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Abstract: Graphene oxide (GO) is a biocompatible material considered a favorable stem cell culture
substrate. In this study, GO was modified with polydopamine (PDA) to facilitate depositing GO
onto a tissue culture polystyrene (PT) surface, and the osteogenic performance of the PDA/GO
composite in pluripotent embryonic stem cells (ESCs) was investigated. The surface chemistry of
the PDA/GO-coated PT surface was analyzed by scanning electron microscopy (SEM) and X-ray
photoelectron spectroscopy (XPS). A high cell viability of ESCs cultured on the PDA/GO composite-
coated surface was initially ensured. Then, the osteogenic differentiation of the ESCs in response to
the PDA/GO substrate was assessed by alkaline phosphatase (ALP) activity, intracellular calcium
levels, matrix mineralization assay, and evaluation of the mRNA and protein levels of osteogenic
factors. The culture of ESCs on the PDA/GO substrate presented higher osteogenic potency than that
on the uncoated control surface. ESCs cultured on the PDA/GO substrate expressed significantly
higher levels of integrin α5 and β1, as well as bone morphogenetic protein receptor (BMPR) types
I and II, compared with the control groups. The phosphorylation of extracellular signal-regulated
kinase (ERK)1/2, p38, and c-Jun-N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs)
was observed in ESCs culture on the PDA/GO substrate. Moreover, BMP signal transduction by
SMAD1/5/8 phosphorylation was increased more in cells on PDA/GO than in the control. The
nuclear translocation of SMAD1/5/8 in cells was also processed in response to the PDA/GO substrate.
Blocking activation of the integrin α5/β1, MAPK, or SMAD signaling pathways downregulated
the PDA/GO-induced osteogenic differentiation of ESCs. These results suggest that the PDA/GO
composite stimulates the osteogenic differentiation of ESCs via the integrin α5/β1, MAPK, and
BMPR/SMAD signaling pathways.

Keywords: mouse embryonic stem cells; graphene oxide; polydopamine; osteogenic differentiation;
integrins; bone morphogenetic receptors (BMPRs)

1. Introduction

Macro-, micro-, and nanoscale extracellular matrix (ECM) organization provides a
dynamic microenvironment to facilitate pivotal cell functions, including cell survival,
migration, proliferation, and differentiation [1,2]. The biophysical roles of the ECM include
being a critical regulator of stem cell behavior and function. The developmental fate of
embryonic stem cells (ESCs) is also determined not only by soluble signaling molecules but
also by the ECM contents, comprising the stem cell niche [3]. Since many biomaterials for
tissue engineering and regenerative medicine aim to modulate the ECM, which governs
stem cell differentiation and tissue construction, identifying biological ECM substitutes
and how the engineered ECM governs stem cell performance is critical.

Recently, carbon-based materials have received increased attention in various biomed-
ical engineering applications, such as osteogenesis [4], bone replacement [5], and drug
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delivery systems [6]. Graphene, a carbon-based nanomaterial with versatile physico-
chemical properties, has attracted increased research attention in various bio-engineering
fields [7]. Graphene is a flat monolayer of carbon atoms patterned into a honeycomb,
two-dimensional (2D) lattice, and it serves as a biocompatible and implantable platform for
stem cell culture and artificial microenvironments [8–10]. Moreover, the biofunctionalized
capability of graphene and its derivative, graphene oxide (GO), has highlighted these
carbon nanomaterials in regenerative medicine and biotechnology studies [11,12]. GO has
been shown to strengthen induced pluripotent stem cell (iPSC) growth and to promote
spontaneous differentiation [10]. Graphene and GO encouraged the cardiomyogenic or
neuronal differentiation of ESCs [13,14]. GO-filmed substrates also intensified the differen-
tiation of mouse ESCs to the hematopoietic lineage [15]. Growing evidence has indicated
that a graphene surface provides a biocompatible nanoscale to accelerate the differenti-
ation of human mesenchymal stem cells (hMSCs) into a bone cell specification without
cellular toxicity [8,16,17]. GO-incorporated poly (lactic-co-glycolic acid) (PLGA) nanofiber
structures also enhance the proliferation and osteogenic differentiation of hMSCs [18].
Collectively, these results indicate the potential of graphene and GO-based biomaterials for
stem cell-related biomedical applications.

