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Abstract: Pathological vascular wall remodeling refers to the structural and functional changes of
the vessel wall that occur in response to injury that eventually leads to cardiovascular disease (CVD).
Vessel wall are composed of two major primary cells types, endothelial cells (EC) and vascular
smooth muscle cells (VSMCs). The physiological communications between these two cell types (EC–
VSMCs) are crucial in the development of the vasculature and in the homeostasis of mature vessels.
Moreover, aberrant EC–VSMCs communication has been associated to the promotor of various
disease states including vascular wall remodeling. Paracrine regulations by bioactive molecules,
communication via direct contact (junctions) or information transfer via extracellular vesicles or
extracellular matrix are main crosstalk mechanisms. Identification of the nature of this EC–VSMCs
crosstalk may offer strategies to develop new insights for prevention and treatment of disease that
curse with vascular remodeling. Here, we will review the molecular mechanisms underlying the
interplay between EC and VSMCs. Additionally, we highlight the potential applicable methodologies
of the co-culture systems to identify cellular and molecular mechanisms involved in pathological
vascular wall remodeling, opening questions about the future research directions.
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1. Introduction

Cardiovascular diseases (CVD) are a general term to define a group of heart and blood
vessel disorders that include coronary heart disease, cerebrovascular disease, peripheral
arterial disease, and aortic disease. CVD are the main cause of death in developed coun-
tries. The rates of CVD incident and case-fatality have fallen considerably over the last
two decades in those countries due to the investigation of new therapies and diagnosis.
However, nowadays it still accounts for 17.3 million deaths per year, and it is expected to
grow to more than 23.6 million by 2030 [1]. In this sense, CVD claims more lives than all
forms of cancer combined. Moreover, due to our lifestyle in which we are exposed to many
cardiovascular risk factors (such as smoking, hypertension, cholesterol diet, sedentary
life style, stress, or pollution), a high percentage of the population have developed an
asymptomatic vascular damage, affecting the vascular homeostasis. This high mortality
rate indicates the need to identify the molecular mechanisms that occur during the patho-
genesis of CVD, in order to develop new strategies for the early diagnosis and treatment to
avoid the fatal ending.

The vasculature is one of the first organs to develop during embryogenesis and it is
fundamental for the correct function of all other organs. Arteries are essential to maintain
vascular tone as they regulate changes in pressure and blood flow due to their contractile
nature and the mechanical properties conferred by their wall (elasticity, tensile rigidity,
and comprehensibility) [2]. The arterial wall is organized in a structure of three concentric
and independent layers of cells interconnected (intima, media, and adventitia), that acts as
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a functional unit, guaranteeing the integrity and functionality of the vessels [3]. On the
innermost side of the vessel wall, the semipermeable layer of endothelium selectively
limits the movement of macromolecules [4], and essentially involves in vascular tone,
fluid homeostasis, and host defense [5]. Endothelial cells (EC) are exposed to changes in
the lumen of the vessels, as mechanical injury, shear stress or chemicals agents. In these
circumstances, EC release various cytokines, chemokines, and growth factors that result in
endothelial dysfunction phenotype and trigger the progression of cardiovascular diseases
such as hypertension, atherosclerosis, aging, stroke, heart disease, diabetes, obesity, venous
thrombosis, and intimal hyperplasia [6]. In the medial layer, vascular smooth muscle
cells (VSMCs) are the main component, exhibit remarkable phenotypic plasticity and can
dedifferentiate from a contractile state to a synthetic state. These phenotypic modifications
regulate proliferative, migratory and inflammatory capacities of the VSMCs, which play
a major role in arterial remodeling [7]. The communication between EC from the intima
layer and VSMCs for the media layer, is a critical step in the initiation and progression of
pathological vascular remodeling. Perturbations in the EC–VSMCs communications can
lead, for example, to the typical features of atherosclerosis development such as; endothelial
dysfunction, inflammatory cell infiltration or phenotypic switching of VSMCs [8].

The vessel wall is continuously exposed to local mechanical, hemodynamic and neu-
rohumoral stimuli such as uncontrolled changes in blood pressure, inflammatory response
processes, mechanical damage to the vessels, accumulation of lipids, etc., that elicit adap-
tive and functional responses. However, when these stimuli are sustained in time, they
comprise molecular, cellular, and interstitial changes which, at tissue level, are reflected by
modifications in the luminal diameter, the thickness of the wall and the structure of the
transverse areas of the media and/or adventitia [9,10]. Vascular wall remodeling refers to
the adaptation of the vessel wall to biochemical and biomechanical stimuli [11]. This remod-
eling is an active process that involves changes in the proliferative and migratory status of
VSMCs, endothelial dysfunction, inflammatory processes, as well as synthesis or degra-
dation of the components of the extracellular matrix (ECM) [12]. All these processes are
regulated by the dynamic interaction of growth factors, vasoactive substances, and hemo-
dynamic stimuli between cells, which trigger changes in the structure and functionality of
the vascular wall [13,14]. These pathological changes in the structure and composition of
blood vessels could contribute to the pathophysiology of vascular diseases and circulatory
disorders, and cause clinical manifestations [15]. Identifying the pathways underlying
EC–VSMCs interaction that mediate vascular homeostasis in the course of vascular re-
modeling may offer strategic insight for CVD prevention. Vascular wall remodeling is
classified in several categories; outward (increase) and inward (decrease) remodeling when
the diameter of the lumen varies, with respective hypertrophy (thickening), hypotrophy
(thinning) or eutrophic (no change) of the vessel wall [16]. Hypotrophic remodeling results
in a thinner vessel wall, with a decrease in the wall-to-lumen ratio, which can be both
inward and outward. Hypertrophic remodeling results in the thickening of the vessel
wall, with an increase wall-to-lumen ratio, that can also be inward and outward. In the
eutrophic situation, wall-to-lumen ratios do not change, but the size of the vessel can differ.
Depends on the pathology, they could undergo a different arterial remodeling. In the
case of the atherosclerosis for example, it is termed as inward or outward hypertrophic
remodeling and is characterized by an increase in vessel diameter with the thickening of
both the media and intima [17]. Additionally, the aneurysm formation is characterized
by an increase in vessel diameter, with a thinning of the vessel wall, and termed outward
hypotrophic remodeling [16]. Inward remodeling is less frequently observed and is seen in
more muscular peripheral arteries, probably reflecting the sustained vasoconstriction of
vessels [18].

