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Abstract: Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders
characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent
hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response
to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible
Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative
stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of
myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs
remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation
in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel
alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge
about the hypoxia response pathway alterations in MDs and address whether such changes could
influence MD pathophysiology.

Keywords: hypoxia; myopathies; HIF-1α

1. Introduction

Muscular dystrophies (MDs) are a heterogeneous group of inherited degenerative
muscle disorders resulting in progressive muscle weakness and dystrophic histopathology
observed on muscle biopsies. Clinically, MDs are characterized by a high variability in
terms of age of onset, severity, and progression. MDs are also very heterogeneous in their
genetic features and the distribution of the affected muscles, including or not an impact
on cardiac or respiratory muscles as well as extra-muscular manifestations such as insulin
resistance.

Respiratory impairments are frequent MD clinical manifestations and associated to
hypoxemia in subgroups of patients [1–3]. At the tissue level, hypoxemia leads to cellular
hypoxia. In primary muscle disorders, the impact of hypoxia on muscle pathophysiology
remains poorly documented [4]. This is particularly surprising since several MDs are
known to cause chronic hypoxemia due to hypoventilation as a consequence of respiratory
muscle weakness.

The Nobel prize in Physiology or Medicine was awarded in 2019 to William G. Kaelin
Jr, Peter J. Ratcliffe and Gregg L. Semenza “for their discoveries of how cells sense and
adapt to oxygen availability” [5]. They uncovered the main effectors of the hypoxic
response, the HIF transcription factor family, and how oxygen-dependent post-translational
modifications of HIF-1/2 α lead to their degradation in normoxic conditions and their
activation in hypoxia. HIF factors (HIF-1, HIF-2, HIF-3) are heterodimers composed of an
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oxygen-regulated α subunit and a stable β subunit. HIF-1α and HIF-2α are considered as
the master regulators of the hypoxic response transcriptional program. Under normoxic
conditions, HIFα subunits are constantly expressed but rapidly degraded by a complex
mechanism. They are first hydroxylated by specific Prolyl Hydroxylase Domain-containing
enzymes (PHD). This reaction is oxygen-dependent, since the transferred hydroxyl group
is derived from the O2 molecule. This reaction also requires three cofactors, namely
2-oxoglutarate, vitamin C, and iron [6]. Then, the Von Hippel–Lindau (pVHL) E3 ubiquitin-
ligase recognizes hydroxylated HIFα forms and activates their ubiquitination leading to
their degradation by the proteasome. By contrast, under hypoxic conditions, PHD cannot
hydroxylate HIFα because of the decreased O2 availability, allowing for HIFα stabilization,
dimerization with HIF1β, and translocation into the nucleus. HIF factors then activate
the transcription of more than a hundred target genes through their binding to a specific
DNA sequence called Hypoxia Response Element (HRE) [7–10] (Figure 1 and Table 1).
HIF-1α and HIF-2α belong to the basic helix-loop-helix (bHLH) family of transcription
factors and exhibit a highly conserved structure and functional similarities. However, an
increasing number of studies point to differences in transcriptional regulation and function
in response to hypoxia and in disease states [11]. The role of HIF-3 is still debated since
its gene can express multiple variants exhibiting different activities, some of which were
reported as negative regulators of HIF-1/2α [12].
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Figure 1. Regulation of HIF pathway. Under normoxia, HIFα protein is hydroxylated
by PHDs and subsequently recognized by pVHL and degraded through the ubiquitin–
proteasome pathway. In hypoxia, PHD activity is inhibited by the decreased O2 levels and
thus HIFα hydroxylation. HIFα is therefore stabilized and translocated into the nucleus,
dimerizes with HIF1β, and activates the expression of hypoxia responsive genes with
additional transcriptional co-factors, such as CBP/P300. Ub = ubiquitin.
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Table 1. Main HIF-1α target genes and regulated pathways.

Regulated Pathways HIF-1α Target Genes

Angiogenesis and erythropoiesis VEGF and VEGF receptor FLT1,
heme oxygenase 1, NOS 2 and 3, PDGF

Metabolism
ALDA, ALDOC, ENO1, GAPDH, HK1, HK2,

LDH A, PFKL, PGK1, PKM, and TPI
GLUT-1, 3, 4, PDK1

Proliferation and survival Cyclin G2, TGFα and β3, IGF-2

Apoptosis BNIP3/3L, P53

Myogenesis WNT signaling

Compared to other oxygen-sensitive tissues such as the brain and heart, skeletal
muscles tolerate hypoxia quite well because of their plasticity. Indeed, they adapt their
metabolism and structural features (fiber size, muscle fiber type, mitochondrial activity,
myoglobin content) as well as blood supply (capillary density) in response to hypoxia,
a condition muscles encounter in non-pathological contexts e.g., physical exercise or
exposure to high altitude [13–15]. Obviously, muscle adaptation will strongly depend on
exercise training duration and modalities (resistive vs. endurant). While muscle response to
hypoxia has been studied in physiological conditions [16,17], the causes and consequences
of hypoxia or HIF-1α pathway activation in the particular context of MDs remain to be
clarified. In this review, we provide an overview of the potential causes of hypoxia in
skeletal muscle dystrophies. We also address how hypoxia or HIF-1α pathway activation
may influence skeletal muscle pathophysiology in MDs and discuss potential avenues for
future investigations and therapeutic options.

2. Causes of Hypoxia and HIF-1α Pathway Activation in MDs
2.1. Respiratory Complications in Muscular Dystrophy

Respiratory failure is a common feature in almost all forms of MDs and the main cause
of death in these patients, together with heart dysfunction (see Figure 2 and Table 2). It is
defined as the inability to perform adequately the fundamental function of the respiratory
system: i.e., to provide proper oxygenation (referred to as oxygenation failure) and carbon
dioxide elimination (referred to as ventilatory failure). Negative impact on respiratory
functions considerably impairs life quality and adds to the disease burden. While the
onset and the degree of respiratory impairment are variable according to the MD form
and progression, they are generally described to develop with disease severity and after
ambulation loss. It is also important to mention that, even among patients with the same
genetic disorder, there is a high variability in the age of onset, severity and progression
of the respiratory impairment [1,18–22]. Indeed, in some MDs such as Duchenne Muscu-
lar Dystrophy (DMD), Myotonic Dystrophy (DM) or Limb-Girdle Muscular Dystrophy
(LGMD), respiratory alterations appear at an early stage of the disease and are a part of
the pathological phenotype itself and a major cause of mortality and morbidity. However,
in MDs such as Facioscapulohumeral Muscular Dystrophy (FSHD) and Emery–Dreifuss
Muscular Dystrophy (EDMD), respiratory troubles are associated with long lasting or
severe disease [22].
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Table 2. Overview of respiratory involvement in muscular dystrophies. AD: autosomal dominant; AR: autosomal recessive; FVC: forced vital capacity; MEP: maximum expiratory pressure;
MIP: maximum inspiratory pressure; PCF: peak cough flow; FEV1: forced expiratory volume in 1s; PEF: peak expiratory flow; TLC: total lung capacity; NIV: non-invasive ventilation;
%VC: percentage of the predicted vital capacity; RV = residual volume; %p.v. = percentage of the predicted value; %c.v. = percentage of the control value. ↘ symbol means a decrease.

Muscular Dystrophy Pathogenetic Factors Clinical Characteristics Respiratory Impairment

Inheritance Affected Gene(s) Muscle Distribution Extra-Muscle
Manifestations Frequency Type

Early onset

Dystroglycanopathies
(Walker–Warburg, Fukuyama muscular
dystrophy, muscle–eye–brain disease)

AR
Dystroglycan and

glycosy transferase
enzymes genes

Primarily axial and limb
muscles

Structural brain
anomalies

Uncommon (12% in a
study on 115 patients)

[23]

Nocturnal hypoventilation and acute respiratory
failure

↘ FVC (27 patients) [24]

Laminin-deficient muscular dystrophy AR LAMA2 Primarily upper limbs
Diffuse white matter

hyperintensities on brain
MRI and seizures

Frequent (30% of
patients with complete
laminin-a2 deficiency)

[25]

Skeletal muscle weakness (including intercostal and
accessory muscles), scoliosis and decreased chest wall

compliance.
Alveolar hypoventilation, mucus plugs with bronchial

obstruction and atelectasis
↘ FVC (59 patients) [26]

SEPN1 myopathy (muscular dystrophy
with rigid spine syndrome) AR SEPN1

Early rigidity of the spine
and joint contractures of

the ankle and elbow
Rigid spine, scoliosis

Frequent; early
81.7% requiring

ventilation (132 patients)
[27]

Diaphragmatic weakness
↘ FVC by 24 ± 7% (7 patients) [28]

Ullrich muscular dystrophy AR COL6A1, COL6A2,
COL6A3

Primarily axial and limb
muscles

Rigid spine, laxity of
distal joints Frequent; early Diaphragmatic weakness

↘ %VC (40 patients) [29]

Childhood and Adult

Duchenne muscular dystrophy X-linked R Dystrophin

Proximal lower limb and
truncal weakness, followed
by of upper limb and distal

muscle weakness

Educational and
psychosocial issue,

scoliosis,
cardiomyopathy and

arrhythmias

Frequent

Vital capacity (% predicted) decreases linearly, due to
inspiratory and expiratory muscle weakness.
Obstructive sleep apnea and hypoventilation.

