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Abstract: Supramolecular hydrogels are 3D, elastic, water-swelled materials that are held together
by reversible, non-covalent interactions, such as hydrogen bonds, hydrophobic, ionic, host–guest
interactions, and metal–ligand coordination. These interactions determine the hydrogels’ unique
properties: mechanical strength; stretchability; injectability; ability to self-heal; shear-thinning; and
sensitivity to stimuli, e.g., pH, temperature, the presence of ions, and other chemical substances.
For this reason, supramolecular hydrogels have attracted considerable attention as carriers for
active substance delivery systems. In this paper, we focused on the various types of non-covalent
interactions. The hydrogen bonds, hydrophobic, ionic, coordination, and host–guest interactions
between hydrogel components have been described. We also provided an overview of the recent
studies on supramolecular hydrogel applications, such as cancer therapy, anti-inflammatory gels,
antimicrobial activity, controlled gene drug delivery, and tissue engineering.

Keywords: supramolecular hydrogels; non-covalent interactions; drug delivery; controlled release

1. Introduction

Hydrogels are a wide group of amazing materials that can increase in size due to
their ability to absorb a large volume of water or other fluids, while maintaining integrity.
Their mechanical and swelling properties may often change depending on environmental
factors. These properties make hydrogels willingly used in various fields, e.g., food
processing, agriculture, adhesives, personal care products, and, most of all, the biomedical
field (from drug delivery systems and wound healing, to cell immobilization and tissue
engineering [1,2]). The unique physical properties of hydrogels make them very useful
as carriers of drugs and biologically active substances. High water content and flexibility
make hydrogels similar to biological tissues. They are biocompatible and absorb proteins
from body fluids to a minimal degree. Their porosity can be easily regulated by the
cross-linking degree, and molecules of different sizes may be loaded into the hydrogel
structure. The active substances released from hydrogel may also be modified by diffusion
and swelling control, as well as by chemical processes, such as hydrolytic or enzymatic
cleavage of the hydrogel network. A special advantage of the hydrogels are their ability to
respond to various stimuli, such as pH or temperature changes, magnetic/electric field,
light, and the presence of ions or other chemical molecules [3–7].

Generally, hydrogels are classified into two types: chemical and physical hydrogels.
The first group is formed by the permanent covalent cross-linking of hydrophilic, natural or
synthetic, polymers. Such hydrogels are relatively stable and resistant to degradation, but
also show low transparency and often are brittle. When their covalent cross-links are broken,
the 3D structure is irreversibly destroyed. This type of hydrogel does not possess a self-
healing ability. Incorporation of drugs into chemical hydrogels may be realized by sorption
into the previously prepared material. This process is time-consuming, and loading content
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is limited. Drugs may be also loaded before hydrogel cross-linking. However, the cross-
linking reaction may cause drugs’ permanent conjugation to the polymer matrix, and the
hydrogel may become non-biodegradable due to its composition modification. Chemical
structure and pharmacokinetics of drugs can be affected too [8,9].

The hydrogels of the second group, also called supramolecular hydrogels, are formed
via reversible, non-covalent interactions between macromolecules and low-molecular-
weight gelators too [3,8]. Generally, the formation of this kind of hydrogel occurs in
two steps: self-assembly and cross-linking. The structure is stabilized by the creation of,
for example, hydrogen bonds, hydrophobic, electrostatic, coordination, and host–guest
interactions [8]. The gel formation process can be initiated by a variety of physical (e.g.,
temperature, ultrasound, light, magnetic field) and chemical factors (e.g., pH changes), as
well as enzymatic reactions [10]. Supramolecular hydrogels, the same as chemical ones,
show moderate mechanical properties. Their great advantage is their ability to self-repair
damage and return to their original properties (self-healing properties) as a result of the
creation of reversible non-covalent interactions. Usually, they are biocompatible and easily
degradable. Moreover, the supramolecular hydrogels show a reversible sol–gel transition
as a bio-related stimuli response. This makes them useful to prepare, e.g., injectable
hydrogels. These properties provide the opportunity for the precise delivery of active
substances [1,2,7,8,11–13].

Our review consists of two main parts. In the beginning, the most important types of
interactions occurring in supramolecular hydrogels are discussed. The hydrogen bonds,
hydrophobic interactions, ionic interactions, metal–ligand coordination, host–guest inter-
actions, and systems where these interactions play a key role are described. Then, we
present the latest developments on the use of supramolecular gels in cancer therapy and of
anti-inflammatory and antimicrobial hydrogels for controlled gene drug delivery and ap-
plied in tissue engineering. Finally, we highlight the future challenges that await scientists
working in this field.

2. Interactions in Supramolecular Hydrogels
2.1. Hydrogen Bonds

Hydrogen bonds are short-range interactions between hydrogen atoms of various
groups, e.g., hydroxide (-OH), amine (-NH2), amide (-CONH-), and electronegative atoms
having a lone electron pair (e.g., N, O, F). Although H-bonds are much weaker than covalent
or ionic bonds, their collective nature promotes the self-assembling of the polymeric
structures. They are critical for many biological and chemical systems and are also an
important driving force to construct supramolecular hydrogels [1,8,9]. The strength of
the hydrogen bonds is affected by the nature of constituent atoms, the bond geometry,
and the environment. Therefore, the appropriate selection of gelators, consisting of a
hydrogel, with various numbers and types of H-bond-forming groups, influences hydrogel
mechanical properties and its interactions with biomolecules. The linearity of interactions,
observed, for example, in DNA double-strand and protein β-sheet structures (Figure 1),
gives stronger hydrogen bonds and also improves the gel strength [1,14]. Although H-
bonds are stable in the presence of ions, pH changes may affect the intensity and strength
of the bonds. The formation of competitive hydrogen bonds between gelator and water
molecules may also cause deterioration of mechanical properties and even dissolving of the
gel [8,9,11,14,15]. On the other hand, the ease of breaking and reformation of the hydrogen
bonds gives the hydrogels self-healing and shear-thinning properties [1,16].
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bonds are mainly formed between hydrogen and oxygen of the backbone amide groups. 
Both the long peptide chains and shorter, but more flexible, oligopeptides exhibit the abil-
ity to self-assemble in proper conditions. However, the mechanical properties of such gels 
are usually not satisfactory; thus, the proteins should be additionally chemically cross-
linked or mixed with synthetic polymers. The ionization of amino acids depends on acid-
ity/alkalinity of the environment, which is why the proteins are the most commonly used 
for pH-sensitive hydrogels’ preparation [10,11,19–23]. Another group of biopolymers that 
may create hydrogels stabilized by hydrogen bonds is polysaccharides (e.g., hyaluronic 
acid (HA), chitosan (CS), starch, agar) and their derivatives (e.g., carboxymethylcellulose, 
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the formation of H-bonds and, additionally, through hydrophobic interactions. The PVA 
gels may be obtained by, for example, glycerol addition or a freeze-thawing process 
[16,27–29]. Hydrogels made of poly(vinyl pyrrolidone) (PVP) [12,30,31], poly(urethane), 
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Figure 1. Scheme of hydrogen bonds between: (a) DNA base pairs, (b) proteins β-sheet structure.