In this review, we summarized the different pathways of cell–cell communication as
well as the different in vitro models to analyze EC–VSMCs interaction.
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2. EC–VSMC Communication

Cell–cell communication between EC and VSMCs plays a critical role not only in
vascular homeostasis but also in disease. Under physiological conditions, VSMCs have a
contractile phenotype, which facilitates the contraction and dilation of the vasculature that,
in smaller resistance arteries, is essential for the regulation of blood flow. The response of
blood vessels to physiological and pathological stimuli partly depends on the crosstalk
between EC lining the luminal side and VSMCs in the inner part of the vascular wall.

The EC–VSMCs dialogue for the maintenance of vascular homeostasis is established in
several ways; by direct cell contact and by indirect interaction via ECM or through soluble
secreted molecules and extracellular vesicles (EVs) [19]. In this regard, to maintain the
functional contractile state of VSMCs a continuous release of vasoactive compounds from
EC (such as prostanoids, arachidonic, acid metabolites, and nitric oxide) is required [20].
However, when a mechanical/chemical injury or loss of the endothelium take place, there
is a disturbed crosstalk between EC and VSMCs, that would trigger VSMCs phenotypic and
functional changes (from contractile to proliferative), inflammation, and ECM deposition,
all of them featuring the pathological vascular wall remodeling [8].

Therefore, this corroborates the reason why the in vitro analysis of the pathophysiol-
ogy of blood vessels requires coculture systems of EC and VSMCs. For a long time, many
research groups have tried to elucidate the functions of ECs and VSMCs as independent
entities due to either easy results analysis or lack of established protocols. For that reason,
it remains unclear how defects in the EC–VSMC physical or paracrine interaction, or with
their microenvironment (extracellular matrix) could lead to CVD and it if will help to
identify key players for diagnosis and/or treatment of vascular remodeling diseases.

2.1. Paracrine Communications

- Soluble factors
Diffusion of soluble factors and balance between their concentrations are an essential

process in the EC–VSMCs communications of mature blood vessels. As VSMCs are not
directly exposed to the mechanical or chemical changes in the blood flow, the EC-induced
signal transduction is the way of communication for VSMCs to react. In a healthy vessel
wall, the endothelium is able to regulate and control the growth, and the phenotype of
VSMCs releases various vasoactive factors [21]. The majority of the described studies
have been focused in the paracrine regulation of vascular tone [22–25]. However, the
role of paracrine EC–VSMCs communication during pathological situations in the mature
vasculature needs to be more deeply addressed. Several coculture systems have been
developed to study EC–VSMCs interactions, and have demonstrated that the simple
interaction of both cells regulates paracrine expression of some molecules. In this respect,
coculture of ECs and VSMCs on opposite sides of a transwell membrane, triggers changes
in VSMCs phenotype [26] and the up-regulation of different molecules such as, VEGF,
PDGF-AA, PDGF-BB, and TGF-β and down-regulation of bFGF [27,28]. Interestingly,
cultured ECs with VSMCs also changed ECs morphology, increased EC gene expression
of tissue factor [29], VEGF [27], adhesion molecules [30], growth-related oncogene-α and
monocyte chemotactic protein-1 [31]. Moreover, paracrine factors released from EC could
also be regulators of VSMCs metabolic processes that has been described important in
the context of immunometabolism response in the vascular remodeling disease such as
atherosclerosis [32]. Some soluble factors from EC have the capacities to change the low
density lipoprotein metabolism of VSMCs [33] or reduce cholesteryl ester hydrolysis as
compared to solo-cultured VSMCs [34].

In physiological situations, paracrine EC–VSMCs communication is one of the main
ways to control vessel contraction. In this sense, endothelial-derived factors such as nitric
oxide (NO), prostacyclin, and hyperpolarizing agents diffuse out from endothelial cell to the
underlying VSMCs, causing vascular relaxation in adult vasculature [35]. The endothelial
isoform of nitric oxide synthase (eNOS) diffuses from EC to VSMCs, where it activates
specific protein kinases, and initiate VSMCs relaxation [36]. However, when endothelial
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dysfunction occurs, it is associated with a decrease of NO bioavailability and variations in
the release of vasoactive compounds [37,38]. NO derived from EC has also been reported
to change flow-dependent vascular remodeling associated with a negative regulation of
Platelet derived growth factor (PDGF) [39]. NO from EC appears to regulate the metabolic
activity of the enzyme aldose reductase in VSMCs and preventing sorbitol accumulation of
diabetic rat aorta [40]. Additionally, Carbon monoxide (CO) is indirectly connected with
the NO vasodilative role in EC–VSMCs crosstalk. Transient HO-1/CO-regulates vascular
tone via upregulation of the eNOS/NO axis in ECs [41] and subsequently increases cGMP
production in VSMCs [42]. EC enhancing phosphorylation of eNOS, and production of NO,
has been also involved in autophagy. Adaptative autophagy within the endothelium and
VSMC has been described as an important mechanism in maintaining vascular function in
vascular remodeling diseases [43], and in cardiac microvasculature [44,45].