Nocturnal desaturation correlated to the severity of
scoliosis.

↘ FVC, FEV1 and PEF (115 subjects) [30]

Becker muscular dystrophy X-linked R Dystrophin Same as DMD but with a
milder phenotype

Less common than in
DMD Rare Lung restriction sometimes occurs

but less severe than in DMD

Emery–Dreifuss muscular dystrophy Variable depending on
type

EMD, FHL1, LMNA,
SYNE1, SYNE2

Slowly and progressive
humeroperoneal pattern

Cardiac conduction
block, insulin resistance,

rigid spine

Frequent; typically in
adulthood

Restrictive pattern of respiratory impairment
↘ FVC to 60 and 45%p.v. (measured in 2 patients) [31]
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Table 2. Cont.

Muscular Dystrophy Pathogenetic Factors Clinical Characteristics Respiratory Impairment

Inheritance Affected Gene(s) Muscle Distribution Extra-Muscle
Manifestations Frequency Type

Facioscapulohumeral
dystrophy

FSHD1

AD

DUX4,
Facial,

shoulder, scapular, arm
progressive and

asymmetric weakness

Retinal vasculopathy
and symptomatic

sensorineural hearing
loss

First described as
uncommon, 1–3%
require NIV [32].
↘ FVC in 38.3% and
severely restrictive in

14.9% [33].

Expiratory and diaphragmatic muscle weakness and
obstructive sleep apnea

↘mean FVC to 69%p.v. in non-mild disease (40.2%p.v.
in early onset), minimum 33%p.v. (adult) and 11%p.v.

(early onset) [33]
↘MIP (69%c.v.), MEP (53%c.v.) and PCF (60%c.v.) [34]

FSHD2
Digenic: DUX4 + either
SCHMD1, DNMT3B or

LRIF1

Limb girdle muscular dystrophies AR more frequent than
AD

Sarcoglycan,
Dystroglycan,

Telethonin, Titin, etc.

Variable but mostly
proximal weakness

Cardiomoypathy
(common in sarcoglycan

deficiency and
dystroglycano pathy)

Common in sarcoglycan

Respiratory insufficiency due to diaphragmatic
weakness

Restrictive pulmonary syndrome indicated by
TLC < 80%p.v. (13/38 patients) [35]
FVC below 40%p.v. (20/38 patients)

↘ PEF (38 patient study)

Myotonic dystrophy AD DMPK, CNBP Distal slowly progressive
weakness

Cardiac dysrhythmia,
particularly heart block Common

Sleep apnea syndrome and
excessive daytime sleepiness
↘MEP (21 patient study) [36]
↘ FVC, VC, TLC, RV, FEV1 [37]
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failure in these diseases [21,22]. Cough is the corner stone of secretion clearance in the 
lung and upper airways. Deep inspiration, closure of the glottis, high intrathoracic pres-
sure and expiratory flow are needed to allow its efficacy. Presence of an inspiratory mus-
cle weakness and decreased chest wall compliance prevent patients from taking the deep 
breath required for an effective cough. Moreover, bulbar muscles are critical to keep the 
glottis closed at the beginning of the expiratory phase (allowing the huge increase in ex-
piratory pressure). Finally, the high expiratory pressure is generated by the strength of 
expiratory muscle contraction that is frequently reduced in MDs. Inspiratory, expiratory 
and bulbar muscle weakness in MDs, therefore, prevent efficient cough and lead to secre-
tion retention [22,38,39]. For instance, in DMD, the composition and volume of secretion 
are globally normal, but the cough effectiveness is altered in the inspiratory and expira-
tory cough phases due to muscular weakness. Indeed, the inspiratory phase is impaired 
due to diaphragmatic weakness which prevents high lung volumes to be reached. The 
expiratory phase is the most affected because, in addition to rib cage expiratory muscle 
weakness, the scoliosis adds supplemental mechanical disadvantages [40]. Expiratory 
muscles are also significantly weakened in some patients with FSHD, but an alteration of 
the ability to clear secretions from the lung has not been shown [34]. Ineffective cough also 
decreases the clearance of upper airways favoring benign upper-respiratory infection [41]. 
However, in association with a swallowing impairment due to the bulbar upper airway 
muscle dysfunction, the stagnation of secretion at this level leads to their chronic aspira-
tion in the bronchi and the recurrence of pulmonary infection [21,22,42]. 
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Figure 2. Diagram summarizing the three main causes of respiratory disturbances in MDs. (1) The main cause of lung
failure is recurrent pneumonia usually secondary to cough inefficiency or chronic aspiration. (2) Respiratory pump failure
is associated to respiratory muscle weakness (decreased pressure generating ability) combined to low respiratory system
compliance (increased work of breathing). (3) Obstructive sleep apnea syndrome (OSAS) is also a common respiratory
impairment, weakness of upper airway muscle enabling the inspiratory airway closure.

Respiratory failure in MDs can be classified into two forms mainly determined by the
cause of the respiratory impairments: lung failure and failure of the respiratory system
pump [21].

Basically, respiration is based on the exchange and renewing of gas in the lung.
Preventing aspiration of fluid and secretions in the lung and maintaining airway clearance
ensure the protection of these physiological processes. Most of the MDs favor these
alterations leading to mucus accumulation, obstruction of the bronchi with atelectasis and
lower airway infection. Recurrence of pneumonia is then the main cause of pulmonary
failure in these diseases [21,22]. Cough is the corner stone of secretion clearance in the lung
and upper airways. Deep inspiration, closure of the glottis, high intrathoracic pressure
and expiratory flow are needed to allow its efficacy. Presence of an inspiratory muscle
weakness and decreased chest wall compliance prevent patients from taking the deep
breath required for an effective cough. Moreover, bulbar muscles are critical to keep the
glottis closed at the beginning of the expiratory phase (allowing the huge increase in
expiratory pressure). Finally, the high expiratory pressure is generated by the strength of
expiratory muscle contraction that is frequently reduced in MDs. Inspiratory, expiratory
and bulbar muscle weakness in MDs, therefore, prevent efficient cough and lead to secretion
retention [22,38,39]. For instance, in DMD, the composition and volume of secretion are
globally normal, but the cough effectiveness is altered in the inspiratory and expiratory
cough phases due to muscular weakness. Indeed, the inspiratory phase is impaired due to
diaphragmatic weakness which prevents high lung volumes to be reached. The expiratory
phase is the most affected because, in addition to rib cage expiratory muscle weakness,
the scoliosis adds supplemental mechanical disadvantages [40]. Expiratory muscles are
also significantly weakened in some patients with FSHD, but an alteration of the ability to
clear secretions from the lung has not been shown [34]. Ineffective cough also decreases
the clearance of upper airways favoring benign upper-respiratory infection [41]. However,
in association with a swallowing impairment due to the bulbar upper airway muscle
dysfunction, the stagnation of secretion at this level leads to their chronic aspiration in the
bronchi and the recurrence of pulmonary infection [21,22,42].
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On the other side, ventilation is also frequently compromised in MDs due to respira-
tory pump failure. Respiratory muscle contraction generates a change in airway pressure
allowing the movement of air through an open airway, increasing or decreasing lung
volume depending on the activated muscles. This pressure generating ability is influenced
both by the force generated by the muscle and by the elastic properties of the respiratory
system. The elastic recoil of the respiratory system can be appreciated by measuring its
compliance, that is its change in volume per unit change in the pressure exerted on it
(and is the sum of the compliance of the chest wall and of the lung). When MDs affect
respiratory muscles, their pressure generating ability decreases (usually called respiratory
muscle weakness), reducing their potential to inflate or deflate the lungs. In addition,
MDs also reduce the compliance of the respiratory system increasing the load against
which the respiratory pump must operate [22]. Factors which increase the respiratory load
involve low lung compliance and altered elastic properties of the chest wall. Causes of
the reduced lung compliance are unclear. Some hypotheses have been proposed such as
an incomplete maturation of lung tissue, micro- or macro-atelectasis (alveolar collapse)
induced by hypoventilation, increase in alveolar surface tension and fibrosis. Concerning
the increased stiffness and the decreased compliance of the chest wall, a combination
of factors including muscle atrophy and osteoporosis (both consequences of inactivity),
extra-articular contractures, progressive degeneration of articular cartilage and last but not
least kyphoscoliosis could contribute to this phenomenon [1,21,22]. For instance, severe
reductions in the chest wall compliance have been reported in patients with DMD and seem
to be secondary to scoliosis. Indeed, statistically these patients lose 4% of their forced vital
capacity (the maximal volume of gas that can be in- or ex-haled from the respiratory system)
per year with a supplemental 4% decrease for each scoliosis severity degree reached [43].
In LAMA2 Muscular Dystrophy (MDC1A), respiratory involvement is characterized by a
progressive restriction of the chest wall involving weakness of the intercostal and accessory
muscles. In early stage, thoracic stiffness appears and chest wall compliance decreases [44].
Altogether, lung and chest wall compliance defect increase the muscle force needed to
change lung volume. The respiratory work of breathing is therefore increased. As disease
evolves, an imbalance appears between the load that has to be overcome and the capacity
to overcome it, contributing to respiratory muscle fatigue and, ultimately, to respiratory
failure [22].