Various compounds are used to create hydrogels stabilized by hydrogen bonds. Many
biopolymers belonging to the groups of proteins, polysaccharides, and nucleic acids, as
well as synthetic polymers and small-molecular compounds, are used in this field. For
example, the DNA strands can create strong hydrogels due to the formation of the multiple
hydrogen bonds between base pairs. The molecules may be used as the backbone or
cross-linkers for other molecules [1,8,10,17,18]. Other excellent, natural molecules for the
preparation of H-bonds-based hydrogels are peptides and proteins. The hydrogen bonds
are mainly formed between hydrogen and oxygen of the backbone amide groups. Both the
long peptide chains and shorter, but more flexible, oligopeptides exhibit the ability to self-
assemble in proper conditions. However, the mechanical properties of such gels are usually
not satisfactory; thus, the proteins should be additionally chemically cross-linked or mixed
with synthetic polymers. The ionization of amino acids depends on acidity/alkalinity of
the environment, which is why the proteins are the most commonly used for pH-sensitive
hydrogels’ preparation [10,11,19–23]. Another group of biopolymers that may create hydro-
gels stabilized by hydrogen bonds is polysaccharides (e.g., hyaluronic acid (HA), chitosan
(CS), starch, agar) and their derivatives (e.g., carboxymethylcellulose, hydroxypropyl chi-
tosan). The polysaccharides’ gel preparation often requires high temperature or a specially
selected set of solvents (e.g., polar solvents, ionic liquids, and alkali/urea solutions) [24–26].
Hydrophilic synthetic polymers have also been widely investigated. Poly(vinyl alcohol)
(PVA) can create self-healing, pH-sensitive hydrogels due to the formation of H-bonds
and, additionally, through hydrophobic interactions. The PVA gels may be obtained by,
for example, glycerol addition or a freeze-thawing process [16,27–29]. Hydrogels made of
poly(vinyl pyrrolidone) (PVP) [12,30,31], poly(urethane), and poly(acrylamide) (PAAm)
have also been extensively studied [1,9,32,33]. Small molecular multiple hydrogen bonding
units, such as ureidopyrimidinone (UPy), benzene-1,3,5-tricarboxamide, and ureas, have
also been investigated. They may be donors and acceptors of hydrogen bonds and can
mediate in the creation of H-bonds between macromolecules [1,8,29].
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2.2. Hydrophobic Interactions

Hydrophobic interactions are the second type of interaction, besides hydrogen bonds,
which are crucial in the formation of biological structures, e.g., the tertiary structure of
proteins. They can also be employed for the preparation of supramolecular hydrogels.
Hydrophobic interactions are formed between the nonpolar moieties to minimize their
contact with water. The interactions are relatively stronger than hydrogen bonds and Van
der Waals interactions. The molecules, which form gels through hydrophobic interactions,
usually possess hydrophobic and hydrophilic parts. The amphiphilic chains fold in water
in such a way that the hydrophobic domains are in the core and surrounded by polar
groups exposed to an aqueous environment. When the minimum gelling concentration
is reached, the molecules aggregate, combine into micelles, and the gel is formed. The
gel strength depends on the number, size, and geometry of hydrophobic domains. The
properties can also be modified by surfactant or salt addition [34,35]. The ease of recreating
hydrophobic interactions makes these gels exhibit excellent self-healing properties. The
damaged hydrogel usually can be repaired at room temperature, regaining its mechanical
properties [1,11,26,35–38]. The hydrogels which are formed by hydrophobic interactions
often exhibit interesting negatively thermo-responsive behavior (the temperature increase
causes the gelation process). Generally speaking, below the phase-transition temperature
(Lower Critical Solution Temperature, LCST), the hydrophilic groups of the macromolecules
are solvated by water molecules and bond with them by hydrogen bonds. Heating up
the solution, the water molecules’ mobility increases and destroys the solvation sphere.
Hydrophobic interactions become dominant. The macromolecules change conformation,
which leads to aggregation, and as a result, the gel is formed [11,35,39,40].

The hydrogels driven by hydrophobic interactions are composed of amphiphilic
molecules. The balance between hydrophobic and hydrophilic moieties is crucial for hydro-
gel properties. For this purpose, hydrophobic units (e.g., aliphatic chains, aromatic rings,
fatty acids [11,37]) are incorporated into hydrophilic polymer chains [38]. The hydrophobic
moieties may be grafted onto the hydrophilic polymer chains, or micellar polymeriza-
tion of monomers may be employed. During the polymerization, the hydrophobic unit
is solubilized with a surfactant in aqueous solution and then copolymerized with a hy-
drophilic monomer, mostly by a free-radical mechanism [34]. Probably the most commonly
investigated monomer for the fabrication of hydrogels based on hydrophobic interac-
tion is N-isopropylacrylamide. The poly(N-isopropylacrylamide) (PNIPAAm) contains
hydrophilic amide groups and hydrophobic isopropyl chains (Figure 2). Its low critical
solution temperature (LCST) is about 32 ◦C, close to body temperature. The PNIPAAm
thermoresponsive properties can be easily modified through copolymerization with more
hydrophobic or hydrophilic units, e.g., N-alkyl-, polycaprolactone (PCL), poly (acrylic
acid) (PAA), poly(ethylene glycol) (PEG), proteins, and polysaccharides [1,7,11,39–41].
Triblock copolymers, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)
(PEO-PPO-PEO) (Figure 2), known also as Pluronics or a Poloxamers, form micelles with
the temperature increase. The hydrophobic PPO chains are wrapped inside an inner
core, while the hydrophilic PEO segments are exposed outside the micelles to an aqueous
medium. Moreover, increasing the copolymer concentration above the critical micellar con-
centration causes further interactions between micelles and gel stiffening [39]. Furthermore,
the copolymerization of PEG with polyesters, e.g., poly(lactic acid) (PLA) and poly(lactic
acid-co-glycolic acid) (PLGA), or hydrophobic protein domains can lead to the formation
of thermosensitive hydrogels due to hydrophobic interactions [1,35,36,39]. The multi-block
copolymer of PEG and dimer of fatty acid (DFA) was also investigated. In water, the
hydrophobic DFA self-aggregate to micellar domains, which work as cross-linking bonds.
The PEG–DFA hydrogel was also used as a matrix for carbon nanotubes, and the result was
a shear-thinning nanocomposite hydrogel with increased electrical conductivity [37,42].
The polysaccharide hydrogels, cross-linked via hydrophobic interactions, were formed on
the base of carboxymethylcellulose (CMC) and hydrophobic moieties, such as dioctylamine
or dodecylamine. The grafting of methylcellulose with N-isopropylacrylamide in various
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ratios gives hydrogels with tunable thermosensitive properties. It has also been observed
that chitosan in combination with β-glycerophosphate gains negatively thermo-responsive
properties [34,39].
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Figure 2. Molecular structure of poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and
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2.3. Ionic Interactions