Crosstalk studies have described that ECs also release other factors such as An-
giotensin II or endothelin involved in the VSMCs contraction and increasing of the vascular
tone [35,46]. ECs also respond to mechanical force stimulus to control the growth of the
underlying VSMCs. Changes in the hemodynamic forces contribute to the regulation of
endothelial production of soluble heparan sulfate proteoglycans (HSPGs). These molecules
are secreted by ECs and inhibit VSMCs proliferation upon mechanical strain [47]. In this
sense, perlecan expression is regulated by mechanotrasduction in EC and is essential in the
control of VSMCs proliferation by altering their response to transforming growth factor β
(TGF-β) in an ex vivo system for culturing aortic rings [48]. Perlecan also inhibits VSMCs
proliferation in vivo in a mice model of intima hyperplasia [49,50].

Platelet-derived growth factor (PDGF) is other of the numerous growth factors that
is essentially implicated in the EC–VSMCs communication, either in physiological or
pathological situation. This molecule is produced by VSMCs, activated macrophages, and
EC [51]. During embryogenesis, endothelial-PDGF is involved in the VSMCs recruitment,
proliferation and migration, all of them processes necessaries for the correct assembly and
formation of the vessel wall [52]. However, different circumstances could alter the response
of VSMCs to the EC-secreted PDGF-B in mature vasculature. For example, studies in ECs
and VSMCs cocultures have demonstrated that shear stress is converted into an intra-
cellular signal of PDGF-BB up-regulation in the dysfunctional endothelium and triggers
migration and proliferation of the underlying VSMCs [53]. While the role of PDGF-BB is
related to the paracrine control of VSMCs phenotype by ECs, other growth factors such as
Tissue growth factor B1 (TGF-β1) have been described participating in the feedback control
from VSMCs to ECs. [54]. Shear stress signal is mechano-transduced in upregulation
of TGF-β1 expression in ECs. TGF-β1 expression by ECs in a 3D EC–VSMCs coculture
model demonstrated that could modulate features of pathological vascular remodeling,
such as, VSMCs phenotypic switching and VSMCs extracellular matrix synthesis [55].
Moreover, some evidences have described a new cellular crosstalk concept in which syn-
thetic VSMCs phenotype induced by PDGF-BB displayed an anti-angiogenic effect in ECs,
whereas contractile VSMCs phenotype promoted a pro-angiogenic activity in ECs [56].
Moreover, aberrant secretion of PDFG by ECs induces VSMCs proliferation and migration
in injured artery by hyperhomocysteinemia (HHcy). In this regard, human EC–VSMCs
cocultured studies have demonstrated that high level of HHcy promotes proliferation and
migration of VSMCs due to a DNA demethylation of PDGF in ECs. Upregulation of PDGF
was confirmed in the aortic intima of mice with HHcy [57]. Moreover, in vivo model of
neointimal hyperplasia has recently demonstrated that endothelial cell-specific regulation
of PDGF-B modified VSMC phenotypic state and neointima formation [58].

PDGF-B axis has been defined as a paracrine endothelium-to-mural vascular cells
signaling loop. In contrast, one of the main representative pathways in the opposite
orientation—from VSMC to the endothelium—is the angiopoietin-Tie receptor axis. The an-
giopoietin (Ang) family of secreted growth factors interacts with Tie receptors, which are
expressed throughout the developing embryonic endothelium and in the quiescent adult
vasculature [59]. Between them, tyrosine kinase Tie-2 receptor and angiopoietin 1 (Ang-1)
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secreted molecule, act as endothelial cell survival factors, promoting stabilization of blood
vessels and regulating vascular remodeling through EC–VSMCs communication [60]. Dur-
ing vascular remodeling, it has been described as an increase of Angiopoietin-2 (Ang-2)
secretion in tissue, which inhibits the Ang1-induced Tie2 activation through competition
for the same receptor. This antagonistic Ang-1/Ang-2 concept in which Ang-2 was identi-
fied as the main destabilizing of the quiescent endothelium by an internal autocrine loop
mechanism was corroborated in vitro in a 3D EC–VSMCs coculture model [61]. In the same
manner, the Ang-2 role is associated with disease pathologies such as microaneurysms and
hemorrhages of the retinal blood vessels in diabetes [62], and early stages of fatty streak in
atherosclerosis [63]. However, in vivo studies on mice model of AAA and atherosclerosis
provided evidences of the protective role of Ang-2, suggesting the necessity of deeper
studies of this axis in the EC–VSMCs crosstalk [64].

The sphingosine-1-phosphate (S1P) pathway is another receptor-ligand axis involved
in the paracrine communication between EC and VSMCs [65,66]. S1P signaling in EC has
secondary consequences for EC–VSMCs interactions. SP1 is a sphingolipid metabolite that
signals through a family of G-protein-coupled receptors [S1P(1–5)].It has been shown that
deletion of the S1P1 receptor on ECs results in significant defects in VSMCs coverage, in a
human coculture model of EC and VSMCs. These data have suggested that endothelial
SP1 promotes the expression of the inhibitor of metalloproteinase TIMP-2 in VSMCs,
contributing to the incomplete formation of endothelial cell adherent’s junctions [67].

Furthermore, the data found for the vascular mammalian target of rapamycin (mTOR)
pathway represent another level of EC–VSMCs crosstalk, which support the necessity of
coculture experiment to have a global vision of the pathology. In this sense, in a model
of EC/VSMCs vessel-like construction, the interaction of VSMCs with ECs regulated the
response of the EC to flow and injury. This mechanism is described due the regulation
of mTOR expression in ECs. This in vitro work demonstrated that presence of VSMCs
post-stent could be necessary for regulates endothelial recovery, and may explain the
possible negative impact of local targeted VSMCs antiproliferative stent-delivery [68].