Graphene and its derivatives significantly promote ECM–integrin clustering signaling
and promote the long-term adhesion of human neuronal stem cells [19,20]. GO also
strengthens the adherence of mouse ESCs in controlling the ESC differentiation potency [21].
Moreover, the integrin signaling pathway is involved in the biocompatibility of GO for the
self-renewal of ESCs [22]. Many integrin-connected signaling networks influence not only
cell adhesion to ECM substrates but also specific cell lineage commitments [23–25]. Thus,
cell-graphene/GO substrate interactions can contribute to considerable cellular processes
from the onset of adhesion operation.

Graphene and GO can be further functionalized by other biomaterials through various
chemical bonds, such as covalent bonds, ionic bonds, and Van der Waals forces [26,27].

To establish effective strategies to fabricate functional matrixes or films, 3,4-dihydroxy-
L-phenylalanine (DOPA) derived from mussel adhesive threads has been used because of
its extraordinarily adhesion properties [28]. Dopamine (DA), a catecholamine that contains
catechol and amine functional groups, can self-polymerize to polydopamine (PDA) at an
alkaline pH level, coating any virtual surface and presenting mussel-derived adhesive
properties [28]. Based on these properties, PDA can be applied as an intermediate layer to
deposit GO onto various substrates. Thus, this study employed PDA to securely attach GO
nanosheets to the surface and manufactured carbon-based nanoscale ECM with GO and
PDA hybrid materials (PDA/GO).

Although several studies have reported the involvement of GO in ESC self-renewal
and differentiation into the hematopoietic or neuronal lineage, to date, few studies have
investigated the influences of GOs on the osteogenic differentiation of ESCs. The present
study investigated how the PDA/GO composite substrate influences the osteogenic differ-
entiation of ESCs. Moreover, the interaction of ESCs and this engineered microenvironment
was demonstrated by certain signaling mechanisms to promote and control the fate of ESCs.

2. Results
2.1. PDA/GO Substrate Promotes the Osteogenic Differentiation of ESCs

The morphology of the patterned PDA/GO substrate was first observed by SEM.
The SEM images demonstrated a relative PDA coating or multilayered PDA/GO layer on
the substrate (Figure 1A). The atomic constitution by XPS indicated that C1s is the most
predominant element on the PT surface. The PDA-coated surface demonstrated increased
concentrations of O1s and N1s compared with that on the PT surface. When PDA/GO was
deposited on the surfaces, the concentrations of C1s and O1s were increased compared
with those on the PDA surface (Figure 1B). These results suggest that the PDA or PDA/GO
substrate was successfully immobilized on the PT culture surface.
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Figure 1. Surface characterization of PDA/GO substrates. (A) Topographical features of the PT surface, PDA (1 mg/mL)-
coated, and PDA/GO (1 mg/mL + 1 mg/mL)-coated surfaces were assessed by scanning electron microscopy at ×10 k
magnification. (B) Relative atomic composition of each sample.

Before observing the osteogenic response of ESCs, cell viability on PDA/GO was first
assessed after cells were cultured on PDA/GO-coated (0.1, 0.5, 1 mg/mL) or uncoated
(control) surfaces for 1, 5, 10, and 14 days. No difference was found in the cell viability
between ESCs cultured on the PDA/GO and control surface, indicating no cytotoxicity of
the present combination of PDA/GO substrates (Figure 2A). Subsequently, the osteogenic
differentiation of ESCs was explored by analyzing the ALP activity and intracellular cal-
cium levels ([Ca2+]i). The ALP activity in cells on the PDA/GO substrate was increased
compared with those of the control group on day 4 and was further increased on day 7
(Figure 2B). Similar to ALP activity, the [Ca2+]i was also increased in cells on PDA/GO
in a dose-dependent manner (Figure 2C). Extracellular calcium deposits were also ana-
lyzed. Figure 2D indicates that calcium deposits were increased in ESCs on the PDA/GO
substrate compared with those of the control groups (Figure 2D). The osteogenic effect of
the PDA/GO substrate was assessed by following the gene and protein expression of the
osteogenic markers. The mRNA expression of osteogenic target genes (ALP, osterix (OSX),
runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN))
was increased in cells on a PDA/GO coating compared with that of the control group and
showed the highest level in cells on 1 mg/mL of PDA/GO (Figure 3A–E). Western blot
analysis also showed that OCN and OSX protein levels were increased in cells cultured on
PDA/GO substrate on day 7 of osteogenic induction (Figure 3F,G).
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Figure 2. Osteogenic differentiation of ESCs cultured on PDA/GO-modified surfaces. (A) Cells were cultured on the
PDA/GO substrate (composite of PDA with 1 mg/mL and variable GO concentration with 0.1, 0.5, or 1 mg/mL) for 1, 5,
10, and 14 days, and then, the cell viability was assessed as described in the Materials and Methods. (B) ALP activity, (C)
[Ca2+]i, and (D) Alizarin Red S staining were evaluated after 4, 7, 14, or 21 days of osteogenic induction. The values are
presented as means ± SD (n = 3). * p < 0.05 vs. the control value at each time point.