Ionic interactions are based on the electrostatic attraction of oppositely charged
ions/groups. An ion can also interact with a dipole (polar molecule/group) or induce po-
larization of a non-polar molecule (induced dipole). The interaction between cationic (e.g.,
protonated amines) and anionic (e.g., carboxylates, sulfates) functionalities of polymers,
as well as charged functionalities of polymers and oppositely charged ions, are used to
obtain hydrogels. The ionic hydrogel formation and its properties depend on polymer
concentration, ionization degree of the polymer cationic and anionic groups, pH, ionic
strength, temperature, and time of interaction. The gels are easily obtained, often by a
one-step mixing procedure, although controlling this process is often challenging. Because
of the presence of charged groups, the ionically bonded hydrogels are highly sensitive to
pH changes and salt concentration in swelling solution, which makes them attractive for
drug and active-substance delivery [1,26,43,44].

Sodium alginate (SA) is probably the most widely tested biopolymer cross-linked by
interactions with ions. These polyanionic molecules can form hydrogels by an interaction
with divalent (e.g., Ca2+, Sr2+, Ba2+) and trivalent metal cations (e.g., Fe3+, Al3+). Calcium
ions are the most often used to prepare alginate-based hydrogels for medical applications
(Figure 3). The source of Ca2+ (e.g., CaCl2, CaSO4, CaCO3) influences the gel strength
and homogeneity. Interestingly, magnesium ions do not induce electrostatic interaction
with alginates. Due to the high strength of the interactions, these hydrogels are relatively
durable and stable, but they do not exhibit self-healing properties. Alginate can also
electrostatically interact with polyelectrolytes such as chitosan [1,36,43,45]. Chitosan, as a
positively charged polymer, willingly interacts with anionic molecules (phosphate salts,
carboxylate salts) and creates polyelectrolyte complexes with polysaccharides (e.g., pectin,
dextran, carboxymethyl cellulose, hyaluronic acid) and proteins (e.g., gelatin), as well as
synthetic polymers, e.g., poly(acrylic acid) [36,43,46]. The ionically bonded hydrogels pre-
pared from ampholytic polymers, e.g., proteins, poly(acrylamide), and poly(methacrylate)
derivatives, have also been investigated [43,47–49]. The ionic interactions are present in
many different systems and very often stabilize hydrogel structure, cooperating with other
types of interactions.
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2.4. Metal–Ligand Coordination

Hydrogels based on metal–ligand coordination are widely studied because of their
interesting tunable properties. In a coordination bond, both electrons originate from the
same atom. Moreover, more than one donor group (ligand) may be involved in bond
formation with the central metal ion. The strength of the coordination bond varies over a
wide range and can be comparable or even higher than the strength of the covalent bond,
but at the same time, the bond remains more dynamic and reversible. This makes the metal–
ligand-based materials exhibit toughness, good adhesion, as well as shear-thinning and
self-healing ability. Due to the various organic ligands conjugated to polymer backbones
or copolymerized with other monomers, the linear, branched, dendritic, or star-shaped
complexes can be formed [26,36,50–52].

The ferric ions and catechol ligands are willingly employed for supramolecular, ad-
hesive hydrogels preparation (Figure 4). This complex was found in mussels’ adhesive
proteins that provide good adherence to different wet surfaces. The catechol also in-
teracts with boron ions, forming pH-sensitive hydrogels. The catechol ligand has been
incorporated into, for example, PEG, PAA, PPO-PEO copolymers, PNIPAAm, modified
SA, and chitosan. The catechol-containing hydrogels possess self-healing ability and
are highly elastic [48–50,53,54]. Histidine is another useful ligand present in peptide se-
quences or conjugated with polymers, e.g., PEG. Usually histidine forms complexes with
zinc ions. Depending on the amount of histidine, for example, in the sequence of the
polypeptide, toughness of the hydrogel can be improved while maintaining flexibility and
self-healing [50–52,55]. Bisphosphonates (BPs) are a family of phosphoroorganic molecules
that exhibit a high affinity for calcium ions. For this reason, they are useful in the prepa-
ration of bone-targeting drug carriers. They can also chelate different metal ions, such as
Cu2+, Zn2+, and Mg2+. BPs can be grafted to biocompatible polymers such as PEG and
hyaluronic acid [50,56]. EDTA, ethylenediaminetetraacetic acid, is a well-known ligand
interacting with divalent ions (Ca2+, Mg2+, Fe2+). Its ability to coordinate metal ions is due
to the presence of four carboxyl and two amine groups. It has been conjugated to polymers
such as PVA. It was also an inspiration for developing hydrogels based on Fe3+ ions and
poly(acrylic acid) or its copolymers [50,52,53,57].
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2.5. Host–Guest Interactions

Another type of interaction used for the fabrication of supramolecular hydrogels is
the host–guest interaction. The inclusion complex between the macrocyclic, containing a
cavity, host molecule and the suitable guest molecule is formed. The clue of this interaction
is the complementary size and shape of the host cavity and guest molecule. Both moieties
may be engaged via non-covalent interactions, such as hydrogen bonds, Van der Waals,
hydrophobic, electrostatic interactions, or coordination bonds. In this way, cavitands
may be paired with various guests, including drugs, biomolecules, and polymers, which
are both inert and stimuli-responsive. It is relatively easy to incorporate the host–guest
moieties into the hydrogel structure, and the stoichiometry of this interaction is precisely
defined (one host cavity can hold one guest molecule). This provides greater predictability
and reproducibility of hydrogel properties. The reversibility of the host–guest interaction
gives the hydrogels self-healing and shear-thinning properties [11,36,58–60].