The main consequence of respiratory failure is hypoxemia. The resulting cellular
hypoxia can be divided into two forms determined by the dynamics of oxygen deprivation.
First, chronic hypoxia (CH), is mainly caused by lung failure and characterized by low
oxygen saturations for prolonged periods. Second, chronic intermittent hypoxia (ChIH),
usually associated to obstructive sleep apnea syndrome (OSAS) describes transient O2
reduction followed by reoxygenation periods [17,45]. Upper airway and respiratory mus-
cle weakness are both involved in sleep-related breathing disorder (SRBD) in MDs. A
high body mass index (BMI), tongue muscle weakness (especially in DM [46]) as well as
craniofacial abnormalities favoring anatomical defects, can predispose patients to upper
airways obstruction and OSAS during sleep. During REM (rapid eye movement) sleep and
in NREM (non-rapid eye movement) deep sleep, upper airway resistance increases because
the tone of skeletal muscles such as pharyngeal dilator falls. The resulting obstruction
impairs airflow through the airways. The direct consequence is a desaturation leading to
micro-awakening allowing reoxygenation: multiple repetitions of this sequence cause sleep
fragmentation and daytime sleepiness [18,22]. On the other hand, the reduction of muscle
tone also affects inspiratory muscles. While this reduction has a limited effect in normal
subject, in MDs with muscle weakness and decreased compliance of the respiratory sys-
tem, it induces a reduction of the tidal volume, contributing to nocturnal hypoventilation.
In addition, lying in a supine posture contributes to this hypoventilation by placing the
weakened muscles in an adverse mechanical condition (resulting in early symptoms of
orthopnea). Four stages have been described concerning the evolution of respiratory failure
in these patients: (1) SRBD, (2) hypercapnia (PaCO2 above 45 mm Hg) and/or hypoxemia
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(PaO2 lower than 60 mmHg) only during sleep REM phase, (3) hypercapnia and/or hy-
poxemia also during NREM sleep phase, and ultimately (4) diurnal chronic respiratory
insufficiency [18]. According to the MD form, the onset of respiratory insufficiency can be
subtle and underdiagnosed, underlining the importance of an early respiratory monitoring
and management of SRDB in patients with MDs. Nocturnal oxygen desaturation is indeed
associated with a worse prognosis [47]. In FSHD, respiratory involvement has first been
considered as a rare manifestation of the disease associated to severity. A study reported
a very low prevalence in patients with only 1% requiring home ventilatory support [48].
However, increasing evidence suggests that a nocturnal respiratory support is necessary in
a larger proportion of them (around 40%). Notably, a study involving 31 patients reported
that half of them presented OSAS [20,49,50]. SRBDs were also reported in DM, even in the
absence of typical OSAS symptoms such as excessive daytime sleepiness, highlighting the
need of a polysomnographic evaluation in those patients [51].

2.2. Muscle Ischemia

Muscle ischemia is a condition encountered in MDs associated to vascular dysfunction
and altered angiogenesis. The inadequate supply of nutrients and oxygen to the muscles
is associated to a decreased removal of waste products [52]. HIF-1α is stabilized during
ischemia, leading to transcriptional activation of target genes that lead to vascular growth
such as those encoding vascular endothelial growth factor (VEGF) and endothelial nitric
oxide synthase (eNOS) [53].

Duchenne and Becker muscular dystrophy (DMD and BMD) are X linked disorders
involving devastating muscle wasting. Both DMD and BMD are caused by mutations
in the gene encoding dystrophin, a cytoplasmic cytoskeletal protein localized below the
sarcolemma that it stabilizes. Dystrophin is also a scaffolding protein that acts as a mechan-
ical link between structural and signaling proteins, forming a large and highly organized
glycoprotein complex called DGC (dystrophin-associated glycoprotein complex) [54]. The
muscle-specific isoform of neuronal nitric oxide synthase (nNOSµ) is part of this complex.
NO produced by this sarcolemmal nNOSµ normally acts as a local paracrine signal that
enhances blood flow in the active muscles by decreasing sympathetic vasoconstriction.
This protective mechanism called functional sympatholysis, is impaired in DMD/BMD
and results in a muscle ischemia because sympathetic vasoconstriction is not inhibited [55].
Indeed, in DMD, dystrophin deficiency causes nNOSµ mislocalization, leading to the re-
duction of the paracrine signaling from muscle-derived NO to the microvasculature, which
makes the muscle fibers more susceptible to functional ischemia during exercise. Moreover,
a reduction in capillary density has been reported both in patients with DMD and in
the mdx mouse model (spontaneous non-sense mutation in exon 23 of the dystrophin
gene [56]), associated to an enlargement of the remaining capillaries [57,58]. Another
study showed that angiogenesis was impaired in mdx mice [59]. Taken together these data
suggest that DMD is associated to a defect in vascular function and angiogenesis, and that
the muscles are undergoing an ischemic condition. Moreover, mdx mouse satellite cells
(SC) present lower angiogenic capacity, as shown by their decreased Vegf expression. This
decrease appears linked to a lower Hif-1α expression in SCs [60]. Therefore, angiogenesis
is currently considered as a novel therapeutic target for DMD [61,62] and administration
of angiogenic factors, including VEGF and FGF, has been tested as potential treatment
to enhance vascularization in ischemic diseases [63]. According to the authors, targeting
HIF-1α, which is known to have pro-angiogenic activity, may represent a superior thera-
peutic approach due to the multiple pro-angiogenic pathways it controls. Indeed, blood
vessels formed in pathological conditions (such as in tumor or hypoxic wounds) typically
are tortuous, and leaky. This abnormal phenotype is often observed experimentally when
inducing angiogenesis with a single agent, such as VEGF and as in Vegf overexpressing
mice [64]. On the other hand, mice expressing constitutively active forms of Hif-1α and
Hif-2α are also hypervascular, but present normal blood vessel phenotype [65].
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In FSHD, a histopathological study on patient muscle biopsies suggested a decrease
of capillary density [66]. Interestingly, patients affected with infantile FSHD can present
exudative retinopathy due to retinal telangiectasias [67,68]. Moreover, as mentioned above,
the pathways of HIF-1α and hypoxic signaling response [69–73] as well as angiogenesis
were found upregulated in FSHD muscle gene expression profiles [74]. Such deregulations
may be involved in mechanisms underlying retinal blood vessel disorder in FSHD. How-
ever, the link between DUX4, the causal gene of FSHD, the microvascular abnormalities
and the consequences of this capillary density defect (e.g., ischemia) remain unclear. In
addition to DMD and FSHD, muscle capillary alterations were also reported in other
MDs such as dystroglycanopathies. In Fukuyama type congenital MD, vascular modifica-
tions were described such as vessel basement membrane replication, blister-like swelling
of endothelial cells, and platelet adhesion and aggregation in small blood vessels [75].
Capillary impairments in the eyes were also reported in another congenital MD called
muscle–eye–brain [76,77].

Vascular alterations in MDs could thus be responsible for the activation of hypoxic
response pathways in skeletal muscle due to lack of oxygen supply associated to ischemia.
This could then lead to HIF-1α stabilization in skeletal muscle whose consequences are
discussed below (Section 3).

2.3. MD Primary Genetic Defect

As described above, HIF factors are stabilized under hypoxia in healthy tissues where
they promote physiological adaptive mechanisms [78]. However, hypoxia and HIF-1α
activation were also shown involved in pathological mechanism and have been particu-
larly studied in the cancer field. Detailed mechanisms were previously reviewed in [79].
Interestingly, an aberrant induction of HIF-1α and HIF-2α expression or stabilization were
also reported independently from hypoxia. This condition, named “pseudohypoxia”, was
also mostly described in cancer, notably associated to mutations in the gene encoding
pVHL [80]. Moreover, recent data highlighted such pseudo-hypoxic patterns in some MDs.