In summary, despite the fact that paracrine secretion occurs during the endothelial
dysfunction in pathological situation, few studies have addressed how are the changes in
the cell–cell conversation directly produces by this endothelial dysfunction.

- Extracellular vesicles
Secretion of extracellular vesicles (EVs) is an important mechanism by which the

intercellular communication is taking place, either in vascular homeostasis or during patho-
logical vascular remodeling [69,70]. EVs serve as intercellular messengers and they could
be classified in exosomes, microvesicles and apoptotic bodies, depending of their size,
lipid composition, or mechanisms of formation and discharge [71]. The smallest EVs are
the exosomes, by contrast, apoptotic bodies share the biggest size with more than 1 µm.
Apoptotic bodies and microvesicles are formed by cytoskeleton rearrangement and are
exerted from cells through direct plasma membrane blebbing. Exosomes are generated
by endosomal pathway leading to the inward budding of multivesicular bodies (MVBs).
Normally, under different physical and/or pathological stimuli, the plasma membrane
inward buds and produces endosomes (EEs) [72]. In the latest states, endosomes induce
the formation of the multivesicular bodies (MVBs) by the machinery of the endosomal
complex, which will accumulate intraluminal vesicles (ILVs) in their inner spaces. MVBs
could suffer different dynamic alterations depending on the stimulus and, while ones
MVBs could be degraded by the proteasome, others could be secreted by fusion with
the plasma membrane as “exosomes”. These exosomes could be loading by different
functional cytosolic components such as microRNAs (miRNA), and mRNA that could
be released to extracellular space and regulate cell communication constituting a novel
means of cell–cell communication [73]. miRNAs are small single-stranded noncoding
RNAs (average ≈18–24 nucleotides) evolutionarily conserved that have been emerged
as regulators of pathophysiological cellular processes [74]. In this regard, mechanisms
involved in the vascular remodeling diseases such as, proliferation, lipid uptake and efflux,
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cellular adhesion, or inflammation, are only an example of the important mechanisms
that could be controlled by miRNAs [75]. miRNAs regulate gene expression at the post-
transcriptional level, binding to the 3′-untranslated region (UTR) of a specific target mRNA
sequences, triggering the reduction of protein expression by impeding the translation and
promoting mRNA degradation [76]. Moreover, many studies have described miRNAs
as potential biomarkers for diagnosis, prognosis, or therapeutics targets in CVD, since
they are circulating in blood and in other body fluids (plasma, saliva, urine, bile, and
breast milk) contained within exosomes [77]. In relation with EC–VSMCs interaction,
recent studies have demonstrated that EC and VSMCs release extracellular vesicles that
could contribute to vascular homeostasis or pathological progression. In physiological
situation, the normal laminal-flow triggers the EC release of miR-143 and miR-145 con-
taining in extracellular microvesicles. miR143/145 are the highest expressed miRNAs in
normal vessel wall and have been involved in the cell-to-cell communication, necessary
to maintain the contractile functional capacities of the vascular cells in vessel wall [78].
In this sense, the atheroprotective role of these miRNAs has been demonstrated in vitro in
cocultures experiments. ECs packaged and released miR143/145 into exosomes, that are
taken-up by neighboring VSMCs, contributing to regulate phenotypic target genes in these
cells [79]. Furthermore, miR-206 expression in human umbilical endothelial cells (HUVEC)
is involved in the regulation of the contractile phenotype of VSMCs (α-SMA, Smoothelin
and Calponin expression genes) by suppressing exosome secretion from endothelium [80].
However, in response to vascular injury, the miRNAs that are contained in the EVs could be
modified. The expression of the miR-143/miR-145 cluster is markedly reduced in injured
arteries compared with normal vessel, favoring the phenotypic switching of VSMCs. This
reduction triggers transcriptional regulation of Krüppel-like factor (KLF)-4-5 dependent’s
genes, essential for contractile VSMCs phenotypic switching to synthetic and proliferative
phenotype. miR-143/ miR-145 have been also shown to target other key transcriptional reg-
ulators implicated in modulation of VSMCs differentiation such as ETS domain-containing
protein-1 (ELK-1) and myocardin [81,82]. Intravenous delivery of miR-143/145 extracellu-
lar vesicles blocked atherosclerotic lesion progression [83] and analogous protective effects
have been observed in response to neointimal lesion formation [84]. However, it remains to
be determined whether bidirectional extracellular miRNA passage occurs between VSMCs
and EC under atherosclerotic conditions. A recent work has demonstrated that EC regulates
VSMCs phenotype via inflammasome-dependent EVs [85]. Moreover, a different study
showed that physiological laminar flow also increases the release of endothelial-miR-126.
EC-miR-126 serves as a mediator for the maintenance of VSMCs contractile phenotype
by the regulation of VSMCs target gene such as FOXO3, B-cell lymphoma 2 (BCL2), or
insulin receptor substrate 1 [86]. The function of miR-126 in the physiological EC–VSMCs
communication was also supported by its atheroprotective effects in vivo [87]. However, it
has been showed that changes in the levels of miR-126 from ECs could serve as messenger
to VSMCs to proliferate under pathological shear stress [86]. In contrast to the functions of
endothelial miR-143/miR-145 or miR-126 that are expressed in physiological condition to
maintain VSMCs contractile phenotype, many of miRNAs are secreted from cells under
pathological condition. For instance, such is the case of miR-221 and miR-222 that are
increased in VSMCs in response to neointimal injury [88], where they may play a desta-
bilizing role in atherosclerotic lesions [89]. Studies of exosome-mediated crosstalk under
pathological condition have recently demonstrated that, VSMCs secreted miRNA-loading
EVs works as messenger to ECs in pathological circumstances. In this sense, TGF-β1
decreases exosome production while PDGF-BB increased it. Moreover, oxLDL upregulates
exosome-mediated transfer of miR-155 in human VSMCs (HASMCs) in a mechanism de-
pendent of Krüppel-like factor 5 (KLF5) [90]. miR-155 upregulation from VSMC is received
by the ECs and it inhibits endothelial proliferation/migration and re-endothelialization, ei-
ther in vitro or in vivo, increasing vascular endothelial permeability [90]. Similar results on
endothelial migratory activity were described in artery endothelial cells (PAECs) exposed
to PDGF stimulated VSMCs-derived exosomes. Downregulation of miR-1246, miR-182,
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and miR-486 in vascular smooth muscle´s exosomes promote endothelial migration [91].
Moreover, VSMCs secrete exosomes that promote vascular calcification under calcium
stress triggers [92,93].