The group of hosts cavitands includes a variety of naturally-derived and synthetic
macrocycles and their derivatives. Cyclodextrins are the most important representative
of the first group. These are water-soluble, low-toxicity cyclic oligomers, most com-
monly formed of 6, 7, or 8 α,D-glucopyranose units (α-, β- and γ-CD, respectively) in
the shape of a truncated cone. They have a hydrophilic external and relatively hydropho-
bic inner cavity. The small-cavity, α-CD, incorporates mainly linear guest molecules,
while β-CD interacts with adamantane, azobenzene, ferrocene, cholesterol, and PEG
(Figure 5) [13,36,58–64]. The CD units can be incorporated into cyclodextrin-polymers
(e.g., polyrotaxanes), as well as being grafted to other polymer chains, e.g., alginate, HA,
PEG, and PAA. Then, the guest molecules are attached to another polymer chain, and
this promotes gel formation [11,13,59–63]. Among the synthetic macrocyclic cavitands are
cucurbiturils, crown ethers, calixarenes, and pillararenes [58]. The hydrogels based on
cucurbit[n]urils (CB) are the most studied. CB contains 6, 7, or 8 glycoluril monomers
linked by methylene bridges into a pumpkin-shaped structure. The hydrophobic cavity is
bordered by carbonyl groups. For this reason, CB strongly interacts with various guest-
molecules, e.g., amino acids, peptides, ammonium groups, or aliphatic amines. The CB
can be easily bonded to polysaccharides, e.g., alginate, HA, carboxymethyl cellulose, and
hydroxyethyl cellulose. The formation of micelle-like aggregates of sodium alginate in a
water solution after CB addition has also been observed [36,58,65].
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3. Supramolecular Hydrogels as Carriers for Biologically Active Substances

Hydrogels have been extensively investigated for their application as carriers for
active substance delivery systems [5,66–68]. These materials have attracted considerable
attention, particularly in solutions proposed for the controlled release of drugs, as bioadhe-
sive implements, or as carriers of therapeutic agents to the target sites. Hydrogel-based
materials with incorporated active substances can be intended for oral, epidermal, and
subcutaneous application, as well as being used to deliver drugs by rectal and ocular routes.
The most investigated entrapment of drugs and other therapeutics are polymeric hydro-
gels based on covalent linkages. Numerous such hydrogels containing drug complexes
have successfully been developed for skin diseases [69,70], wound healing [71,72], and
inflammatory alleviation [73], among many others.
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Over the past years, rapid progress in the field of supramolecular hydrogels, with
a vast array of tunable properties as drug carriers, has been observed [74–76]. As de-
scribed above, due to the interesting physicochemical characteristics and peculiar functions,
supramolecular hydrogels are being widely explored as carriers for different biologically
active substances. Their ability to undergo reversible swelling, gel–sol transition under
the influence of changes in the relevant environmental stimuli, and their injectability are
highly valued. Site-specific controlled release of drugs is one of the most important issues
in current therapeutics. The use of stimuli-responsive hydrogels as drug delivery systems
enables the programmed delivery of a pharmaceutically active substance. In response to
specific stimuli, such as temperature and pH, these hydrogels can control the delivery
of loaded therapeutic agents into a specific place in the body (Figure 6). The increasing
popularity of supramolecular gels and their advantage over fully covalently crosslinked
hydrogels results primarily from the possibility to manage the appropriate reversible
non-covalent interactions in the molecular structure of the gelators [1,11,77].
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The supramolecular hydrogels have found applications in drug delivery, antimicrobial
therapy, gene transfection, and tissue engineering. Physical gels are important, especially in
controlled-release applications, and their use in this field has experienced a strong growth
in recent years.

3.1. Supramolecular Hydrogels as Drug Delivery Systems
3.1.1. Supramolecular Hydrogels for Cancer Drug Delivery

Supramolecular hydrogels are very demanded in medicine. Various types of supramolec-
ular polymeric systems have been proven to treat different types of cancer [78–80]. Cancer is
one of the world’s most extensive health problems, because cancer incidence and mortality
are growing every day [81,82]. Traditional intravenous chemotherapy, one of the most com-
mon types of cancer treatment, can have adverse effects, such as myelosuppression, liver
or kidney dysfunction, and neurotoxicity [83]. To conquer the limitations associated with
conventional chemotherapy, injectable hydrogels and local chemotherapy that efficiently
avoids side effects, due to releasing drugs locally at the tumor site, can be promising alterna-
tives for cancer treatment [84]. There are many cancer drugs and cancer drug combinations
(Figure 7). Chemotherapeutics consist of a large group of drugs, including doxorubicin,
docetaxel, camptothecin, 5-fluorouracil, paclitaxel, gemcitabine [85], bortezomib [86], and
anastrozole [87]. Moreover, several natural compounds, such as magnolol [88,89] and
curcumin [90,91], have proven their potential against cancer in preclinical studies.
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Table 2. Recent research on stimuli-sensitive supramolecular hydrogel systems in cancer treatment.