Indeed, recent studies identified the HIF-1α pathway as critically disturbed in FSHD.
FSHD is characterized by a progressive and often asymmetric skeletal muscle weakness.
The underlying molecular mechanism is complex and involves both genetic and epigenetic
components leading to the activation in skeletal muscle of DUX4 (Double Homeobox 4),
a gene normally only expressed in germline and early embryogenesis. DUX4 encodes
a potent transcription activator that has a causal role in FSHD pathophysiology [81–83].
Several DUX4 direct targets were identified in murine or human myoblasts but the complete
DUX4 network is not completely known and mechanisms by which its stochastic expression
in very few myonuclei leads to muscle weakness still have to be clarified [84,85]. Meta-
analyses integrating gene expression data with known protein interactions identified
the hypoxic response pathway as one of the main rewired networks in FSHD muscle
biopsies [69,70]. These data confirmed previous transcriptomic studies that had described
HIF-1α-signaling as one of the over-represented pathways among FSHD dysregulated
genes [71]. Additional confirmation recently came from a genome-wide CRISPR-Cas9
screen performed to identify genes whose loss-of-function would allow survival of muscle
cells expressing DUX4. Several genes of the hypoxia response pathway were found as
drivers of DUX4-induced cell death [72]. Recent data mining studies have found that
besides DUX4 target gene activation FSHD muscle biopsies presented a specific inhibition
of the target gene signature of the muscle-specific transcription factor PAX7. Of interest,
HIF-1α gene expression is normally inhibited by PAX7 and PAX7 inhibition could thus
contribute to HIF-1α increase in FSHD muscles [70,86] (reviewed in [87]). In addition to
the primary genetic defect, and a putative direct impact of DUX4 on HIF-1α signaling,
additional indirect activation could occur since a subgroup of patients with FSHD also
present respiratory insufficiency.

HIF-1α was also found deregulated in other muscular disorders such as DMD but this
activation is probably an indirect consequence of other pathophysiological processes such
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as inflammation, oxidative stress, angiogenesis and muscle regeneration. These points are
discussed below (Section 3).

3. Consequences of Hypoxia and HIF-1α Pathway Activation on Skeletal Muscle

Skeletal muscles are continuously requiring oxygen supply to ensure their functions
in motion, postural stabilization and breathing. They consume an important proportion
of the whole-body oxygen uptake. If the local oxygen needs exceed the available supply,
hypoxic stress occurs and compensatory mechanisms are activated which are collectively
named hypoxia stress response pathways. The physiological activation of these pathways
leads to the induction of multiple effector genes that modulate various cellular processes
such as glucose metabolism and oxidative stress [17,78,88,89]. In skeletal muscle, hypoxia
has been shown to modulate not only muscle fiber type profile but also myogenesis and
regeneration [90–92].

3.1. Impact on Myogenesis and Regeneration

Along with their high plasticity, skeletal muscles possess a very efficient regenerative
capacity. Only weeks after a complete destruction of fiber integrity, skeletal muscle structure
and function can be completely restored [93]. The skeletal muscle regeneration process is
carried out by several cellular and molecular events that lead to the restoration of muscle
mass, muscle vascularization, and innervation, as well as the recovery of its contractile
function [94]. It is important to underline that even if skeletal muscle regeneration shares
some similarities with embryonic myogenesis [90,91], they differ in some aspects of their
regulatory processes. Indeed, genetic requirements, e.g., their dependency on myogenic
factors such as Myogenin and PAX7, are different for embryonic, fetal, post-natal and
adult regenerative myogenesis [95–97]. The main mediators of muscle regeneration are
myogenic progenitors called satellite cells (SCs) localized between the sarcolemma and
the basal membrane of muscle fibers. Under resting conditions, SCs are quiescent and
express markers such as PAX7 and MYF5. After muscle injury, SCs are activated by various
signals coming from the damaged area. Activated SCs (MYF5+) then migrate toward the
injury site and begin to proliferate by symmetric division. A subset of SCs (MYF5−) can
undergo self-renewal to replenish the SC pool either through symmetric or asymmetric cell
divisions. At this stage, these cells are called myoblasts and express the myogenic markers
PAX7, MYF5, and MYOD. After the proliferation phase, myoblasts differentiate into mature
myocytes characterized by a decreased expression of PAX7 and MYF5, and by an increase
in MYOG (Myogenin-encoding gene) and MRF4 expression. Finally, myocytes fuse either to
form multinucleated myotubes or to repair the damaged myofibers (for review see [91])
(Figure 3). In addition to the central role of SCs, muscle regeneration is a highly regulated
process involving the coordinated action of additional cell types, including fibro-adipogenic
progenitors, endothelial cells and macrophages [98].
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promote myogenesis by increasing Myod expression through the WNT pathway [101].

Stem cells in both embryonic and adult organisms frequently reside in hypoxic micro-
environments called hypoxic niches. A reduced oxygen level seems critical for the regu-
lation of stem cell activity including their self-renewal, proliferation, and differentiation.
Myogenic progenitor cells are also present in a hypoxic environment during embryonic
development. Indeed, human development is characterized by a “physiological hypoxia”
inducing a HIF-dependent transcriptional coordination of numerous genes [102]. More-
over, HIF-1α is involved in mechanisms governing the quiescence of tissue-resident stem
cells [103]. Since SCs are considered skeletal muscle progenitors, it is reasonable to hypoth-
esize that the oxygen level and HIF-1α pathway can affect their activity during embryonic
myogenesis and adult regeneration processes [99].

In normoxic conditions, Hif-1α can be detected in skeletal muscle but its protein
level is dependent on the muscle fiber type [104]. A recent study in vivo showed that
Phd2-deficency and the subsequent Hif-1α accumulation in mice enhanced and accelerated
skeletal muscle regeneration after a myotrauma [100]. In this model, the authors also
described an accelerated macrophage recruitment to the injured area [100]. Myotrauma
was also reported to induce a hypoxic microenvironment leading to Hif-1α accumulation in
myofibers and myeloid cells. In muscles of myeloid Hif-1α KO mice, myoblast proliferation,
regenerating fiber growth and macrophage invasion were delayed after trauma [105]. In
addition, Hif-1α silencing in C2C12 muscle cells or its chemical inhibition by echinomycin,
significantly altered the differentiation process as shown by the decrease of Myog and
Myosin heavy chain (MHC) expression [101]. Taken together, these studies suggest that
HIF-1α is necessary for myogenic differentiation under physiological conditions (Figure 3).

The influence of oxygen levels on myoblast differentiation into myotubes in vitro has
been widely studied but many discrepancies exist among publications in the field. First, the
effect of hypoxia on myoblast differentiation in vitro appears to be strongly dependent on
the depth of hypoxia. Indeed, several publications have demonstrated that a low oxygen
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level (O2 ≤ 1%) had harmful effects on myogenic differentiation [106–111]. For instance,
the use of a chemical hypoxia-mimicking agent, namely cobalt chloride, inhibited C2C12
myoblast differentiation in a dose-dependent manner through downregulation of the
myogenic factor Myogenin [112] while a moderate hypoxia could promote differentiation
of C2C12 muscle cells [113]. However, depending on the dose of chemical compound
used to stabilize HIF-1α and on the studied cell line, HIF-1α-independent side effects
might be observed such as apoptosis, disruption of the mitochondrial transmembrane
potential, upregulation of the voltage-dependent anion channels [114]. Hypoxia (1% O2)
promoted the differentiation of bovine primary myoblasts whereas the differentiation of
C2C12 myoblasts was compromised, underlining the influence of the myogenic lineage
type [115]. To summarize, the effects of hypoxia on myogenic differentiation are not com-
pletely understood, and discrepancies between studies are likely related to the different
experimental parameters used such as the duration, the depth and the type of hypoxia
(chemical, normo/hypobaric) as well as the myogenic lineage used (e.g., immortal cell line
vs. primary cells, species (e.g., mouse vs. human), culture media) (Table 3). Finally, it is
important to underline that cell cultures are usually performed in a humidified 95% air
atmosphere, supplemented by 5% CO2, providing about 20% O2. In such hyperoxic envi-
ronment, cells were shown to reset their normoxic set-point by downregulating PHD [116].
Those conditions, thus commonly considered as “normoxia” are not representative of O2
partial pressure in tissues in vivo that results from the balance between oxygen supply and
consumption. In skeletal muscle, the physiological range of O2 level (termed “physioxia”)
is significantly lower than 20% (4% O2) [117–120]. The interpretation and translation to
whole organisms of data obtained in vitro have to be made with caution by taking into
account that cellular and molecular reactions to hypoxia may differ from those occurring
in vivo.

Table 3. Effect of hypoxia on myogenesis in vitro.

Experiments In Vitro

Species Cell Type Way of HIF-1α
Stabilization Effect on Myogenesis Ref.

Mouse C2C12

Hypoxia at 5% O2 No effect

[106]Hypoxia at 2% O2 ↘ differentiation with
↘Myod and Myog

expression
Hypoxia at 0.5% O2

Hypoxia at 0.01% O2

Mouse C2C12 Hypoxia at 0.5% O2
↘ differentiation with

↘Myod, Myog and Mhc expression [107]

Mouse C2C12 Hypoxia at 1% O2

↘ differentiation with
↘Mhc expression dependent on

notch signaling
[108]

Mouse Primary myoblast Hypoxia at 1% O2
↘ differentiation through

p53-dependent induction of Bhlhe40 [109]

Mouse C2C12 Cobalt chloride
↘ differentiation with
↘myoblast proliferation,
↘Myog expression

[112]

Mouse C2C12
Hypoxia at 5% O2

↘ differentiation with
↘Myod, Myog and Mhc expression [113]

Hypoxia at 10% O2 ↗ differentiation with hypertrophy
and↗Myog and Mhc expression

Hypoxia at 15% O2

Mouse C2C12 Hypoxia at 1% O2

↘ differentiation with
↘Myod, Myf5, Myog and Mhc

expression
[111]

Rat L6 Hypoxia at 1% O2

↘ differentiation with
↘myoblast proliferation and↘

myogenic index
[110]
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Table 3. Cont.