2.2. Parenchyma Players (Interaction via the Extracellular Matrix(ECM))

Cell communication could also be through the extracellular matrix (ECM) properties.
Alterations in ECM not only cause structural modifications, but also could lead to EC–
VSMCs signaling disruption [94].

Both ECs and VSMCs secrete matrix components that contribute to the maintenance
of vessel properties and influence neighboring cell functions. Furthermore, ECM serves as
a source and reservoir of signaling mediators, that is changed depending on the period
of vessel wall development. The reservoir potential of ECM has been described as a way
of cell communication in the regulation of cell growth, plasticity or metabolism [95,96].
Some of the best characterized ECM binding proteins, whose contribute to cell signaling
are; latent (TGF-B binding protein (LTBP 1–4), emilins, microfibril associated glycoproteins
(MAGP-1 and 2), and members of fibulin family [97]. The relationship between ECM and
the resident cell is reciprocal, and changes in physical forces are detected by matrix-binding
cell receptors and mechano-transduced in cell signals [96]. Among the ECM components,
collagen is the main molecule that contributes to the geometric changes in the vessel wall,
and whose deposition favors the vessel stiffness [97,98], and may serve to connect basement
membrane of VSMCs and EC with other ECM structures. Collagen has pleiotropic effects
on VSMC phenotype depending on the type of collagen deposited. Furthermore, while
collagen I and fibronectin induce synthetic VSMCs phenotype [99,100], secretion of collagen
type-IV by cells promote a contractile VSMCs phenotype signal transduction [99–105].

2.3. Contact-Contact Signaling

Ultrastructural studies have described close contact sites by which EC and VSMCs
communicate in blood vessels. Such direct contact sites facilitate metabolic and electrical
coupling conduits, and transport of signaling molecules between EC and VSMCs. Biologi-
cally, these contact sites permit direct bidirectional communication of molecules and ions
between adjacent cells as a key pathway for coordinating vascular function [106]. There
are different types of direct structural connections;

- Myoendothelial gap junctions (MEGJ)
The most studied cell–cell contact is called Myoendothelial gap junctions (MEGJ) [107].

These are direct contacts through the fenestrated internal elastic lamina (IEL), which are the
result of the actin-based cell protrusions (either from EC, VSMCs or both) [108]. The forma-
tion of the functional gap junctions requires the assembly of the connexins (Cx) proteins. In
the vascular system, Cx37, Cx40, Cx43, and Cx45 are the major connexins described [109].
The presence of these projections seems to vary depending on the vessel type and con-
ditions. So, while in small mesenteric arteries, MEGJ are located at the interface of EC
projections and the surface of VSMCs, in large arteries MEGJ are also at the interface
of adjacent cells (either between homotypic EC-EC or VSMCs-VSMCs) [107]. Further-
more, the composition and quantity of MEGJ are condition-dependent, and could be
differentially regulated in EC or VSMCs by posttranslational modifications [110]. Essen-
tially, MEGJ serve as feedback pathways between VSMCs and EC to facilitate the direct
transfer of ion or small molecules, mainly second messengers such as Ca2+, IP3, and
cAMP [111,112], or endothelium-derived hyperpolarization (EDH) signals, to control the
vascular constriction-relaxation [113]. Vascular remodeling pathologies such as atheroscle-
rosis have been associated with changes of endothelial Cx expression and function. In this
sense, ECs from atherosclerotic plaques do not express Cx37 and Cx40, while endothelial
Cx43 expression is induced [114]. Moreover, the atherogenic stimuli oxLDL increases Cx43
phosphorylation, which is associated with reduced coupling between EC and VSMCs [115].
Furthermore, oxidized phospholipids regulate Cx43 expression in VSMC, associated to
phenotypic changes, in a model of atherogenesis in ApoE deficient mice [116]. Addition-
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ally, low shear stress occurring during atherosclerosis also altered endothelial Cx40/Cx43
expression [117]. Interestingly, in vitro experiments have shown that the main inflamma-
tory mediators found in vascular remodeling, such as lipo-polysaccharides (LPS), tumor
necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), also inhibit human MEGJ affecting
EC–VSMCs communication [118].