2.2. Integrin α5/β1 and BMPR I/II Signaling Pathways in ESCs on the PDA/GO Substrate

To understand the molecular mechanisms underlying the link between ESCs and
the PDA/GO substrate, we explored whether integrins, as an adhesion receptor, and
bone morphogenetic protein receptors (BMPRs), as representative osteogenic-functioning
receptors, are associated with PDA/GO substrate-derived ESC-osteolineage commitment.
The protein levels of integrins were analyzed in cells cultured on the PDA/GO substrate
after 7 days of culture (Figure 4A). The α5 and β1 subunits of integrins showed increased
protein levels in cells on the PDA/GO substrate compared with those in the control groups
(Figure 4A). These increases were dose dependent according to the GO concentration.
Western blot analysis showed that the type I and II BMPR levels were significantly increased
when cells were cultured on the PDA/GO substrate (Figure 4B). SMAD 1/5/8 are signal
transducers, which are activated by BMP receptors and mediate BMP signaling pathways.
SMAD1/5/8 phosphorylation was elevated in cells on the PDA/GO substrate than in the
control (Figure 4B,C). The nuclear translocation of SMAD1/5/8 was also confirmed using
immunofluorescence staining (Figure 4D). Thus, activation of the BMPR-SMAD1/5/8
signaling pathway may provide an additional osteoinductive signal for ESC-osteogenic
differentiation on the PDA/GO substrate.
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Figure 3. Effect of PDA/GO on osteogenic-related gene and protein expression. (A–E) The mRNA expression of ALP, OSX,
RUNX2, OCN, and OPN was analyzed after 7-day osteogenic induction by real-time RT-PCR. (F) The protein levels of OCN
(5.5 kDa) and OSX (45 kDa) were determined by Western blot. (G) The bars denote the density relative to β-actin. The
values are expressed as means ± SD (n = 3). * p < 0.05 vs. control value.

This study also examined whether ESC osteogenic differentiation on the PDA/GO
substrate requires the activation of mitogen-activated protein kinases (MAPKs), which are
responsible for osteogenic differentiation and bone formation [29,30]. The activation of
MAPKs, such as extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun-N-terminal
kinase (JNK), was assessed by measuring the phosphorylated form of each MAPK using
Western blot analysis (Figure 5A). The expression of P-ERK1/2, P-p38, and P-JNK was
upregulated in cells on the PDA/GO substrate compared with that in the control. No
significant differences were found in the expression of total ERK1/2, p38, and JNK among
all the experimental groups. To further understand this extracellular-leading intracellular
signaling pathway, the influence of integrin α5/β1 in MAPK activation was evaluated
using integrin α5/β1 siRNA. The knockdown efficiency of integrin α5/β1 siRNA was first
confirmed when the transfection of integrin α5/β1 siRNA downregulated the protein levels
of each integrin in cells on the PDA/GO substrate (Figure 5B). The phosphorylation of
ERK1/2, p38, and JNK was decreased by the knockdown of integrin α5/β1, indicating that
integrin α5/β1 mediates MAPK signaling pathways during ESC osteogenic differentiation
in response to the PDA/GO substrate.



Int. J. Mol. Sci. 2021, 22, 7323 6 of 15

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 15 
 

 

pathways. SMAD1/5/8 phosphorylation was elevated in cells on the PDA/GO substrate 
than in the control (Figure 4B,C). The nuclear translocation of SMAD1/5/8 was also con-
firmed using immunofluorescence staining (Figure 4D). Thus, activation of the BMPR-
SMAD1/5/8 signaling pathway may provide an additional osteoinductive signal for ESC-
osteogenic differentiation on the PDA/GO substrate. 