Experiments In Vitro

Species Cell Type Way of HIF-1α
Stabilization Effect on Myogenesis Ref.

Rat L6E9 Hypoxia at 1% O2

↘ differentiation with
↘Myod, Myf5, Myog and Mhc

expression
[111]

Human Primary myoblasts Hypoxia at 1% O2

↘ differentiation with
↘myoblast proliferation and↘

myogenic index
[110]

Bovine SCs Hypoxia at 1% O2

↗ differentiation with
↗ SC proliferation and

↗Myod, Myog and Mhc expression
[115]

↘ symbol means a decrease. ↗ symbol means an increase.

Since studies have shown that the oxygen level regulated myoblast differentiation into
multinucleated myotubes in vitro [106–113,115], the next question was whether hypoxia
could affect skeletal muscle regeneration in vivo. In a model of soleus muscle injury induced
by notexin in rats, prolonged hypobaric hypoxia (28 days at 10% FiO2 (fraction of inspired
oxygen)) was found to repress the early regeneration process. This repression could be
linked to an attenuation of the increase of MyoD and Myog expression by hypoxia during
the first week of regeneration [121]. In another study hypoxia was mimicked during skeletal
muscle regeneration in rats by using dimethyloxalylglycine (DMOG) to stabilize Hif-1α
in injured fibers. DMOG induced a defect in the activation of the myogenic factor genes
Myf-5 and Myog [122]. Altogether, those data suggested that contrary to Hif-1 stabilization,
notably through Phd2 deficiency, severe and prolonged hypoxia as well as the chemical
hypoxia-mimetic DMOG had a negative impact on myogenic differentiation during muscle
regeneration in vivo [122–124].

Dystrophic muscles are characterized by an altered regeneration capacity along with
chronic inflammation and fibrosis. Data pointing towards SC implication in MDs are accu-
mulating, but SC contribution to muscle pathophysiology is not precisely understood [125].
Interestingly, the number of SCs was found similar in FSHD and healthy muscles [66].
Active regeneration was demonstrated in FSHD muscle biopsies by two criteria: (i) in-
creased transcriptional expression of regeneration markers consisting of 200 human genes
associated with myogenesis; (ii) presence of regenerating fibers as shown by immunola-
beling for developmental myosin heavy chain [126]. However, the progressive muscle
wasting observed in patients implies that this regeneration is not sufficient to prevent
dystrophic changes. In another study, the proteomic profile of interstitial fluids in patient
muscles showed a downregulation of structural muscle proteins and of the plasminogen
pathway. Along with the inhibition of myogenic factors, this study suggested that muscle
regeneration was impaired in FSHD, along with an increased fibrosis [127]. Hypoxia and
HIF-1α were found involved in the establishment of muscle fibrosis through crosstalk with
profibrotic factors, such as Transforming Growth Factor β (TGF-β) [88]. In DMD, muscles
undergo repeated cycles of degeneration and impaired regeneration resulting in muscle
wasting, fibrosis and fat accumulation [128]. A study focused on DMD and using mRNA
profiling with large-scale data integration found that TGF-β–centered networks strongly
associated with fibrosis and regeneration alteration. It also highlighted HIF-1α as a notable
component of this network [129,130]. Besides their role in muscle regeneration, SCs con-
tribute to the revascularization of damaged muscles by secreting angiogenic factors such
as VEGF. Moreover, when microvascular fragments (composed of endothelial, pericyte,
and smooth muscle cells) were co-cultured with SCs, they presented stronger angiogen-
esis capacity than when cultured alone [131]. Another study suggested that Hepatocyte
Growth Factor (HGF) played a role in SC-mediated angiogenesis. In the mdx mouse model,
Hif-1α and Vegf expression were found decreased in proliferating SCs from dystrophic
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muscles compared to wild-type mice. This indicates that mdx dystrophic muscles present
a decreased SC angiogenic capacity, partly through mechanisms involving a decreased
Vegf expression [60] and contributing to the regeneration defect in DMD. Finally, in some
MDs, the pathogenic mutation resulting in myofiber wasting also directly impairs SC
function and consequently alters the regeneration process. For instance, DMD muscles are
characterized by degeneration/regeneration cycles leading to a muscle micro-environment
presenting endomysial fibrosis, chronic inflammation and fatty infiltration. Altogether, this
creates a hostile niche which could impact SC-mediated repair process [132]. In aggregate,
these data demonstrate a key role for HIF-1α activation in myogenesis and healthy muscle
regeneration. We could therefore hypothesize that either low or excess HIF-1α activation
could contribute to MD muscle pathology by limiting regeneration or favoring fibrosis.

3.2. Ultrastructural Modification

Skeletal muscles are composed of different fiber types classified according to their
metabolic and contractile properties. Slow-twitch oxidative (SO) fibers referenced as type I
are rich in mitochondria, myoglobin (involved in oxygen storage) and are characterized by
a high capillary density. They have a strong resistance to fatigue and rely predominantly
on oxidative phosphorylation to produce their energy. Fast-twitch glycolytic (FG) fibers
referenced as type II show low mitochondrial content and are more prone to fatigue.
Finally, fast-twitch oxidative glycolytic (FOG) fibers are characterized by intermediate
properties [133]. Over the past 25 years, modifications in the composition of myofiber
types were described in conditions of pathological hypoxia, such as obstructive sleep apnea
syndrome (OSAS) and respiratory failure observed in subgroups of patients with MDs [22].
A slow-to-fast fiber-type transition occurred in the lower limb muscles during chronic
obstructive pulmonary disease (COPD) and in upper airway muscles during OSAS. Several
factors were suggested to explain this transition.

In physioxia, Hif-1α is significantly expressed and stabilized in skeletal muscle but
Hif-1α gene expression and protein level depend on the muscle fiber type. Indeed, higher
Hif-1α mRNA and protein levels were detected in predominantly glycolytic muscles,
namely the gastrocnemius and quadriceps, as compared to oxidative muscles such as the
soleus [104]. The authors linked these Hif-1α protein variations with the myoglobin content
of myofibers that is higher in oxidative muscles than in glycolytic ones. It is important to
remind that skeletal muscle myoglobin acts as an intracellular oxygen buffer and constitutes
an oxygen reservoir even at low PO2. Hif-1α was found critical in a slow-to-fast myofiber
switch, but some discrepancies remain among studies. In transgenic mice with a skeletal
muscle-specific Hif-1α gene inactivation, the proportion of type-IIa fibers was slightly
reduced in soleus muscles as compared to the control mice and thus suggests a slightly
slower fiber-type profile. Interestingly, fiber-type profile from gastrocnemius muscles did
not vary between the two groups. This study also showed that endurance performance
was better in Hif-1α KO mice than in wild-type mice. However, repeated exercise bouts
induced more severe muscle damage in the KO mice, which consequently impaired their
running performance after four consecutive days of exercise training [134]. Furthermore,
the fast-to-slow fiber-type shift and the enhancement of oxidative capacity induced by
long endurance training were impeded by Hif1 KO in skeletal muscle [135]. In contrast,
Hif-1α stabilized by Phd2 conditional muscle KO caused a shift toward a slow fiber type
via a calcineurin/Nfatc1 signaling pathway in the soleus and gastrocnemius muscles [136].
Accordingly, Phd2 KO mice had better endurance performance after training compared
with control mice [137]. Interestingly Phd2 gene inactivation could stabilize Hif-2α as
shown by its accumulation in Phd2 null mouse muscles. However, this effect cannot be
only attributed to the myofiber type switch. Indeed, Phd2 KO mice also presented an
upregulation of plasmatic erythropoietin (Epo) level associated to an increased hematocrit
and that likely participated to enhance aerobic capacity and endurance. Since Hif-2α KO
leads to a slow-to fast fiber-type switch in murine soleus muscles [138], Hif-1α and Hif-2α
could therefore have differential roles in the determination of the contractile phenotype and
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in adaptation to exercise. Although both factors share an identical core DNA binding motif,
Hif-2α was considered less crucial than Hif-1α for acute induction of HIF target genes, but
some evidence suggests that Hif-2α exerts its influence in long-term exercise adaptation.
Hif-1α is known to be stabilized in response to an acute bout of endurance exercise but
seems to be repressed by long-term endurance exercise through induction of its negative
regulators [14]. This inhibition might be necessary for the switch to oxidative metabolism
which is critical for endurance exercise adaptation of the skeletal muscle. In addition,
Pgc1α activation by endurance exercise training specifically induced Hif -2α expression.
This activation was dependent on estrogen-related receptor α [138]. The Pgc1α/Hif-2α link
was confirmed by the observation that Hif-2α expression was decreased in the gastrocnemius
of muscle-specific Pgc1α KO mice. Concomitantly, Hif-2α induces the transcription of
genes associated with slow-twitch oxidative muscle fiber phenotype and seems critical
for the Pgc1α-induced oxidative switch in vitro [138]. Altogether, this shows that Hif-2α
is a downstream part of the Pgc1α pathway, known to induce mitochondrial biogenesis,
and acts as a key regulator of a muscle fiber-type program and the adaptive response to
endurance exercise.