- Notch signaling
Strong evidences have demonstrated the role of Notch signaling in the EC–VSMCs

crosstalk [119]. Notch is an evolutionary-conserved cell-to-cell signaling mechanism crucial
in vasculogenesis, due to it is involved in artery, vein, and capillary organization and
development. Notch signaling activation needs the interaction of the membrane-bound
Notch receptors (Notch 1–4), to the membrane-bound Notch ligand (Jagged1, 2 and Delta-
like 1, 3, and 4) of the adjacent cells [120]. Both, EC and VSMCs ubiquitously express
Notch elements. However, Notch elements suffer changes dependent of the cell stages
and cell type. The main function of Notch in the EC–VSMCs communication is, partly,
driven by Jagged1 ligand. The endothelial expression of Jagged1 is necessary for the
proper and complete arterial VSMCs maturation. In this regard, in vitro coculture studies
have demonstrated that, ECs-expressed Jagged 1 induce Notch3 expression in VSMCs,
which is critical for cell differentiation and acquisition of mature arterial identity [121,122].
In addition, VSMCs and ECs coculture experiments have shown that EC growth in response
to angiogenic stimuli is modulated by VSMCs through Notch signals [123].

Modulation of Notch signaling has not been only associated with physiological EC–
VSMCs communication, but also to pathological vascular remodeling disease. Moreover,
impair of Notch3 expression is phenotypically related to enlarged arteries, with aberrant
distribution of elastic laminae, and VSMCs with venous appearance [124]. These defects
in Notch3 receptor lead to a non-functional vessel wall, formed by non-fully contractile
VSMCs [125], and is responsible of some disorders such as familiar aortic valve disease or
cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopa-
thy [126]. Alteration in endothelial Notch activation was also associated with a protective
role in atherosclerosis [127], and an important role in controlling VSMCs phenotypic switch-
ing in vascular injury [128]. Moreover, recent works have also shown evidence on the role
of EC–VSMCs crosstalk by Notch signaling in the formation of the atheroma fibrous cap.

Another example of EC–VSMC contact interplay is the interaction between the
membrane-bound Eph receptor tyrosine kinase (Eph) with the membrane-bound Ephrin lig-
ands. The well-studied receptor-ligand pair EphB4 and ephrin-B2, are reciprocal expressed
on EC or VSMCs and are required during embryonic vessel development, vascular remod-
eling, and pathological vessel formation in adults [129,130]. Moreover, Ephrin-B2 regulates
EC–VSMCs crosstalk by VEGF receptor endocytosis in VSMCs [131]. Although their role
in EC–VSMC crosstalk needs to be established, Ephrin-B2 is expressed in atherosclerotic
plaques colocalizing with EC, which could suggest a potential role in the disease [132].

3. In Vitro Models to Study EC–VSMCs Communication during Vascular Remodeling

The importance of understanding the EC–VSMCs communications in vascular remod-
eling diseases have led to great efforts in developing relevant in vitro models. It has been
essential to create a quiescent EC–VSMC coculture modeling in which could be possible
to recapitulate the flow dynamic, the environment, or the structure, trigging to mimic
the in vivo vessel wall circumstances [133]. The approaches to study EC–VSMCs commu-
nications have been done in a variety of ways; starting with independent cultured cells
treated with conditional cell medium from other cell, carrying on with 2D coculture, which
provides a simple way of studying both cell types together, and ending with the use of 3D
coculture, vasculature on-chip models, and organoids. Although, some of these models
appeared to mimic the distinct aspects of the vascular remodeling, the complexity and the
multimodal nature of the EC–VSMCs communication that has been dissected before made
difficult to generate a common in vitro coculture model. Moreover, the morphology and
polarization of cells within the cocultures, together with the formation of an extracellular
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matrix, and the quiescence phenotype are other limiting factors. The necessity to generate
a common and well-stabilized in vitro model of EC–VSMCs coculture is considered neces-
sary and critical for future studies and for translational drug screening. Types of cocultures
could be classified in:

- Indirect coculture:
In vitro model to investigate cell–cell dependent interaction without physical contact,

and based in secretory pathways and in paracrine communications. Microcarrier, scaffold,
bilayer membrane, use of conditioned media (CM) or transwell assay are examples of
indirect coculture.

Conditioned media; In this model, cells are grown separately and the medium of one
of them is used to stimulate the other cell type. However, the unidirectional response,
and the soluble factors being the only mediators studied without cell–cell interaction, are
some of disadvantages of the model. This model has been extendedly used in different
studies related with atherosclerosis. However, more bibliography around the model
of CM using VSMCs and immune cells has been achieved, than to study the potential
relationship between EC–VSMCs. In term of VSMCs-immune cells interaction, features of
progression of atherosclerotic plaque has been described, such as, the role of macrophages-
soluble mediators on; VSMCs calcification [134,135], formation of lipid laden VSMCs [136],
vascular proliferative and migrative capacities [137–139] or ECM composition and neo-
angiogenesis [140].

Two-dimensional (2D) cell cultures EC–VSMCs (transwells, flow chambers). This method-
ology has been widely used, and it has the advantages of being technically simple, whilst
enabling microscopy examination, and easy isolation of pure populations without cell sorting.
Briefly, the methodology consists in one cell type cultured on the bottom of the plate and
the other one on the membrane filter. Distance and filter prevent cell–cell contact, although
some variants of the model admit cell culture at different sides of the filter membrane [141].
Moreover, the variability of the membrane pore size permitted in some case the interaction
between ECs and VSMCs and allows this in vitro model to be rutinary used in the vascular
remodeling studies to assess, migration, immune cell transendothelial, permeability studies,
or cell–cell paracrine regulation [28].

- Direct Coculture
The main limitation of indirect cocultures is the lack of cell–cell contact that is experi-

mented by cells in the vessel wall. It is not the case of the 3D models. Different variants
of 3D coculture models could allow one to study the three main types of cell interaction
that have been described previously: cell–cell contact, paracrine interaction, and cell-ECM
interaction, making up these models physiologically more relevant to study the patho-
logical and physiological vascular remodeling. Some examples of 3D coculture systems
are: EC–VSMCs spheroids, including direct cultures of ECs and VSMCs, or cultures of
ECs on extracellular matrix-like gels containing VSMCs (collagen scaffolds), and vascular
organoids created from induced pluripotent stems cells (IPs).

