belongs to hydropho-
bic molecule, so it can cross the cell membrane by passive diffusion, a nonselective process.
During passive diffusion, compound 1 simply dissolves in the phospholipid bilayer, dif-
fuses across it, and then dissolves in the aqueous solution at the other side of the membrane.
During this process, no membrane proteins are involved and the direction of transport is
determined simply by the relative concentrations of the molecule inside and outside of the
cell. This suggests that eupatodibenzofuran A (1) is worth further investigation and may
be expectantly developed as a candidate for the treatment or prevention of non-small-cell
lung cancer and breast cancer.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/ijms22147448/s1.
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