 
Figure 4. Effect of PDA/GO on integrin α5/β1, MAPKs, BMPR I/II, and SMAD 1/5/8 signaling pathways. The cells were 
cultured on the PDA/GO substrate for 7 days, and the protein levels of (A) integrin α5 (138 kDa), integrin β1 (150 kDa), 
and (B) BMPR I (50–55 kDa), BMPR II (115 kDa), and phosphorylation levels of SMAD 1/5/8 (52–56 kDa) were analyzed. 
(C) The bars denote the density relative to β-actin. The values are expressed as means ± SD (n = 3). * p < 0.05 vs. control 
value. (D) Nuclear translocation of SMAD 1/5/8 was assessed by immunofluorescence staining (scale bar, 20 μm).  

Figure 4. Effect of PDA/GO on integrin α5/β1, MAPKs, BMPR I/II, and SMAD 1/5/8 signaling pathways. The cells were
cultured on the PDA/GO substrate for 7 days, and the protein levels of (A) integrin α5 (138 kDa), integrin β1 (150 kDa),
and (B) BMPR I (50–55 kDa), BMPR II (115 kDa), and phosphorylation levels of SMAD 1/5/8 (52–56 kDa) were analyzed.
(C) The bars denote the density relative to β-actin. The values are expressed as means ± SD (n = 3). * p < 0.05 vs. control
value. (D) Nuclear translocation of SMAD 1/5/8 was assessed by immunofluorescence staining (scale bar, 20 µm).
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Figure 5. Effect of PDA/GO on MAPKs signaling pathways. The cells were cultured on the PDA/GO substrate for
7 days and (A) Phosphorylation of ERK1/2 (42–44 kDa), p38 (38 kDa), and JNK (46–54 kDa) was assessed. (B) Cells were
transfected with integrin α5/β1-specific siRNA, and the protein levels of integrin α5, β1, and the ERK1/2, p38, and JNK
phosphorylation levels were examined after 4 days of osteogenic induction.

2.3. Integrin α5/β1, MAPKs, and BMPRs/SMAD Mediate ESC Osteogenic Differentiation on the
PDA/GO Substrate

Considering that the activation of integrin α5/β1, MAPK, and BMPR/SMAD sig-
naling pathways is related to PDA/GO-derived ESC osteogenesis, we investigated the
influence of individual pathways in the osteogenic differentiation of ESCs on the PDA/GO
substrate. Figure 6A demonstrates that the knockdown of integrin α5/β1 reduced the
PDA/GO-induced ESC ALP activity. Western blot analysis confirmed the downregulation
of OCN and OSX protein levels after integrin α5/β1-knockdown (Figure 6G). Next, the
connection between MAPK activation and PDA/GO-derived ESC osteogenesis was ex-
amined. When cells were treated with ERK inhibitor (PD98059), p38 inhibitor (SB203580),
JNK inhibitor (SP600125), or SMAD inhibitor (SB431542), the ALP activity and [Ca2+]i of
ESCs cultured on the PDA/GO were downregulated (Figure 6B–F), as well as OCN and
OSX protein levels (Figure 6H–K). Calcium deposits were also decreased in ESCs on the
PDA/GO substrate with each inhibitor (Figure 6L).
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Figure 6. Role of the integrin α5/β1, MAPK, and BMPR/SMAD signaling pathways in the PDA/GO-mediated osteogenic
differentiation of ESCs. Cells were transfected with integrin α5/β1-specific siRNA, or treated with PD98059 (5 µM),
SB203580 (5 µM), SP600125 (5 µM), or SB431542 (100 nM) for 48 h before (A–E) ALP activity, (F) [Ca2+]i, (G–K) Western blot
analysis, and (L) Alizarin Red S staining. The values are expressed as means ± SD (n = 4). * p < 0.05 vs. each control value,
and # p < 0.05 vs. PDA/GO value.