Fiber types are not affected in the same way in all MDs [139]. In DMD, destruction of
type II muscle fibers is an early event while type I muscle fibers are lost at later stages [140].
A similar trend was observed in FSHD muscles where an early loss of type II fibers is
observed together with an overall increased proportion of type I fibers [141]. In contrast,
patients with DM initially present atrophy of type I fibers [142]. It remains unclear why
specific fiber types are affected in certain MDs. Thus, understanding this difference of
disease sensitivity may provide important insights into the pathophysiology and the
development of treatments. For instance, since type II fibers appear initially affected in
DMD, it was proposed to selectively promote slow muscle fiber function as a potential
therapy to delay DMD progression [143]. Transgenic overexpression of Pgc1α resulting
in a slower fiber type phenotype [144] was shown to ameliorate muscle structural and
functional defects in the mdx mouse [145]. These studies provide potential candidates that
could be tested as therapeutic for the rescue of muscle dysfunction in DMD.

Altogether, available data highlight that in MDs, both the primary genetic defect and
hypoxia could differently modulate myofiber type distribution, a key element of muscle
function and physical properties such as fatigue resistance and exercise tolerance. A better
understanding of factors and mechanisms involved in those changes remain essential to
provide insights for MD patient care. In this context, the HIF-1α pathway remains a central
target to investigate given its role in fiber type regulation.

3.3. Metabolic Alterations

HIF-1α is known as an important mediator of metabolic changes occurring under
hypoxia. Interestingly, hypoxic response pathways are physiologically activated under par-
ticular conditions e.g., in stem cell quiescence and cell torpor (hibernating animals) [103]. In
these “dormant” conditions, quiescent cells have to switch their metabolism from oxidative
phosphorylation (OXPHOS) to fatty acid oxidation, anaerobic glycolysis, glutaminolysis
and pentose phosphate pathway in the aim to secure a minimal energy supply and avoid
metabolic dysregulation and oxidative stress [103,146,147]. HIF-1α was reported to play
a key role in those metabolic adaptations. Moreover, HIF-1α is involved in metabolic
changes occurring under pathological conditions, with most studied examples in the cancer
field. Indeed, solid tumors are often exposed to hypoxic micro-environments. In order to
support their growth and proliferation, cancer cells alter their metabolism by downregulat-
ing OXPHOS and increasing aerobic glycolysis. This metabolic shift is called “Warburg
effect” and enables a rapid ATP generation to the detriment of large amounts of glucose
consumption (reviewed in [148]). It also allows for NAD+ production through pyruvate to
lactate conversion.

Concerning skeletal muscle metabolism, we first have to mention that muscle activity
is critically dependent on oxygen supply to maintain both energetic and redox status.



Int. J. Mol. Sci. 2021, 22, 7220 16 of 33

Indeed, ATP hydrolysis provides an immediate energy source, but intramuscular stores
of ATP are very limited and rapidly consumed. Therefore, metabolic pathways driving
ATP generation are necessary to meet skeletal muscle energy requirements. Mitochondrial
OXPHOS provides most ATP molecules in normoxic skeletal muscle. OXPHOS involves the
reduction of oxygen to water with electron transferred from reducing equivalents (NADH
and FADH2) that are generated in catabolic pathways such as glycolysis and β- oxidation
of fatty acids [149].

Muscle metabolic adaptations occurring upon exercise are highly dependent on train-
ing modalities, duration, frequency and intensity as reviewed in [150]. For short term
energy supply, ATP is derived from phosphocreatine stock via the Lohmann reaction which
takes place in the cytosol. In case of prolonged exercise, ATP will be provided by anaerobic
glycolysis in the cytosol and by mitochondrial OXPHOS. Anaerobic glycolysis produces
pyruvate that is then converted into lactate by lactate dehydrogenase in a reaction that
provides NAD+ electron acceptor needed for glycolysis.

Similarly, in experimental studies in vitro, exposure of skeletal muscle cells to hypoxic
conditions leads to HIF-1α activation and the subsequent up-regulation of 11 genes en-
coding glycolytic enzymes (aldolase A, aldolase C, enolase 1, glyceraldehyde-3-phosphate
dehydrogenase, hexokinase 1, hexokinase 2, lactate dehydrogenase A, phosphofructoki-
nase L, phosphoglycerate kinase 1, pyruvate kinase M, and triosephosphate isomerase),
promoting a glycolytic metabolism [151] (Figure 4). In contrast, studies on healthy individ-
uals exposed to environmental hypoxic conditions did not measure any increased activity
of most glycolytic enzymes in skeletal muscle (as reviewed in [152]). This difference could
come from experimental conditions e.g., the hypoxia exposure pattern. However, besides
its activity on glycolysis, HIF-1α reduces OXPHOS through the induction of pyruvate
dehydrogenase kinase 1 (PDK1) which decreases pyruvate entry into the mitochondrial
Krebs cycle. Indeed, PDK1 inhibits by phosphorylation the E1α subunit of the pyruvate de-
hydrogenase enzymatic complex that converts pyruvate to acetyl-coenzyme A and CO2 in
the mitochondria. In skeletal muscle cells, Pdk1 upregulation was observed in rats exposed
to 10% FiO2 for 2 weeks [153]. Accordingly, the same upregulation was observed in human
myoblasts and in mouse C2C12 cells treated with a Phd inhibitor [154]. C2C12 muscle cells
treated with a Phd inhibitor presented increased production of lactate [154]. Consequently,
based on cell culture studies, lactate production was expected to increase in muscle with
hypoxia exposure. However, some studies did not find variation in lactate concentration
and lactate-to-pyruvate ratio in muscles of healthy subjects submitted to environmental
hypoxia at high altitude [155,156]. This observation highlights complex skeletal muscle
regulations in vivo. The impact of hypoxia on carbohydrate oxidation is better documented
than its consequences on lipid metabolism. In the liver, HIF-1α and HIF-2α are involved in
hypoxia-induced lipid accumulation via a reduced fatty acid β-oxidation [157]. However,
in skeletal muscle, “AltitudeOmics” studies on muscle biopsies of healthy volunteers
revealed that adaptation to hypoxia was probably more complex than a simple shift from
aerobic to anaerobic metabolism. According to these authors, a more efficient fatty acid
β-oxidation may participate in an early phase of high-altitude hypoxia adaptation, by
providing reduction equivalents to the OXPHOS electron transport chain in the absence
of those derived from glycolysis [158]. Moreover, as mentioned earlier, skeletal muscle
myoglobin can act as a buffer of intracellular oxygen concentration and constitutes an extra
reserve of oxygen even at insufficient PO2 as encountered in hypoxic conditions. Therefore,
this oxygen stock could contribute to the maintenance of ATP production by fatty acid
β-oxidation in mitochondria, at least in early hypoxia adaptation.
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Figure 4. HIF-1α control on the glycolytic switch and mitophagy. HIF-1α promotes glycolytic metabolism through the
induction of the expression of glycolytic transporters and enzymes (represented in green). Mechanistic aspects of the
HIF-1α-BNIP3 induced mitophagy pathway.

Alongside with this metabolic remodeling, hypoxia exposure leads to a decrease of
mitochondria content via HIF-1α-induced mitochondrial autophagy [159]. Autophagy is a
catabolic process that eliminates or recycles defective proteins and cytoplasmic organelles
to maintain homeostasis in the cell or as a mean of providing macromolecules for energy
production under starvation conditions [160]. Autophagy involves the formation of au-
tophagosomes which is initiated by the dissociation of the Beclin1/Bcl-2 complex. HIF-1α
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mediates an increase in Bnip3 expression during hypoxia exposure in skeletal muscle
[161–164]. Bnip3 competes with Beclin1 for Bcl-2 binding which facilitates Beclin1 release
and autophagy (Figure 4) leading to decreased metabolic contribution of mitochondria and
increased involvement of the glycolytic pathway to produce energy. Accordingly, mice
with selective inactivation of Hif-1α gene in skeletal muscle showed an increased oxidative
capacity and mitochondrial content, a reduction of lactate concentration in serum and an
enhanced performance during training [134].

