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Cardiovascular diseases have attracted our full attention not only because they are
the main cause of mortality and morbidity in many countries but also because the therapy
for and cure of these maladies are among the major challenges of the medicine in the
21st century. We designed this Special Issue with the belief that biomedical research will
pave the road which in the near future will lead us to find remedies and cures for the
cardiovascular diseases.

The collected contributions of this Special Issue of International Journal of Molecu-
lar Sciences, “Molecular Research in Cardiovascular Disease”, exposes various mechanisms
involved in the atherosclerotic process and, furthermore, in therapies implicated in the
myocardial recovery post various cardiac diseases, mainly myocardial infarction (MI).

A short consideration of the presented papers could start with Popescu et al. [1], who
show in their article that mesenchymal stromal cells (MSC) in conjunction with endothelial
colony forming cells (ECFC) augment the therapeutic effect of MSC and enhance the
angiogenic properties of ECFC. The use of these types of cells together in a mouse model
of MI resulted in a better recovery postinfarction as assessed by left ventricular ejection
fraction (LVEF) and stroke volume.

Schumacher et al. showed in their study that miRNA-155 upregulation after MI
induces cardiac remodeling through inflammation, fibroblast recruitment and cardiomy-
ocytes inflammation. Although genetic depletion of miR155 would be expected to reduce
the area of infarction and improve LVEF, in a dyslipidemic mouse model of MI, the deletion
of miR155 did not improve cardiac function, only reduced myofibroblasts’ density in the
postinfarction scar [2], with no favorable impact on the reduction of fibrosis and/or increase
in angiogenesis. Further studies are needed to pinpoint the mechanisms through which
miR155 influences the phenotype and viability of myofibroblasts under various spatial and
temporal circumstances.

As reported, miRNAs have emerged as promising biomarkers for diagnosis and prog-
nosis, and more recently as potential therapeutics, as these are involved in the development
of ischemic heart disease (IHD) at all levels (atherogenesis, angiogenesis, inflammation,
platelet activation and aggregation, lipid metabolism). As comprehensively synthetized by
Scarlatescu et al. [3], certain miRNAs play a favorable role in the reduction of mortality and
left ventricular remodeling (miR-150, 145, 101), while many others have negative outcomes
in MI (miR-27a, miR155, miR-1, miR-24, etc.). As shown by Scarlatescu et al., as many as
213 studies have been published regarding miRNAs, but only a few of them are in vivo
studies with relevant impact. Bejerano et al. show that boosting the expression of miR-21
in the macrophages attracted to the infarction area in the first days promotes the accelera-
tion towards increased angiogenesis, a reduction in apoptotic cells and attenuation in left
ventricle remodeling after MI [4]. In addition, Dong et al. report that the upregulation of
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miR-21 after preconditioning reduces cell apoptosis and the area of infarction by almost a
third [5].

Dysregulated expression of arterial miRNAs was found also in treatment-naïve pa-
tients with giant cell arteritis (GCA) as shown by Kuret et al. [6]. The following miRNAs
were proved to be new deregulated molecular factors in GCA temporal artery biopsies:
MiR-424-3p, -503-5p, KLF4, PELI1 and YAP1. Correlation-based analysis of miRNAs
and mRNA identified KLF4 as a candidate target gene of deregulated miRNAs in GCA.
However, there was no correlation between mRNA or miRNAs, symptoms and severity
of GCA, with further studies being needed for a comprehensive understanding of the
physiopathology of GCA.

Familial hypercholesterolemia (FC) represents one important risk factor for IHD;
apart from lipid accumulation within the intima, another mechanism often encountered
in FC is inflammation. By using a particular system biology, Garcia-Arguinzonis et al. [7]
investigated the role complement C3 plays in atherosclerosis on the phenotype and function
of human lipid-loaded vascular smooth muscle cells (VSMCs). By spectrometry and
differential proteomics, it was established that complement C3 was more abundantly
expressed in atherosclerotic–extracellular matrix, compared with normal segments. Even
in subjects with sub-clinical atherosclerosis, circulating C3 levels were higher, and in cell
cultures the expression of C3, C3aR and C3b/iC3b (active fragments) was augmented.
All these data suggest that the complement C3 system is involved in the progression
of atherosclerosis by vascular remodeling. Interestingly, in subjects with FC there was
significant activation of the innate immune system, with local complement C3 accumulation
in the atherosclerotic ECM of the aorta, while the circulating complement C3 levels did not
seem to be a sensitive measure of the plaque burden severity, with this finding underlying
that the main source of complement C3 remains the vascular resident cells. The same study
shows that the inhibitory effect of aggregated LDL on VSMCs’ migration is ameliorated
by the presence of exogenous complement C3a to a level that did not significantly differ
from the migration capacity of the control group, reflecting the novel role of complement
C3 apart from its well-known function in inflammation and immunity.