3. Discussion

The present study showed that a PDA/GO composite-coated cell culture substrate can
effectively contribute to ESC osteogenic differentiation through the integrin α5/β1, MAPK,
and BMPR/SMAD signaling pathways. There is an increased demand for optimized mi-
croenvironmental systems to maintain self-renewal or facilitate the differentiation of adult
and embryonic stem cells [31,32]. Previous studies have shown that novel biomaterials that
imitate the extracellular microenvironment and in vivo construction encourage the efficient
differentiation of stem cells to the desired cell lineage [33,34]. Thus, the present study
demonstrated that the culture of ESCs on the PDA/GO-coated surface promotes osteogenic
differentiation of ESCs. Few studies have investigated the osteogenic effect of the PDA/GO
composite on ESCs and even on MSCs. One study showed that a PDA-inspired GO and
titanium scaffold promoted bone marrow-derived MSC adhesion and proliferation, as
well as development of nanostructured environments for bone regeneration [35]. Our
PDA/GO-functionalized culture substrate is a potential strategy to produce large numbers
of osteogenic cells from ESCs.

The interplay between stem cells and the engineered extracellular microenvironment
for a practical stem cell differentiation system must be investigated further. The present
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study provides the underlying molecular processes for ESC osteogenic differentiation on
a physicochemical PDA/GO substrate. The first cue mediating the mechanical signal of
PDA/GO to ESCs was the cell surface receptors integrin α5/β1 in the present study. Previ-
ous studies have shown that the gene and protein expression levels of integrin α5/β1 were
increased during human MSC differentiation to osteoblasts [36–38]. Osteoblast adhesion
on certain ECM proteins was achieved through binding to αvβ1 integrin [39]. Various
studies have demonstrated that dynamic expression of different integrins is required for
the osteogenic differentiation of MSCs [40,41]. The use of graphene material suggests the
pivotal role of integrin β1 in ECM roughness recognition, which is involved in osteoblast
maturation and MSC differentiation on graphitic carbon-coated surfaces [42]. Other reports
have shown that the protein expression of integrin β1 is increased on graphene-coated
Si/SiO2 substrates by significantly promoting the differentiation of MSCs into bone cells [8].
Integrin β1 binds 12 different α subunits, including the α5 subunit, in osteoblasts and
osteoprogenitor cells. Moreover, integrin β1 mediates cell adhesion to bone matrix and
promotes osteogenic cell proliferation and differentiation, indicating that integrin β1 sig-
naling plays a major function in bone formation [43,44]. To date, numerous studies have
shown that integrins α5/β1 participate in the osteogenic differentiation of osteoprogenitors
and MSCs as previously mentioned. We also suggest that integrin α5/β1 can introduce
the differentiation of ESCs into the osteogenic lineage when they are cultured on the
PDA/GO substrate.

In the present study, integrin α5/β1 led to the activation of ERK1/2, p38, and JNK
MAPKs as outside-relayed intracellular pathways during ESC osteogenic differentiation in
response to PDA/GO. These MAPKs are the best-characterized downstream signaling path-
ways of the matrix microenvironment–integrin interactions in osteogenic cell types [44–46].
Consistent with the current results, MAPKs have been frequently reported as a key player
for the osteogenic differentiation of various types of stem cells [47–49]. Regarding previous
studies and our findings, these integrin–MAPK stepwise processes trigger the osteogenic
induction of ESCs in response to the PDA/GO culture substrate.

Interestingly, the BMP receptors, members of the transforming growth factor-β (TGF-
β) superfamily, were suggested as the other cell-receiving signals from the PDA/GO
substrate. GO mechanistically interacts with multiple cell surface receptors [50–52]. How-
ever, the PDA or GO material can activate BMP receptors in ESCs or other stem cell models.
One previous study reported that GO activated TGF-β receptor/SMAD2/3 signaling
to trigger new metastases of human cancer cells [53]. Insufficient data exist to identify
PDA/GO-related osteogenic signaling pathways; however, our findings showed that the
PDA/GO substrate facilitates the presentation of BMP receptors in ESCs and enhances
ESC osteogenic activity. BMPRs and canonical SMAD signaling are widely studied in the
bone biology field [54–56]. Several studies have verified that SMAD-dependent BMP and
TGF-β signaling pathways manage both osteoblast and osteoclast function; thus, they play
potential roles in skeletal development, bone formation, and bone homeostasis [57–60].
The present study demonstrated increased BMPR type I and II protein levels and activa-
tion of SMAD 1/5/8, receptor-regulated SMADs (R-SMADs), which are responsible for
PDA/GO-derived ESC differentiation into osteolineage cells. A previous study reported
that BMPR recognition and the phosphorylation of SMAD 1/5/8 signaling promoted the
in vitro osteogenic differentiation of C2C12 cells in a magnesium-modified calcium phos-
phate matrix model [61]. Thus, the designed ECM substrates sensing the BMPR/SMAD
signaling axis enable biomaterials to attend osteoinductive performance.