Many MDs are associated with muscle metabolic defects. Studies have shown distur-
bances in glucose metabolism, including reduced glycolytic substrates, glycolytic enzyme
activity such as lactate dehydrogenase, aldolase, and pyruvate kinase, and defects in in-
sulin receptor signal transduction in DMD muscle biopsies, supporting the hypothesis of
a reduced glycolytic activity [165]. Interestingly, EDL (Extensor Digitorum Longus) muscle
from utrophin-dystrophin deficient dystrophic mice presented an increase in Hexokinase
1 (Hk-1) and Pyruvate kinase M2 protein levels [166]. This can be explained by the pres-
ence of more regenerating fibers with proliferating cells which mainly rely on glycolysis.
Another study on golden retriever muscular dystrophy (GRMD) highlighted reduced
expression of glycolytic enzymes such as 1, 6-phosphofructokinase which is regulated by
Hif pathway [167]. Moreover, an mRNA profiling performed on the same model showed
Glut4 downregulation but increased Hk-1 expression [168].

It is believed that the mitochondrial functional changes observed in DMD are mainly
linked to dysregulation of Ca2+ homeostasis. Indeed, an early decrease in the efficiency of
Ca2+ transport and accumulation in mitochondria was reported in mdx mice and associated
with a lower rate of mitochondrial OXPHOS [121]. Moreover, evidence of insulin-resistance
and other metabolic alterations such as obesity and hyperinsulinemia have been reported in
DMD. Abnormal cytoplasmic aggregates of GLUT4 transporter were observed in DMD my-
ofibers suggesting an alteration of glucose uptake in muscles [169]. In DM1, alterations in
glucose metabolism, and insulin resistance were reported as an early disease manifestation.
Insulin resistance is the main cause of glucose intolerance in DM1 and leads to hyper-
insulinemia and later, to diabetes mellitus [170]. A recent study by NMR spectroscopy
showed metabolic alterations such as glutamate/glutamine ratio or alanine decreased
levels in muscle bioenergetic metabolism of patients with DMD, BMD, FSHD and limb
girdle muscular dystrophy ((LGMD)-2B) both in early or acute phases of the disease [171].
Interestingly, evidence for mitochondrial dysfunction was found in FSHD muscle where
impaired energy metabolism was associated with alterations in mitochondrial ultrastruc-
ture and subsarcolemmal and intramyofibrillar distribution [172]. Furthermore, a dynamic
transcriptomic analysis identified that suppression of PGC1α, the co-factor and activator
of ERRα, a critical component of the mitochondrial biogenesis pathway, was associated to
the myogenesis defect in FSHD [173]. Finally, further understanding could come from the
study of mitochondrial myopathies, caused by mutations in mitochondrial DNA (mtDNA)
affecting genes involved in OXPHOS such as the electron transport chain. These patients
present muscular symptoms including proximal limb weakness, muscle fatigue, exercise
intolerance and pain [174].

3.4. Oxidative Stress

Reactive oxygen species (ROS) are reactive molecules and free radicals derived from
molecular oxygen such as superoxide anion (O2

−), hydrogen peroxide (H2O2), hydroxyl
radical (OH.), hydroxyl ion (OH−). Reactive nitrogen species (RNS) are various nitric
oxide-derived compounds including molecules such as nitric oxide (NO) or peroxynitrite
(ONOO−). ROS constitute a double-edged sword: depending on the magnitude, duration
and cellular production site and target cells, they can either trigger beneficial or detrimental
pathways [175,176]. Indeed, ROS are key signaling molecules in a number of physiological
processes including the maintenance of muscle function and adaptation to exercise [177].
However, excessive and sustained ROS production and the imbalance between pro-oxidant
and anti-oxidant pathways can cause oxidative damage to nucleic acids, proteins, and
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lipids that could initiate cell death [178]. In skeletal muscle, the ROS sources are still
controversial but several reports indicate that mitochondrial electron transport is strongly
involved [179–181] (Figure 5 upper part).
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Figure 5. Upper part. Localization of the different ROS production sites and resulting ROS are linked by red arrows. Main
enzymatic and non-enzymatic antioxidant defenses are represented in green. The main source of ROS is the mitochondria
respiratory chain. Xanthine oxidase (XO) and neuronal NO synthase (nNOS) play also a large part in ROS production.
Phospholipase A2 (PLA2) is activated by ROS and will be responsible for the hydrolysis of various products from the plasma
membrane such as peroxidized fatty acids. The first antioxidant defenses are provided by superoxide dismutase (SOD) but
the most important antioxidant is glutathione (GSH), a substrate of glutathione peroxidase (GPX) that neutralizes hydrogen
peroxide by conversion into water. CSQ1 = Calsequestrin, the major calcium binding protein in the sarcoplasmic reticulum
(SR). RyR = Ryanodine receptor, located in the SR membrane and responsible for the release of Ca2+ from the SR during
excitation-contraction coupling. DHPR = dihydropyridine receptor, voltage-dependent Ca2+ channel located in T-tubule
and also involved in excitation-contraction coupling. SERCA = sarcoplasmic reticulum Ca2+-ATPase allowing Ca2+ active
transport from the cytoplasm to the lumen of the SR during muscle relaxation. Lower part. ROS sensitive molecular targets
in skeletal muscle. ROS mainly modify muscle function by altering calcium concentration regulation and by oxidizing and
consequently altering contractile muscle protein structure and function. Pro-oxidant environment can lead to the activation
of CAMKII (Ca2+/calmodulin-dependent protein kinase II) which is known to cause RyR1 phosphorylation resulting in a
leakiness of Ca2+ release from the SR.
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It is known that hypoxia favors an increased ROS production both in acute [182–184]
and long-term hypoxemia [185]. Deleterious ROS effects are highly dependent on the
hypoxia intensity and duration [186,187]. Two studies [188,189] have shown that acute
hypoxia could lead to diaphragm muscle force reduction, as well as a decrease of both
contraction and relaxation times. The use of antioxidant treatments during hypoxia rescued
this loss in muscle function. This effect has been shown to be independent from the
preservation of high-energy phosphates suggesting that hypoxia-induced ROS inhibits
contractile function in a way that is not linked to a loss of energy status of the tissue but to
the redox status of the muscle [188]. Moreover, the combination of hypoxia and exercise
seems to be involved in the improvement of antioxidant capacity and might influence
redox balance in a beneficial way [190].

Unlike continuous hypoxia, chronic intermittent hypoxia (ChIH) present in obstructive
sleep apnea syndrome (OSAS) has pathophysiological consequences associated not only
with hypoxia and hypoxia response but also with oxidative stress as a consequence of fast
tissular reoxygenation. Indeed, in OSAS, each episode of intermittent hypoxia is followed
by patient micro awakening and breathing, and this re-oxygenation leading to HIF-1α
rapid degradation (within 5 min) generates ROS and oxidative stress that contribute to
skeletal muscle dysfunction [191].

A previous metabonomic study performed in our laboratory has shown oxidative
stress marker imbalance during ChIH exposure in mice [192]. For instance, allantoin, a
urine marker of oxidative stress was significantly increased. Urinary taurine and me-
thionine levels were decreased which indicate a higher organism consumption of these
antioxidants. Several studies have demonstrated upper airway muscle dysfunction in-
duced by ChIH [193–195]. Indeed, cycles of hypoxia-reoxygenation were shown to increase
geniohyoid and sternohyoid muscle fatigue in rat models [196]. Accordingly, pro-oxidants
worsen ChIH-induced respiratory muscle dysfunction [193], while the use of antioxidants
improves it, underscoring the role of ROS in this phenomenon [193,195,197]. Surprisingly,
only few studies focused on the impact of ChIH on locomotor muscles. McGuire et al.
reported that chronic intermittent asphyxia led to an increased fatigue in rat EDL and
soleus muscles [198]. Concomitantly, another group exposed rats to chronic intermittent
hypoxia-hypercapnia and found a significant downregulation in type I fibers in soleus
and gastrocnemius muscle [199]. Rats exposed to ChIH also presented greater levels of
mitochondrial superoxide anion that was significantly reduced by treatment with N-acetyl
cysteine (NAC) [200].