The spheroids model is based on the generation of suspended cell spheres using dif-
ferentiated cells. Studies in EC spheroids have described that oxidized phospholipid [142]
or supernatants of activated natural killer (NK) cells [143] promoted growth of capillaries
in the context of atherosclerosis lesion progression. Recently, the assessed of a spheroid
model of human endothelial and vascular cells has been used to study the impact of ECs
on the gene expression pattern of VSMCs [105]. In this model, different source of human
EC and VSMCs were cultured in suspended cell spheres, which spontaneously organized
into a central composite VSMCs core enclosed by a human EC monolayer. Interestingly,
3D interaction of ECs with VSMCs in this model downregulates expression of smooth
muscle-genes involved in cholesterol biosynthesis [144]. Moreover, the same spheroids
model, instead using myeloid cells from blood and myofibroblasts, was established to study
late atherosclerotic lesion (fibroatheroma) in vitro. Authors described how LDL affect cell
viability and contribute to population polarization in fibroatheroma [145]. Although, this
kind of model cannot address the complexity of the human vascular environment (shear
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stress, LDL–cholesterol variation, blood pressure etc.) it provides a tool for investigating
cellular interplay, sharing anatomopathological features with human native plaques. In
addition, other studies have tried to integrate relevant physiological factors into a vascu-
lar disease-mimicking tissue, resulting in a 3D tubular artery-like constructs formed by
collagen-rich extracellular matrix (as the tunica externa), VSMCs (as the tunica media), and
an EC lining (as the tunica interna). This new approach open questions in relation to the
gel scaffold used, the heterotypic cell–cell contact, or discrepancies in cell metabolic trends
in planar and tubular growth environments [146].

Although, these pre-clinical studies in vitro could eventually be used, unfortunately,
in many occasions failed to translate it into clinical efficacy, indicating that novel pre-clinical
systems are needed. Next step of complexity in the in vitro modeling is the 3D human-
derived blood vessel organoids described by Wimmer R 2 years ago [147]. This model
represents a promising “humanized bridge” for a proper pre-clinical research. Human
vascular organoids consist in the induction of pluripotent stem cells (hPSC) aggregates, and
subsequent differentiation into endothelial and pericytes in a 3D collagen I–Matrigel matrix,
to establish vascular networks [147]. These in vitro 3D human blood vessel organoids are
formed by self-organization, and exhibit morphological, functional, and molecular features
of human microvasculature. This system has been used to recapitulate the structure and
function of human blood vessels to study the regulators of vasculopathy diseases [148],
as in the case of diabetic vasculopathy [149]. Moreover, similar approaches of human
blood vessel organoid have been used to understand the way of entrance of SARS-CoV-2
infection in vascular cells [150]. In the future, the application of organoids will open the
door to new approaches of drug screening. Interestedly, the opportunity to establish new
human models of aortic diseases with the use of patient-iPSCs will offer possibilities for a
personalized medicine in some clinical fields.

Although, 3D models represent vessel wall architecture, these models do not reca-
pitulate the mechanical conditions of the native tissue, related with the hemodynamic
forces. Moreover, these hemodynamic conditions are necessary to determinate the cellular
alignment and organization of the native arterial vessel wall. Changes in blood flow are
critical in vascular remodeling and in EC–VSMCs organization and interaction. The ability
to integrate multiple cell types and flow systems in microfabricated devices enables tissue
engineering to introduce various atherogenic features. In this sense, a few numbers of
works have tried to generate dynamic 3D models under hemodynamic environment. Thirty
years ago the first in vitro gel-based coculture model for atherosclerosis allowed to study
the mechanism behind LDL-mediated macrophages transmigration using a gel-separation
coculture of EC and VSMCs [151]. Interestingly, other modalities of this model exist to
assess the interaction of mural cells (EC–VSMCs) with immune cells, and are also subject
to shear stress [130]. This last model revealed that hemodynamic shear stresses served
as modulator of the EC phenotype, and also played a critical role in transcriptional reg-
ulation of the VSMCs phenotype [152,153]. A model system with sequentially layered
VSMC/EC vessel-like constructs connected to a perfusion bioreactor have been used to
recapitulate physiological flow in relevant studies of vascular intervention, including bolus
drug administration, balloon deployment, and stent implantation [154]. Other model of
three-dimension coculture system in a stretchable microfluidic device was used to address
the effects of stretch and LDL on foam cell formation. It is based on three layers of poly-
dimethylsiloxane membrane capable of delivering nonuniform strain over EC, VSMCs, and
immune cells cultured on it [155]. This model of the hemodynamic EC–VSMC signaling
niche provides a controlled micro-platform to study EC–VSMC signaling in a physiological
or pathophysiological perturb hemodynamic environment, reflecting more appropriately
the tissue organization in vivo. Finally, EC–VSMC-signaling-on-a-chip allows co-culturing
of human aortic EC and aortic VSMCs, separated by a porous membrane, which enables EC–
VSMCs interaction and signaling under hemodynamic conditions [156]. Moreover, other
groups have tried to mimic hemodynamic and ECM stiffness factors during atheroscle-
rosis. Collagen-based hydrogel matrices with different densities have been employed to
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grow cells and recapitulate the porosity of early (low tissue density) and advanced (high
tissue density) atherosclerotic plaques [157]. Moreover, another microfluidic model was
described to study the earlies stages of atherosclerosis and foam cell formation, in which
EC and VSMCs cocultured in elastic membrane and embedded in the microfluidic device
are exposed to low-density lipoprotein and stretch [155].