Gelation Trigger Hydrogel Therapeutic
Agent/Drug

Cell Line
(In Vitro)

Cancer
(In Vivo) References

Temperature HA/PF127 Doxorubicin/
Docetaxel CT-26 Bowel cancer [92]

Temperature GO-FA/HA-CS-g-PNIPAAm Doxorubicin MCF-7 Breast cancer [93]

Temperature PEG/α-CD Camptothecin/
5-fluorouracil - - [94]

Temperature PLGA/CS Paclitaxel M234-p Mammary
tumor [95]

pH α-CD/β-CD/PF127 Doxorubicin SKOV-3 - [96]

pH CS-DA/OP Doxorubicin HCT116 - [97]

pH CS/PNIPAAm-co-IA Doxorubicin MCF-7 Breast cancer [98]

pH GC-PF127 H22 Breast cancer [99]

Temperature-pH PNIPAAm Anastrozole MCF-7 - [100]

Light Laponite/α-CD Doxorubicin
Near infrared HepG2 Liver cancer [101]

Light HA/GA/iron ions Near infrared KB, 4T1/A375 Breast cancer [102]

Light GO/PEG/α-CD
Camptothecin/
5-fluorouracil
Near infrared

A549 Ascites
sarcoma [103]

Magnetic field Iron oxide magnetic
nanoparticles/CS/DF-PEG-DF

Doxorubicin/
Docetaxel MDA-MB-231 Breast cancer [104]

Magnetic field PEGylated iron oxide
nanoparticles/α-CD

Paclitaxel/
Doxorubicin - Breast cancer [105]

Temperature-
magnetic field

Magnetic iron oxide
nanoparticles/PPZ Magnetic heat U87-MG Glioblastoma [106]

Abbreviations: HA: hyaluronic acid; PF127: pluronic F127; GO: graphene oxide; FA: folic acid; CS: chitosan; PNIPAAm: poly(N-
isopropylacrylamide); PEG: poly(ethylene glycol); α-CD: α-cyclodextrin; PLGA: poly(lactide-co-glycolide acid); β-CD: β-cyclodextrin;
CS-DA: chitosan-grafted-dihydrocaffeic acid; OP: oxidized pullulan; IA: itaconic acid; GC: glycol chitozan; GA: gallic acid; DF-PEG-DF:
telechelic difunctional poly(ethylene glycol); PPZ: poly(organophosphazene).

Various drug delivery systems based on environmentally sensitive nanocarriers that
can be injected instead of surgically implanted were developed as a promising choice for
local chemotherapy and cancer management [107,108]. Smart hydrogels exhibit a very
effective drug release with long-term local retention. These carriers can also possess high
drug loading. Moreover, drug toxicity is localized in the tumor site [109].

Peptide-based supramolecular hydrogels have been satisfactorily designed as promis-
ing anticancer drug carriers. Self-assembling biocompatible peptide hydrogels are char-
acterized by very effective drug loading, ensuring their high content as well as sustained
release profile. Truong et al. prepared a hydrogel made of phenylalanine–phenylalanine
dipeptide [FF, (F: phenylalanine)] bearing the Fmoc (9-fluorenylmethyloxycarbonyl) group,
which is one of the most typical protecting groups. Hydrogel (Fmoc-FF) had entrapped
anti-tumor medicaments paclitaxel and 5-fluorouracil [110]. The cytotoxicity of obtained
samples was tested on three different cell lines: HeLa, Caco2, and HGF-1 cells. This study
proved that in vitro biological activity of self-assembled systems, such as Fmoc-FF gels,
in which the gel stability is the main criterium influencing their potential applications
as drug carriers, needs to be estimated with wariness to avoid the misinterpretation as
false-positive results. A tripeptide-based thixotropic hydrogel, Boc-FFF-COOH (BOC:
tert-butyloxycarbonyl protecting group), with a permuting L and D configuration for
releasing anticancer doxorubicin at a physiological pH and temperature, was designed
and prepared by Basu et al. [111]. Doxorubicin was successfully encapsulated in hydro-
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gels made of compounds LLL, DLL, DDD, and LDD. Generally, the incorporation and
location of D-residues determines the properties of obtained supramolecular hydrogels,
including their stiffness and drug-release capacity, which enables the optimization for de-
signing future drug delivery carriers. Numerous peptide-based supramolecular hydrogels
have been successfully designed by using a peptide with higher length. Among others,
the supramolecular naphthalene-GFFYEE-catechol hydrogel contains bortezomib [112],
an H2O2-responsive hexapeptide-based hydrogelator bearing the thiazolidinone group
with gemcitabine [113], and supramolecular peptide amphiphile nanofiber gels (Lauryl-
VVAGEEE-OH and Lauryl-VVAGKKK-Am) with doxorubicin, which were encapsulated
within the gels [114].

A novel nanomaterial based on short peptide and curcumin as a therapeutic agent,
with promising and potential therapeutic options for liver tumor-targeting therapy, was de-
signed and synthesized by Chen et al. [115]. This research group developed a glycyrrhetinic
acid-modified curcumin supramolecular hydrogel. The obtained nanocarrier was an ideal
candidate for hepatocellular carcinoma therapy due to enhanced cellular uptake and more
efficient inhibition capacity to HepG2 cells compared to a control compound.

3.1.2. Supramolecular Anti-Inflammatory Hydrogels

Supramolecular gels have been studied not only for applications in cancer therapy.
Limón et al. prepared supramolecular gels from a bis-imidazolium-based amphiphilic
molecule in ethanol–water mixtures, in which anionic anti-inflammatory drugs, ibuprofen
sodium salt, and indomethacin, were entrapped [116]. Significant differences could be
seen in the hydrogel structure depending on the incorporated drug; hydrogel alone is
formed, comprising entangled fibers of ~100 nm in width, while after the incorporation of
ibuprofen, thick and stick fibers with diameters in the range of 300–1500 nm were observed.
Hydrogels containing indomethacin had small groups of much shorter fibers that were
stick longitudinally. However, the excellent stability of the hydrogels was comparable,
regardless of the used drug. Drug release and skin penetration profiles suggest that
obtained materials, especially indomethacin-incorporated gel, can offer applications for
delivering poorly water-soluble drugs for skin diseases therapies, including acute and
chronic inflammation.

Curcumin has received worldwide attention, mainly due to its antioxidant and anti-
inflammatory properties [117]. Kumar Vemula et al. developed a model system for the
controlled delivery of anti-inflammatory curcumin by an enzyme-triggered drug release
mechanism during the degradation of encapsulated hydrogels [118]. The curcumin was
encapsulated in the self-assembled hydrogel, in which the gel fibers were stabilized by intra-
and intermolecular hydrogen bonding, π-π stacking, and Van der Waals interactions. By
manipulating the concentration of enzyme or temperature, the enzyme-triggered hydrogel
degradation was performed to control the release of the entrapped drug into the solution
at bodily temperature. Its novel delivery model for hydrophobic drugs could be utilized in
pharmaceutical research for developing controlled drug-delivery systems from sustainable
resources. Zhou et al. prepared a curcumin-loaded supramolecular hydrogel, composed
of α-CD and metoxy poly(ethylene glycol)-block-poly(ε-caprolactone) (MPEG-PCL) as
carrier material for inflammatory skin treatment [119]. In vivo results confirmed that the
curcumin-loaded supramolecular hydrogel displayed better anti-inflammatory effects than
dexamethasone ointments against croton oil-induced ear edema.

