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Abstract: Recently, much attention has been paid to the COVID-19 pandemic. Yet bacterial re-
sistance to antibiotics remains a serious and unresolved public health problem that kills hundreds 
of thousands of people annually, being an insidious and silent pandemic. To contain the spreading 
of the SARS-CoV-2 virus, populations confined and tightened hygiene measures. We performed 
this study with computer simulations and by using mobility data of mobile phones from Google in 
the region of Lisbon, Portugal, comprising 3.7 million people during two different lockdown peri-
ods, scenarios of 40 and 60% mobility reduction. In the simulations, we assumed that the network 
of physical contact between people is that of a small world and computed the antibiotic resistance 
in human microbiomes after 180 days in the simulation. Our simulations show that reducing human 
contacts drives a reduction in the diversity of antibiotic resistance genes in human microbiomes. 
Kruskal–Wallis and Dunn’s pairwise tests show very strong evidence (p < 0.000, adjusted using the 
Bonferroni correction) of a difference between the four confinement regimes. The proportion of var-
iability in the ranked dependent variable accounted for by the confinement variable was η2 = 0.148, 
indicating a large effect of confinement on the diversity of antibiotic resistance. We have shown that 
confinement and hygienic measures, in addition to reducing the spread of pathogenic bacteria in a 
human network, also reduce resistance and the need to use antibiotics. 

Keywords: antibiotic resistance transmission; social distancing; transmission; contact network; 
computer simulations; human microbiome 
 

1. Introduction 
Antibiotic resistance is today one of the biggest threats in human and public health 

and has been considered a pandemic for at least two decades [1]. Antimicrobial-resistant 
pathogens already cause 25,000 deaths per year in Europe, 700,000 worldwide. It is esti-
mated that it could increase to 10 million by 2050, in the most alarming scenario, if no 
action is taken[2]. This also implies higher treatment costs due to prolonged recovery time 
in biosafety facilities and the need to resort to more expensive alternative antibiotics [3]. 

Antibiotic misuse and over-prescription have long been documented as one of the 
most common errors in human health and one of the main factors that drive development 
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of antibiotic resistance in hospitals. Misuse of antibiotics in humans can include unneces-
sary prescriptions or treatments that are not streamlined when microbiological culture 
data become available [4,5]. 

Hygienic measures, such as hand washing, have long been recommended to break 
the transmission of pathogens, especially in hospitals and health care facilities. However, 
recently, with the emergence of the new pandemic of COVID-19, new and stricter recom-
mendations have been made, such as avoiding interpersonal contacts, disinfecting hands 
when touching physical surfaces in anthropogenic environments, and following strict 
rules of respiratory etiquette, quarantine, and confinement. Therefore, it is expected that, 
under such drastic hygienic conditions and interruption of the transmission of pathogenic 
microorganisms between people, antibiotic resistance in human microbiomes will also be 
reduced. 

Human metagenomes with higher diversity of virulence genes tend to be precisely 
those with higher diversity of antibiotic-resistance genes [6], possibly facilitating the 
emergence of superbugs. However, the diversity of both gene types is dynamic over time, 
changing according to antibiotics usage and microbial transmission between people [7]. 
Bacterial transmission occurs between people that establish a network of contacts among 
them. What would happen to the diversity of antibiotic resistance genes if most contacts 
between people were abolished? 

This study aims to simulate the effect of human contact reduction (person-to-person 
transmission in a network of contacts) on the accumulation of antibiotic resistance genes 
due to the sharing of bacteria belonging to the human microbiota. In the same way, we 
intended to find out if it is to be expected that the decrease in human contacts could, by 
itself, explain a decrease in antibiotic intake in humans. 

This study is based on data from a densely populated region of Portugal, the Lisbon 
and Tagus Valley region. Portugal was one of the European countries that most quickly 
managed to control its first wave of the COVID-19 pandemic. Learning from the experi-
ence of other countries such as Spain or Italy, where SARS-CoV-2 caused many human 
losses, the Portuguese population massively followed the measures of isolation and social 
distancing enacted by their government to combat the pandemic.  