Although the present study suggests a model for ESC osteogenic differentiation on
PDA/GO composite by the initiation of both integrin α5/β1 and BMPRs, the reciprocal
interactions between these receptors is still unclear. Further study of this ambiguous issue
is warranted.

This study systematically investigated the osteogenic bioactivity of PDA/GO compos-
ite as a substrate material with ESCs. When ESCs were cultured on PDA/GO substrates,
cells significantly exhibited the osteogenic differentiation through integrin α5/β1, MAPK,
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and BMPR I/II-SMAD 1/5/8 signaling pathways (Figure 7). Finally, the PDA/GO culture
system may provide a stem cell niche–mimetic environment to control stem cell fate and a
facile and promising strategy for bone tissue engineering and regenerative medicine.
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PDA/GO-modified surfaces, integrin α5/β1 and BMPR I/II are recognized, leading to MAPK or SMAD signaling pathway
activation and eventually promoting the osteogenic differentiation of ESCs.

4. Materials and Methods
4.1. Materials

Fetal bovine serum (FBS) was supplied by Gibco-BRL (Gaithersburg, MD, USA).
Antibodies used for Western blot analysis and immunofluorescence staining were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The chemicals, including L-3,4-
dihydroxyphenylalanine (L-DOPA) and graphene oxide dispersion, were purchased from
Sigma Chemical Company (St. Louis, MO, USA). Other laboratory materials were acquired
from SPL Lifescience (Pocheon, Korea).

4.2. Mouse ESC Culture and Embryoid Body Formation

Mouse ESCs (ES-E14TG2a (ATCC® CRL-1821™)) were supplied from the Ameri-
can Type Culture Collection (Manassas, VA, USA). ESC culture was performed as in our
previous report [62]. To develop embryoid bodies (EBs), dissociated cells were aggre-
gated by hanging drop with 2000 cells in 20 µL of DMEM. We used 5-day-old EBs in
every experiment.

4.3. Preparation of the PDA/GO Composite Substrate

The PDA solution was prepared by dissolving 1 mg of L-DOPA in 1 mL of 10 mM
Tris buffer base (pH 8.5; Sigma-Aldrich, St. Louis, MI, USA). Then, GO dispersion was
added to the PDA solution (1 mg/mL) under magnetic stirring at room temperature for
24 h. The final concentration of GO in the PDA solution was 0.1, 0.5, or 1 mg/mL for
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individual experiments. The polystyrene (PT) culture surface was coated with PDA/GO
composite solution overnight at room temperature and washed three times with sterile
phosphate-buffered saline (PBS). Then, the PDA/GO-modified surfaces were dried in a
vacuum oven.

4.4. Characterization of the PDA/GO-Coated Surface

Images of PDA/GO composite-coated surfaces were identified with scanning electron
microscopy (SEM; S-4700, Hitachi, Tokyo, Japan). The specimens were rinsed with PBS
and then freeze-dried overnight before SEM operation. The atomic composition of the
PDA/GO-modified surfaces was assessed by X-ray photoelectron spectroscopy (XPS) as
in our previous report [63]. The surface composition amount was obtained from the XPS
survey spectra.

4.5. Cell Viability Assay

Cell viability was performed using the cell counting kit-8 (CCK-8) assay as in our pre-
vious report [62]. Briefly, cells were cultured on PDA/GO substrate (0, 0.1, 0.5, 1 mg/mL)
for 1, 5, 10, and 14 days, and the CCK-8 assay was performed according to the manufac-
turer’s instructions. The optical density was observed at a wavelength of 450 nm using an
ELISA reader system (Triad; DYNEX, Chantilly, VA, USA). The proportion of cell viability
was designated relative to the control.

4.6. Alkaline Phosphatase Activity Assay

Alkaline phosphatase activity was assessed as in our previous report [62]. Briefly, cells
were plated onto PDA/GO composite-coated 60 mm dishes (10–15 EBs per dish). ALP ac-
tivity was evaluated after 4 and 7 days of osteogenic induction using the p-nitrophenylphos-
phate (pNPP) procedure. The ALP enzyme activity was denoted as mM/100 µg of protein.