3.2. Supramolecular Hydrogels for Antimicrobial Properties

The World Health Organization has rated the antimicrobial resistance crisis as a prior-
ity health issue, because the treatment of many diseases caused by microorganisms, such
as bacteria, fungi, and viruses, after developing effective drugs has become problematic
again. The rapid emergence of drug-resistant microbes has taken place worldwide due to
the misuse of antibiotics in humans and animals, including the overuse of these drugs [120].
Nowadays, the consequences of antimicrobial resistance are alarming [121]. Moreover, due
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to the dynamic situation, creating new antibiotics is not profitable for the pharmaceutical
industry. Unfortunately, after many years of success in controlling many diseases, bac-
terial infections, such as pneumonia, tuberculosis, and gonorrhea, have become a threat.
The traditional medicines that effectively fought against the development of pathogens
responsible for these diseases have become ineffective [122,123]. Current challenges in
treating human immunodeficiency virus (HIV) are caused by the rising use of antiretroviral
treatment and, consequently, high variability of HIV. Drug-resistant mutations contribute
to antiretroviral treatment failure [124]. Developing antimicrobial agents with novel mech-
anisms of action has become an urgent need to solve the global problem of antibiotic
resistance. The design of supramolecular systems for antimicrobial therapy is receiving
increasing attention from scientists.

3.2.1. Supramolecular Hydrogels with Antibacterial Activity

Tuberculosis affecting the lungs is another difficult-to-treat disease that scientists work-
ing on synthesizing new drug carriers using supramolecular chemistry want to address.
More et al. proposed a graphene-based hydrogel with entrapped para-aminosalicylic acid
and pH-sensitive properties, which could be potentially used to manage Mycobacterium
tuberculosis [125]. The sonification method was used to prepare a supramolecular self-
assembly hydrogel. Hydrogen-bonding interactions between surface groups of graphene
oxide and functional groups of para-aminosalicylic acid occur during self-assembly gel
formation. The obtained hydrogel was biocompatible and, most importantly, strongly indi-
cated in vitro cytotoxicity against MCF-7 cells, as well as antimicrobial properties against
Staphylococcus aureus and Escherichia coli.

Many short peptides gelators that demonstrate antibacterial properties have the ability
to self-assemble into the form of supramolecular hydrogels [1,122,126]. Moreover, peptide-
based antibacterial hydrogels are characterized by good biocompatibility. It is also possible
to modify their structure and other properties, especially antibacterial efficiency. Wan
et al. obtained a series of cationic peptide amphiphiles (PA) that could self-assemble into
hydrogels [127]. The obtained hydrogels contained lysine, which exhibits pH-responsive
action and antibacterial activity, as well as sodium alginate (SA) as a gel strengthening
agent (Figure 8).
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Several reports on the synthesis and properties of the Fmoc-based supramolecular
hydrogels with antibacterial properties have recently appeared. The first scientific report
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about the formation of hydrogels with Fmoc-protected amino acids and dipeptides was
published in 1995 [128]. Since then, supramolecular hydrogels, prepared from peptides
or amino acids attached to adjacent Fmoc, are of interest to many research groups [129].
A hybrid supramolecular hydrogel based on Fmoc-FF and fullerene (C60 pyrrolidine tris-
acid, C60-PTC) was designed by Zhang et al. [130]. Both components of the self-assembled
hydrogel exhibited synergistic effects due to many different non-covalent interactions
between them. An improvement in the mechanical properties of the hydrogel was observed,
which made this formulation suitable for injectable applications. The Fmoc-FF/C60-PTC
hydrogel proved to be effective during photodynamic antibacterial tests performed on
Staphylococcus aureus.

Xie et al. [131] reported amino acid-based hydrogels that were obtained by self-
assembly of Fmoc-tryptophan (Fmoc-W), Fmoc-methionine (Fmoc-M), and Fmoc-tyrosine
(Fmoc-Y). The obtained materials were tested for antibacterial activity. The results showed
that all hydrogels demonstrated antibacterial activity against Gram-positive bacteria, and
Fmoc-W hydrogel had the best efficiency (95.3% inhibition of S. aureus). In comparison,
Fmoc-Y hydrogel was the least effective (57.3%). However, their antibacterial activity
against Gram-negative bacteria was slight. In addition, significant differences in the nanos-
tructure of the prepared hydrogels were observed, which impacted the results obtained in
the anti-bacterial activity tests. In the case of Fmoc-M and Fmoc-Y, their nanofibers were
flexible. However, Fmoc-W had stiffer and more aligned nanofibers in the 3D network. As
a potential carrier for drug delivery applications, self-assembling Fmoc modified pheny-
lalanine (Fmoc-F) hydrogels have also been synthesized, and their antibacterial properties
have been characterized [129,132,133].

An interesting idea is incorporating inorganic particles in the form of nanohydroxyap-
atite (nHAp) into the hydrogel structure. Li et al. prepared Fmoc-F-based supramolecular
hydrogels containing nHAp [134]. Apart from the improvement of the mechanical parame-
ters of the hydrogel, no negative influence of the addition of inorganic nanoparticles to the
antibacterial properties of the hydrogel was observed. Furthermore, the release profile of
chlorogenic acid proved a satisfactory inhibition result of S. aureus.

3.2.2. Supramolecular Hydrogels for HIV Antiretroviral Therapy

Li et al. reported novel multifunctional enzyme-responsive supramolecular hydro-
gels for sustained release of anti-HIV drugs, representing a new approach and making
an important contribution in antiviral therapeutics [135]. This research group proposed
self-assembled, anti-inflammatory, and anti-HIV hydrogels containing anti-inflammatory
naproxen, as well as lamivudine (3TC) and zidovudine (AZT), as analog-reverse transcrip-
tase inhibitors against HIV. The phosphate group was also included in the hydrogelator
structure, which ensured hydrogelation at a definite physiological pH. Moreover, the phos-
phate group’s presence permitted the increase of the hydrogel’s viscoelasticity upon the
treatment of phosphatase. The solution suggested by Li et al. is the answer to challenges in
HIV prevention, because gels based on conventional polymers have not shown good effec-
tiveness in HIV therapy so far. HIV, the virus that causes AIDS (acquired immunodeficiency
syndrome), is still a major global health emergency.