Although the genetic background of many MDs has been identified, the exact mecha-
nism underlying skeletal muscle dysfunction often remains unclear. Oxidative stress has
been deeply investigated in DMD [201] and is also obviously involved in other myopathies
such as FSHD [172,202–204], SEPN1-related myopathies [205] or laminopathies [206,207].
Indeed, alterations in antioxidant responses including an increased level of oxidized glu-
tathione and higher protein oxidation have been shown in mdx mice and in DMD muscle
biopsies [208–210]. Moreover, the evaluation of antioxidant drugs in pre-clinical studies
performed on mdx mice [211–214] and in clinical studies on patients with DMD [215–217]
are supporting the hypothesis of a role of oxidative stress in DMD. Interestingly, a double-
blind randomized placebo-controlled phase 3 trial using the short-chain benzoquinone
idebenone showed a significant reduction in the loss of respiratory function in DMD [215].
Concerning FSHD, the involvement of oxidative stress in the pathology is supported by
both clinical and experimental studies. FSHD myoblasts had an increased susceptibility
to oxidative stress in primary culture as shown by their significant decreased viability
when exposed to the oxidative stressor paraquat as compared to control [218]. Moreover,
FSHD muscle biopsies presented increased lipid peroxidation, protein carbonylation and
oxidative damage (e.g., lipofuscin accumulation) as compared to control muscles [172,219].
Concerning the origin of oxidative stress in FSHD, Turki et al. showed that functional mus-
cle alterations were associated with mitochondrial dysfunction [172]. Finally, a randomized,
double-blind, placebo-controlled pilot clinical trial has shown that an oral supplementa-
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tion with an antioxidant combination to complement specific defects observed in FSHD
myoblasts could moderately improve muscle function in FSHD patients [202]. Indeed,
maximal voluntary contraction, and endurance limit time of the dominant and nondomi-
nant quadriceps were significantly improved in the supplemented group. This study also
suggested that the effect of supplementation on physical performances might be differ-
ent depending on antioxidant status and oxidative stress marker baseline of individual
patients. Finally, DUX4 gene expression was found increased by oxidative stress and this
phenomenon was mediated through the DNA damage response pathway highlighting
a vicious circle occurring between DUX4 and oxidative stress [220]. Moreover, a recent
study showed that a subset of genes was deregulated by DUX4 indirectly through oxida-
tive stress [221]. Thus, we can hypothesize that in FSHD, oxidative stress could stabilize
the HIF-1α pathway which could by itself further contribute to amplify oxidative stress.
However, additional studies are necessary to better understand the link between DUX4
expression, mitochondria dysfunction, oxidative stress and HIF-1α activation in FSHD
muscles [220]. Recent publications indicated that the target gene signature of PAX7 (an
inhibitor of HIF-1α gene expression) was decreased in FSHD muscle cells thus contributing
to increased HIF-1α protein levels [87]. Finally, it must be recalled here that OSAS occurring
in a subgroup of patients with FSHD could further increase oxidative stress caused by the
MD pathology.

Excessive oxidative stress can interfere with processes leading to muscular contrac-
tions at different steps (Figure 5 lower part). Indeed, excitation–contraction coupling
depends on motor neuron-induced cell depolarization and the subsequent interaction
between the dihydropyridine receptor (DHPR) and the ryanodine receptor (RyR1). This
leads to the release of Ca2+ from the terminal cisternae of the sarcoplasmic reticulum
(SR) [222]. RyR1s have been reported as channels sensitive to the redox state of muscle
cells. Such alterations can induce their activation or inactivation: oxidative stress results
in increased RyR1 opening leading to a Ca2+ leak [223]. Alongside with RyR destabiliza-
tion, a pro-oxidant environment can lead to the activation of Ca2+/calmodulin-dependent
protein kinase II (CAMKII) which is known to cause RyR1 phosphorylation resulting in
a leakiness of Ca2+ release from the SR [222]. Finally, ROS can by themselves alter my-
ofilament structure and function. Indeed, myofilament proteins, including myosin and
troponin I and C, can be oxidized and present dysfunctions after a long exposure to high
ROS levels [224–227]. Interestingly, in addition to a link with oxidative stress, hypoxia
was found to affect Ca2+ homeostasis. Indeed, hypoxia significantly decreased the L-type
Ca2+ channel-dependent Ca2+ influx towards the cytosol and prolonged the duration of
Ca2+ release from the SR through RyR channels [228]. This was confirmed in other cell
types (endothelial cells and cardiomyocytes) in which chronic hypoxia increased the lev-
els of cytosolic Ca2+ by enhancing its release from the endoplasmic reticulum [229,230].
Oxidative stress and hypoxia could therefore participate in MD muscle dysregulation
through Ca2+ homeostasis disturbance. Moreover, increased cytosolic Ca2+ could activate
calpains, a family of calcium-dependent, cysteine proteases. Indeed, mdx mice presented
higher amounts and activation of ubiquitous calpains that could contribute to proteolysis
and subsequent muscle wasting in DMD [231,232]. In addition, mdx mice had reduced
abundance of Csq1 (calsequestrin) and Clp (calsequestrin-like protein) in the heart [233]
and skeletal muscle [234], respectively. CSQ1 is the major calcium binding protein in the
SR, plays an important role in calcium storage and acts as a regulator of muscle excitation–
contraction coupling and stress response. Due to its lower amounts, Csq1 could thus not
have a protective role against excess cytosolic Ca2+ in mdx mice.

Altogether, current evidence indicates that oxidative stress imbalance in skeletal mus-
cle could contribute to pathophysiological processes in several MDs. We can hypothesize
that in MDs presenting such oxidative stress imbalance (either linked to the genetic de-
fect or as an indirect consequence of the resulting muscle pathology), the presence of
an OSAS and consequently of a ChIH could exacerbate redox status disturbances and
therefore muscle metabolism and dysfunction in those patients. This could be especially
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the case in patients with MDs with limited antioxidant defenses as reported in FSHD and
DMD. This underlines the importance of an early screening and the monitoring of such
respiratory problems.

4. Pharmacological HIF-1α Modulators in MDs

To our knowledge, pharmacological regulators of HIF-1α are not presently used
in MDs. The drugs available to interfere with HIF-1α expression or activity have been
developed in the field of cancer and with the final purpose to induce targeted cell death.
This obviously has to be avoided in the treatment of muscle disorders. A dose adaptation
might allow to suppress muscle cell toxicity. However, several drugs such as those targeting
the mTOR pathway seem inappropriate in MDs since they interfere with protein synthesis
and would contribute to muscle atrophy [235].

Activation or inhibition of HIF pathway components should both be considered in
relationship with the type of MDs. In mdx mouse, SCs presents decreased Hif-1α and
Vegf expression that could participate in the reduced angiogenic capacity and regeneration
potential. A therapy based on VEGF, an important element of the HIF-1α pathway, has been
proposed since alterations in the angiogenesis process have a significant impact on DMD
progression. Therefore, direct delivery of VEGF has been suggested as a potential treatment
option even if several limitations were highlighted by the authors (severe side effects in
case of over-administration, rapid clearance resulting in a need of frequent delivery) [62].

Concerning FSHD, hypoxia response was identified as the main contributor to DUX4-
induced cell death [72]. In an immortalized myoblast line with inducible DUX4 expression
the cellular hypoxia response could be disturbed with inhibitors of the phosphatidylinositol
3-kinase (PI3K)/Akt/mTOR or Ras/mitogen-activated protein kinase (MAPK) signaling
pathways [72]. Interestingly, Losmapimod, the first compound currently in clinical trial
for FSHD is a p38MAPK inhibitor, and this kinase can regulate HIF1α signaling [236].
Moreover, oxidative stress was found to induce DUX4 expression [219] while the resulting
oxidative stress induced additional toxic genes [221]. Agents that reduce oxidative stress
allow survival of DUX4 expressing cells [204,237,238] and antioxidant complementation
was tested in a clinical trial for FSHD [202]: these antioxidants might also affect HIF-1α
which is stabilized by ROS.

5. Conclusions

Hypoxia and HIF-1α signaling alterations clearly influence skeletal muscle structure,
metabolism, regeneration and function. Both conditions occur in MDs due either to the
genetic defect itself (directly or indirectly) or to a resulting respiratory insufficiency or
muscle blood vessel abnormalities. Therefore, we can hypothesize that on one hand, hy-
poxia and MD-associated muscle disturbances themselves may have synergistic effects on
key converging processes namely oxidative stress, metabolism and regeneration, initiating
therefore a vicious circle whose deleterious consequences could participate in pathophys-
iological mechanisms underlying muscle weakness in a significant number of patients
with MDs (Figure 6). On the other hand, a prolonged and aberrant HIF-1α induction may
also occur in MDs independently of hypoxia. Such “pseudohypoxia” could participate in
muscle dysfunction in MDs through the activation of improper gene expression programs
favoring e.g., cell quiescence or a metabolic shift towards lowered oxygen consumption
and ATP production, such conditions being inappropriate for normal function of adult,
mature skeletal muscles.
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hypoxic response pathways could emerge as a consequence of the primary genetic defect, or via the induction of hypoxia
stress response pathways as a result of an indirect mechanisms e.g., respiratory insufficiency (inducing hypoxemia) and
vascular alteration (causing ischemia).

In this context, a robust monitoring of respiratory function and an early diagnosis of
respiratory impairments in patients with MDs constitute key milestones. An appropriate
respiratory management including non-invasive nocturnal ventilation should be consid-
ered in the presence of early nocturnal signs of hypoventilation. In the aim to provide
further recommendations to improve muscle function in MDs, it remains important to
increase our knowledge about the influence of hypoxia and HIF-1α molecular mecha-
nisms on MD progression. Current studies seem to point toward HIF-1α as a potential
therapeutic target for muscle disorders. HIF-1α pharmacologic regulators and gene ther-
apy tools currently developed in the field of cancer research may thus be useful in the
development of multitherapy protocols in MDs, complementary to emerging strategies
specific to individual MDs. Personalized medicine should be developed on the bases
of precise criteria allowing patient clustering. In this context, a better understanding
of HIF pathway components, muscle metabolic profile and redox status resulting from
oxidative stress and antioxidant response in MDs will help to define new biomarkers to
improve the management of co-morbidities, especially in patients with MD-associated
respiratory impairments.
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