Communication between cells is essential for the normal function of organisms. Extra-
cellular vesicles (EV) are recently discovered cell-derived elements encompassing apoptotic
bodies, ectosomes and exosomes. Extracellular vesicles have been shown to act in the devel-
opment of atherosclerotic plaques, with a negative effect activating the pro-inflammatory
cytokines IL-8, IL-1 and IL-6 and enhancing the adhesion properties of the endothelium.
Moreover, EV promote vascular calcification and induce mineralization. As reviewed
by Georgescu and Simionescu [8], EV can deliver molecules to target cells. Berezin and
colleges pinpointed that stem-cell-derived microvesicles inhibited vascular remodeling
by transfer of miR-125 and miR-22 and, furthermore, by the enhancement of microvas-
cular endothelial cells [9]. Extracellular vesicles also proved to be useful therapeutics in
emerging SARS-CoV2 infections. The administration of mesenchymal stem-cell-derived
EV administered intravenously to COVID-19 subjects with moderate to severe pathology
downregulated the cytokine storm and restored oxygenation. Other trials with no official
results yet, employ the EV as therapeutics in COVID-19, synthetized in the review of
Georgescu and Simionescu mentioned above.

Keeping within the same line of research, endothelial EV have a role in endothelial
physiology, as exposed by Mathiesen et al. [10]. Injured endothelial cells can be repaired
and regenerated by complement-induced apoptosis by shedding EV rich in caspase-3,
protecting the endothelium against stress, as Abid Hussein et al. showed [11]. Other reports
by Brill et al. highlight that platelet-derived vesicles can induce vascular endothelial growth
factor-dependent angiogenesis promoting revascularization in IHD [12]. Apart from their
role in normal development and the homeostasis of the endothelium, EV also play a
role also in endothelium plasticity and dysfunction, such as angiogenesis, endothelium
inflammation, vasoreactivity and thrombosis. Extracellular vesicles proved useful as
biomarkers for endothelial damage with prognostic values. Nozaki’s group showed that
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endothelial-cell EV independently predicted cardiovascular events in patients with a high
risk of heart disease [13]. Despite the many studies that highlight the contribution of
EV to endothelium dysfunction, their use as therapeutics encounters a lot of challenges,
starting from isolation, purification and preparation of EV, balancing the equilibrium
between harmful and beneficial effects of EV populations. Mathiesen et al. conclude in
their review that personalized medicine should not refer only to holistic treatment, but also
to personalized healing of the endothelial cell, that altogether contribute to the healing of
the most prevalent killer of our century, cardiovascular disease.

Lupu et al. [14] described in 2011 the androgen-dependent Tissue Factor Pathway
Inhibitor (TFPI)-Regulating Protein (ADTRP), the major inhibition of TF-dependent path-
way of coagulation of endothelial cells. Many single polymorphisms correlated with the
risk of cardiovascular diseases, deep-venous thrombosis or thromboembolism have been
reported since then. The same research group, led by Lupu, discovered the critical role of
ADTRP in vascular development and vessel integrity. Single nucleotide polymorphism-
rs6903956- in ADTRP [15] was more prevalent in IHD, but the exact mechanisms that link
low ADTRP expression to the increased risk of IHD are still under research. Nevertheless,
Ooi and colleagues advanced the idea that every 100 pg/mL increase in ADTRP decreases
the risk of IHD by 9% [16]. ADTRP is a transmembrane protein with its location in lipid
rafts/caveolae, with no potential release from the cells; it can be speculated that a circulat-
ing pool of ADTRP may reflect its release, but to demonstrate this, further experimental
data are needed. For the moment, in depth studies to investigate the function of ADTRP
are needed to understand how it functions and its involvement in diseases.

Regulatory light chains (RLCs) have an important function in cardiogenesis, being the
first markers expressed in the primitive heart tubes of vertebrates. In heart failure, there is
a reduction in RLC phosphorylation levels, and restoring RLC phosphorylation generates
an increase in cardiac muscle contractility. Interestingly, RLC phosphorylation can rescue
the pathological effects arising from mutated RLCs. In the review of Markandran and
colleges [17], it is shown that pseudophosphorylation of D166V-mutated RLC prevents
fibrosis [18], and phosphorylation of R58Q- and A13T-mutated RLC restores calcium
binding to RLC [19]. Altogether phosphorylated RLCs have a potential role in rescuing the
progression of heart diseases. Biochemical protein exchange experiments are of uppermost
importance in RLCs because muscle cell contractile function can be monitored before and
after the exchange; unfortunately, the RLC exchange can be made only in isolated solutions
as the protein does not diffuse into the membrane. All these are good premises for the
near-future introduction of RLC-based treatments.

The contributions published within the Special Issue “Molecular Research Cardiovas-
cular Disease” are excellent examples of the advances made in the study of the intimate
mechanisms of cardiac diseases. We would like to thank all the eminent contributors and
the reviewers for their efforts to provide great, up-to date, interesting articles, and also to
the excellent editor, Shanny Li, for helping throughout our endeavor to provide a modern
and interesting Special Issue of the International Journal of Molecular Sciences.
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