3.3. Supramolecular Hydrogels for Controlled Gene Delivery

Numerous types of supramolecular systems, especially cationic supramolecular hy-
drogels, have been successfully designed and developed for gene delivery as potential
nonviral vectors for in vitro or in vivo gene expression [8]. These systems can condense and
transfer genetic material to a concrete location to gain a therapeutic effect. Controlled gene
transfer vectors target the tumor cells or tissue and play an important role in future cancer
therapy. This strategy has the advantage over conventional treatment for cancer, including
a high therapeutic dose without risking systemic adverse effects and being cost-effective in
the long run, because most gene therapies are single-time applications [136,137].
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Supramolecular hydrogels based on cyclodextrins have garnered a lot of attention as
systems for gene-delivery approaches (Table 3). CD-based polypseudorotaxane hydrogels
are characterized by interesting properties, including thixotropic, biocompatibility, and
easy modification. Therefore, they are suitable for use as injectable drug or gene deliv-
ery systems, whereas CD-based host–guest supramolecular hydrogels can potentially be
applied for stimuli-responsive drug/gene carriers [138,139].

Table 3. Cyclodextrin-based supramolecular hydrogels for gene therapy.

Hydrogel Vector Drug In Vitro In Vivo References

PEG-α-CD/CD PPRX pDNA - Colon-26 Male Balb/C mice [140]

PF68-PLL/α-CD pDNA - mouse fibroblast
cells 3T3 - [141]

MPEG-PCL-PDMAEMA/α-CD pDNA - COS-7 - [142]

MPEG-PLLD-Arg/α-CD pMMP-9 - HNE-1 Nude mice bearing
HNE-1 tumors [143]

MPEG-PCL-PEI-FA/α-CD pDNA-Nur77 Paclitaxel HEK293 H460 Male Balb/C nude
mice, tumor model [144]

Abbreviations: PEG: poly(ethylene glycol); α-CD: α-Cyclodextrin; CD: cyclodextrins; PPRX: polypseudorotaxanes; PF68: Pluronic F-68; PLL:
poly(L-lysine); MPEG: methoxy-poly(ethylene glycol); PCL: poly(ε-caprolactone); PDMAEMA: poly(2-(dimethylamino)ethyl methacrylate);
PLLD-Arg: arginine-functionalized poly(L-lysine) dendron; PEI: poly(ethylene imine); FA: folic acid; pDNA: plasmid DNA; Nur 77: Bcl-2
(B-cell lymphoma 2) conversion Nur77 gene; pMMP-9: MMP-9 shRNA plasmid (MMP—matrix metallopeptidase; shRNA: short-hairpin
RNA); HNE-1: human nasopharyngeal carcinoma.

Motoyama et al. demonstrated polypseudorotaxane systems (PPRXs) that were based
on a PEGylated α-cyclodextrin/polyamidoamine dendrimer conjugate with α- or γ-CD as
novel sustained-release carriers for pDNA in vitro and in vivo (PEG-α-CD/pDNA; PEG-
α-CDE/pDNA/α-CyD PPRX; PEG-α CDE/pDNA/γ-CyD PPRX) [140]. As the authors
noted, the molecular hydrogels obtained by them had many advantages, such as excellent
efficacy of encapsulation of pDNA or other nucleic acids, as well as the possibility to use
them for other pegylated carriers, such as microspheres and microcapsules.

A cationic block copolymer based on Pluronic F-68 and poly(L-lysine), which inter-
acts simultaneously with α-CD by the host–guest inclusion action, was synthesized and
characterized by Ma et al. [141]. The content of hydrogel components had a significant
impact on gelation time, mechanical strength, and release of the encapsulated plasmid
DNA. Therefore, the properties of the obtained supramolecular hydrogel could be relatively
easily modified. What is most important is that the plasmid DNA complexes released from
the hydrogel had a sustained gene transfection ability. An in vitro cytotoxicity assay on
mouse fibroblast cells, 3T3, confirmed their biocompatibility.

Cyclodextrin-based injectable supramolecular hydrogel systems, as sustained gene
delivery carriers, were formed by Li et al. [142]. MPEG-PCL-PDMAEMA copolymers
were prepared to condense pDNA, and the obtained hydrogels were suitable to release
the pDNA in the form of stable polyplexes and in a sustained manner for up to six days
(Figure 9).

Lin et al. prepared injectable hydrogels byα-CD and PEGylated arginine-functionalized
poly(L-lysine) dendron (MPEG-PLLD-Arg) through the host–guest interaction [143]. In vivo
results suggested that the pMMP-9-loaded hydrogel was effective in tumor gene therapy
by providing a long-term, sustained tumor site treatment.

Likewise, Liu et al. reported interesting results in the field of supramolecular hydrogels
for sustained, in vivo gene delivery of anionic plasmid DNA at therapeutic levels, with the
simultaneous release of chemotherapeutic paclitaxel, which might be beneficial for further
applications in personalized medicine [144]. The authors designed and synthesized the
carrier for drug and gene sustained release in the form of the injectable supramolecular
hydrogel by complexations between α-cyclodextrin and the cationic MPEG-PCL-PEI-FA
copolymer. The obtained complex containing paclitaxel and plasmid DNA could self-
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assemble into nanoparticles with size ~230 nm. The formed supramolecular hydrogel
had the ability to co-deliver the chemotherapeutic drug and Nur77 gene to combat Bcl-2-
overexpressed therapeutic-resistant tumors in a targeted manner.

Another drug and gene co-delivery system for high-efficiency cancer treatment
was developed by Ma et al. [145]. The authors proposed an approach by localized,
sustained co-delivery of PLK1shRNA/polylysine-modified polyethylenimine complexes
(PLK1shRNA/PEI-Lys) and doxorubicin for the treatment of osteosarcoma in vitro and
in vivo. In this method, doxorubicin and PLK1shRNA/PEI-Lys were loaded into a biodegrad-
able PLGA-PEG-PLGA hydrogel. The results proved that PLK1shRNA/PEI-Lys in the
hydrogel lead to a significant increase of the anti-tumor effect of doxorubicin, which making
this injectable material a potential candidate for efficient clinical treatment of osteosarcoma.
The synergistic antitumor effects included tumor growth suppression, silencing of the
PLK1 gene, promoting tumor apoptosis, as well as the effect on cell cycle regulation.
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3.4. Supramolecular Hydrogels in Tissue Engineering

Tissue engineering is a branch of regenerative medicine that uses cells and other
materials to either enhance or replace damaged biological tissues. The regeneration of
tissue defects is potentially possible by culturing a patient’s cells on a polymer matrix,
which is the scaffold for new tissue [146,147]. Due to the structural similarity to the
macromolecular components in the extracellular matrix, supramolecular hydrogels are
ideal candidates as media for tissue engineering. Moreover, these materials can provide
a suitable biological environment for encapsulating bioactive molecules, such as growth
factors and cells [148].