4. Conclusions, Clinical Implications, and Future Directions

Communication between mural cells in blood vessels is fundamental for the correct
formation and function of the vasculature. In this review we have summarized how the
physical or paracrine EC–VSMCs communication give rise to the vascular-bed-specific char-
acteristics (Table 1), and how changes in this crosstalk are the main cause of pathological
vascular remodeling (Figure 1).

Table 1. Summary of the EC–VSMC crosstalk, define by different in vitro models.

EC–VSMC
Communi-

cation
Methodology Molecule/Signal

Pathway Results References

Paracrine Soluble
Factors

EC–VSMC coculture in
opposite sides of transwell

↑VEGF, PDGF-AA,
PDGF-BB, and

TGF-β in VSMCs
↓bFGF

Coculture affect gene and
protein expression of

angiogenic factors
[26–28]

Conditioned culture
media ↑TF

EC suppress the
proliferation of co-existing

VSMCs
[29]

Coculture flow chamber
system

↑ICAM-1,
VCAM-1 and

E-selectin gene
expression

Under static conditions,
coculture with VSMCs

induces adhesion proteins
expression in ECs

[30]

Coculture flow chamber
system ↑GRO-α, MCP-1

Under static conditions,
coculture with VSMCs

induces GRO-α, MCP-1 in
ECs

[31]

Microcarrier coculture
system LDL EC influenced VSMC’s LDL

metabolism [33,34]

Conditioned culture
media/Ex vivo aortic ring

eNOS, cGMP,
endothelin, AngII

Regulation of the vascular
tone [33,39,40,46]

Ex vivo aortic ring Perlecan
Mechanotransduction in EC

controls VSMCs
proliferation

[48]

Coculture flow chamber
system PDGF-BB

EC triggers proliferation
and migration of VSMCs

Synthetic VSMCs modulate
anti-angiogenic effect over

EC

[53,54,56]

Coculture flow chamber
system TGF-β1

EC modulates VSMCs
phenotypic switching and

extracellular matrix
synthesis

[55]

Spheroids coculture Ang-1/Ang-2 Desestabilization of the
quiescent endothelium [61]

In vitro model of a
vessel-like construct mTOR VSMCs regulates EC

response to flow and injury [68]
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Table 1. Cont.

EC–VSMC
Communi-

cation
Methodology Molecule/Signal

Pathway Results References

Extracellular
vesicles

Conditioned culture
media/Boyden chamber

assay

miR143/145
miR-206
miR-126

Endothelial EVs regulate
VSMCs phenotypic changes [79–86]

Conditioned culture
media/Boyden chamber

assay

miR-221/miR-222
miR-155

miR-1246, miR-182,
miR-486

VSMCs EVs regulate
endothelial permeability,
migration and vascular

calcification

[90–93]

Parenchymal
players

3D Bioprinted gelatin
hydrogel platform

Collagen I, IV,
fibronectin,

heparan sulfate
chains

Extracellular matrix
presentation modulates

VSMCs
mechanostransduction

[103–105]

Direct
contact

Myoendothelial
gap

junctions
(connexins)

EC–VSMCs coculture in
opposite sides of small

pore transwell

Second messengers
(Ca2+, IP3, camp)

Vascular
constriction-relaxation.

Phenotypic changes
[113–118]

Notch
signaling

EC–VSMC coculture in
opposite sides of small

pore transwell
Human-derived blood

vessels organoids

Notch3 receptor
BMPR2-Notch1

DII4 and Notch3

VSMCs phenotypic
switching, EC regeneration

and maintainer of EC
monolayer integrity

Regulators of diabetic
vasculopathy

[125–128,147–
149]

Spheroids coculture Ephrin-B2 VSCMs migration and EC
adhesion [129–131]

Spheroids coculture
24-

dehydrocholesterol
reductase

EC control VSMCs
cholesterol levels [144]

3D tubular artery-like
constructs

Glucose
metabolism

Investigation of late
atherosclerosis lesion [145,146]
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Figure 1. EC–VSMCs communication in a vessel wall. Schematic representation of: paracrine, extracellular vesicles,
ECM and direct cell–cell interaction. Dysregulation of EC–VSMC communication triggers the pathological vascular wall
remodeling associated to some CVDs.

Pathological vascular remodeling situation is usually asymptomatic and gives the face
by a late clinical event. Human samples coming from tissues biopsies, provides limited
information about the development of the lesion, and show only the tip of the iceberg of the
vascular injury. For that reason, further research should be directed at strengthening the
current understanding of interaction between VSMCs and ECs in co-culture models. This
could provide a major source of knowledge about vascular homeostasis in order to find
novel therapies in the prevention of vascular remodeling progression. Proteomic studies
in human tissue, conditional medium, or serum of patients with vascular remodeling
(atherosclerosis, AAA etc.) have revealed a huge battery of potential diagnostic markers
and are good approaches to screening for therapeutic targets [158–161]. Furthermore, in
human plasma, human EVs plasma levels are increased in individuals with higher risk
of cardiovascular events such as hypertension [162]. In addition, proteomic studies of
the exosomes cargo of patient serum have revealed promising biomarkers for remodeling
pathologies. Some studies have illustrated how the presence of miRNAs or other molecules
in circulating EVs of patient could acts as a type of messenger or signaling molecule,
and could serve as biomarkers of CVD [163]. Moreover, EVs, and especially exosomes,
possess some properties which are good for therapeutic delivery such as biocompatibility,
biological barrier permeability, low toxicity, and low immunogenicity [164]. However, the
development of in vitro vessel wall modeling would reduce costs, variability, and eventu-
ally allow for high-throughput molecular and drug screening. In addition, development
of organoid systems will improve our understanding of molecular mechanism and could
serve as a personalized therapy tool for vascular remodeling diseases patients.
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