4.7. Intracellular Calcium Quantification Assay

Quantification of the intracellular calcium level was evaluated based on our previ-
ous report [62]. Briefly, cells were plated onto PDA/GO composite-coated 60 mm dishes
(10–15 EBs per dish). Fourteen and twenty-one days after osteogenic induction, the intra-
cellular calcium concentration was measured using a calcium assay kit (BioAssay Systems,
Hayward, CA, USA) according to the manufacturer’s information. The optical density was
read at 612 nm. The calcium level was expressed as mg/mg of protein.

4.8. Alizarin Red Staining

Alizarin Red staining was achieved as described in our previous report [64]. The cells
were fixed with 4% paraformaldehyde for 15 min and rinsed three times with PBS. Then,
the cells were stained with 2% Alizarin Red S solution (pH 4.2) for 5 min, and unbound
dye residue was washed with PBS. The stained images of different surfaces were observed
using a light microscope.

4.9. Osteogenic-Related Gene Expression Analysis

Real-time reverse transcription-polymerase chain reaction (RT-PCR) was conducted
as in our previous report [62] to measure the mRNA expression of osteogenic genes. The
primers used were as follows: 5′-GAC TGG TAC TCG GAT AAC GA-3′ (forward) and 5′-
TGC GGT TCC AGA CAT AGT GG-3′ (reverse) for ALP; 5′-CCAACTTCCTGTGCTCCGTG-
3′ (forward) and 5′-TCTTGCCTCGTCCGCTCC-3′ (reverse) for Runx2; 5′-TGA AAC GAG
TCA GCT CTG GAT G-3′ (forward) and 5′-TGA AAT TCA TGG CTG TGG AA-3′ (reverse)
for OPN; 5′-TGA GGA GGA AGT TCA CTA TGG-3′ (forward) and 5′-TTC TTT GTG CCT
GCT TTG C-3′ (reverse) for OSX; 5′-ATG AGA GCC CTC ACA CTC CTC-3′ (forward) and
5′-GCC GTA GAA GCG CCG ATA GGC-3′ (reverse) for OCN; and 5′-GCT CTC CAG AAC
ATC ATC C-3′ (forward) and 5′-TGC TTC ACC ACC TTC TTG-3′ (reverse) for GAPDH.
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4.10. Western Blot Analysis

Western blot analysis was performed as in our previous report [63]. Briefly, the
primary (anti-OCN, anti-OSX, anti-integrin α5, anti-integrin β1, anti-BMPR I, anti-BMPR
II, anti-SMAD1/5/8, anti-P-SMAD1/5/8, anti-ERK1/2, anti-P-ERK1/2, anti-p38, anti-
P-p38, anti-JNK, anti-P-JNK, or anti-β-actin; Santa Cruz Biotechnology) and secondary
antibodies (goat anti-rabbit immunoglobulin G (IgG) or goat anti-mouse IgG conjugated to
horseradish peroxidase) were employed with the dilutions recommended by the supplier.
The blots were developed using enhanced chemiluminescence (Santa Cruz Biotechnology)
and developed using X-ray film (Eastman-Kodak, Rochester, NY, USA).

4.11. Immunofluorescence Staining

Nuclear translocation of SMAD1/5/8 was detected by time-dependent immunofluo-
rescence staining. The cells were incubated with SMAD1/5/8 antibodies at 4 ◦C overnight
and then with Alexa Fluor 488 goat anti-rabbit IgG for 2 h. Fluorescence images were
developed using a fluorescence microscope (Fluoview 300; Olympus, Tokyo, Japan).

4.12. SiRNA Transfection

Small interfering RNA (siRNA) transfection was conducted as in our previous re-
port [64]. Briefly, the cells were transfected with either an integrin α5/β1 siRNA (25 nM)
or a negative control siRNA (scrambled) for 48 h using a transfection reagent (RNAiMAX,
Invitrogen, Waltham, MA, USA) according to the manufacturer’s manual before being
subjected to ALP activity and Western blot analysis.

4.13. Statistical Analysis

All the data were expressed as means ± standard deviation. One-way analysis of
variance was used for multiple comparisons (Duncan’s multiple range test). Analyses were
obtained using SPSS software (ver. 10.0; SPSS Inc., Chicago, IL, USA). A p-value < 0.05
were considered statistically significant.
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