Stimuli-responsive supramolecular hydrogels have been fully examined for applica-
tions in this field of medicine because of their advantage of changing their physicochemical
properties in response to suitable stimuli, such as temperature or light, allowing modula-
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tion of the cell microenvironment [11,15]. Numerous studies have looked at temperature-
responsive supramolecular hydrogels. For example, Hong et al. prepared a poly(ethylene
glycol)-b-poly(L-alanine) thermo-gelling system as an injectable 3D culture system, by
incorporating tonsil-derived mesenchymal stem cells (TMSCs), tauroursodeoxycholic acid
(TUDCA), hepatocyte growth factor (HGF), and fibroblast growth factor 4 (FGF4) [149].
By increasing the temperature to 37 ◦C, the system underwent thermal gelation. The ob-
tained polypeptide thermogel was characterized by pronounced expressions of the hepatic
biomarkers, which makes this material promising for tissue engineering applications. An
example of a light-responsive physical hydrogel is that synthesized by Rosales et al. [150].
This research group prepared a hyaluronic acid-based hydrogel via host–guest complex-
ation between azobenzene- and α-CD-containing HA chains, with NIH 3T3 fibroblasts
encapsulated into the hydrogels. This photo-responsive system had variable crosslink
density and mechanical stiffness, depending on the defined wavelengths of light. The
controlled light exposure lead to a dynamic hydrogel, suitable for tissue engineering.

Numerous scientific reports have focused on the use of molecular hydrogels in the
regeneration of cartilage and bone [1,29,151]. Hou et al. prepared an injectable supramolec-
ular hydrogel based on dextran by grafting a significant number of multiple-hydrogen-
bond (ureidopyrimidinone) [152]. The UPy unit is a quadruple hydrogen-bonding array,
which is a driving force for hydrogel formation due to strong hydrogen bonds between
the dextran strands. By changing the ratio of UPy to dextran, the UPy graft density could
be controlled, and hence, the formation of supramolecular hydrogels of varying stiffness
was possible. The obtained hydrogel had self-integrating and shear-thinning properties
(Figure 10). Chondrocytes for cartilage formation and rabbit bone marrow stem cells
(BMSCs) were encapsulated separately into the hydrogeland subsequently, hydrogels were
implanted subcutaneously in a nude mouse. In vivo results confirmed that both cartilage
and bone tissues were successfully regenerated.
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Feng et al. [153] designed and prepared novel injectable carriers of therapeutic cells
and drugs to assist the repair and regeneration of bone, cartilage, and tendon, using gelatin
crosslinked by weak host–guest interactions, through a novel host–guest macromonomer
(HGM) method. The hydrogel was obtained due to complexation between aromatic
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residues of gelatin and the free-diffusing photocrosslinkable acrylated β-CD. The most im-
portant advantages of their proposed system were mechanical strength, controlled release
of a small hydrophobic molecule, and supporting cell retention, as well as the injection
capacity and re-moldable properties. In addition, it is worth noting that this host–guest
supramolecular macromer significantly enhanced the osteogenic differentiation of the en-
capsulated human mesenchymal stem cells (hMSCs) in comparison with the conventional
chemically crosslinked methacrylated gelatin (MeGel) hydrogel. In a further study, this
group investigated the gelatin HGM hydrogels for the long-term chondrogenesis of human
BMSCs after injection of the material into defects in rats’ knees [154]. Fully regenerated
cartilage in the defect site was observed six weeks after the implantation, making this
hydrogel a promising carrier of therapeutic cells and drugs for cartilage regeneration.

Supramolecular hydrogels cross-linked by metal cations have also been applied in
cartilage tissue engineering, specifically as tissue adhesives. An interesting example is the
research by Fan et al., who used genipin (long-term acting crosslinker) and Fe3+ (rapid
crosslinker) to obtain a double crosslink tissue adhesive (DCTA), comprising of a dopamine-
conjugated gelatin macromere [155]. It turned out that the obtained DCTA hydrogel was
very effective: when compared to the commercial fibrin glue, it showed 24 times stronger
action. Shear test results indicated that in the case of 2-hour-curing, cartilage gluing
strength was significantly increased from 8.0 kPa to 194.4 ± 20.7 kPa for DCTA and the
commercial fibrin glue, respectively. Moreover, DCTA could well support hMSCs adhesion
and proliferation. In vivo biocompatibility and biodegradability were confirmed after
implantation of DCTA in the subcutaneous tissues of the nude mice. It can be concluded
that this novel DCTA material may be a highly promising product as an adhesive glue for
cartilage tissue repair.

4. Conclusions

The presented hydrogels based on various non-covalent interactionssuch as hydrogen
bonds, hydrophobic interactions, electrostatic interactions, metal–ligand coordination, and
host-gest interactions have many interesting features, useful in drug and active substances
delivery. Due to these reversible interactions, supramolecular hydrogels have many advan-
tages including shear-thinning and self-healing properties, good mechanical properties,
and sensitivity to stimuli. These unique properties have driven notable advances in the
field of controlled drug delivery systems. Scientific research on the design and use of
hydrogels as carriers for anti-cancer, anti-microbial, and anti-inflammatory drugs is very
advanced. Recent successes in the delivery of therapeutic nucleic acids into target cells,
especially in the treatment of tumors, have demonstrated the potential of supramolecular
hydrogels as carriers in gene therapy. Moreover, these hydrogels present great prospects
for tissue engineering-based therapies. However, despite many works, there are still some
limitations to the use of these materials. Therefore, dual cross-linking is often considered as
a method for improving their properties. Furthermore, the complex structure of naturally-
derived molecules also favors the simultaneous formation of different non-covalent bonds,
e.g., H-bonds often work synergistically with hydrophobic or electrostatic interactions.
Moreover, the presence of various interactions and the combination of units sensitive to
different stimuli provides a chance to produce multi-responsive hydrogels.
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