The Lisbon and Tagus Valley region comprises a metropolitan area and the sur-
rounding suburbs with about 3.7 million persons over 11.741 Km2 [8], with high daily 
traffic to and from Lisbon and an overloaded transport network. Therefore, for the devel-
opment of this study, we used real data on the change in population mobility in this geo-
graphical region, immediately after the peak of the first wave, on 1 April, and extending 
until 30 September 2020. 

2. Results 
2.1. Lockdown Breaks Many Human Contacts on the Social Network 

In Portugal, the first pandemic wave of COVID-19 occurred between March and Au-
gust 2020. From 16 March, the Portuguese authorities decreed a state of emergency and a 
global lockdown. The Lisbon and Tagus Valley area in Portugal is a predominantly urban 
area that showed greater variations in circulation, and therefore, in human networks, be-
fore and during lockdown due to the COVID-19 pandemic. 

According to Google data [9], mobility was very low at the beginning of April and 
increased mainly since May with many oscillations (Figure 1). The lower mobility regis-
tered through Google data indicates the decrease in the number of contacts between indi-
viduals. However, it is only an estimate of the human social contacts, since it contemplates 
only individuals who move with connected mobile data and does not distinguish between 
individuals who move and contact other people from another household, from those who 
move alone, complying with the social distancing rules. 
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Figure 1. Levels of confinement used in the simulations. We used either a fixed number of connections (100%, 60%, or 
40%) or mobility according to Google data from the region of Lisbon and Tagus Valley in Portugal in the period 1 April–
30 September. 
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During the lockdown, intimate human connections should remain preserved at 
home. However, we expect a reduction in the transmission of bacteria and pathogens be-
tween individuals in the community and, therefore, less bacterial enrichment of human 
microbiomes. Consequently, we can predict a reduced flow of antibiotic-resistant bacterial 
genes between people’s microbiomes during confinement [10]. 

Likewise, as a measure of the number of times an individual leaves home, mobility 
is not the only factor that influences the exchange of microorganisms in a social network 
of contacts. The use of a mask and other behaviors like social distancing also reduce the 
spread of pathogens, particularly in airborne disease agents. 

2.2. Confinement Leads to Lower Diversity of Antibiotic Resistance Genes in Human 
Microbiomes 

In order to test the effect of the confinement in reducing the transmission of antibiotic 
resistance genes (ARGs) in the human microbiomes of the population, we simulated four 
different scenarios: (i) no confinement, hence no connections eliminated; (ii) using the real 
mobility data from Google that comprises all the period of the first pandemic wave in 
Portugal assuming that a certain decrease of mobility corresponds to the same decrease 
of the number of connections; and assuming constant reductions of connection between 
individuals of (iii) 40% and (iv) 60%. 

According to Google data, mobility fluctuated over time, ending with mobility of the 
individuals nearly 90%, consistent with the end of the first pandemic COVID-19 wave and 
summer holidays (Figure 1). Moreover, according to Google, mobility was, on average, 
75% of the maximum during this period. 

Our simulations of 180 days generated the distributions of the diversity of resistance 
genes in the population shown in Figure 2. The modes of the four distributions are 90 gene 
types for the case of no restrictions to connections, 83 assuming that google data corre-
sponds to connections relative to the normal situation, 75 if the population only has 60% 
of contacts, and 59 if the population only has 40% of contacts. 
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Figure 2. Diversity of resistance genes in four different scenarios of confinement after 180 days. Simulation (i) without 
confinement (100% of connections); (ii) using the real mobility data from Google assuming that a certain reduction of 
mobility corresponds to a similar reduction of connections; and with a fixed proportion of connections of (iii) 60% and (iv) 
40%. (A): Distribution of the predicted number of antibiotic resistance gene types among individuals at the end of the 
simulation. (B): Each box plot represents the distribution of values: the bottom and top of the box are the first and third 
quartiles, the horizontal line is the median, the vertical lines are the 1.5 interquartile range. Black circles represent outliers. 
After a Kruskal–Wallis analysis (see main text), post hoc comparisons using the Dunn test indicated that the effect of 
confinement is significantly different in the four confinement types as indicated by the four different letters a, b, c, and d 
(p-value < 0.000). 
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A Kruskal–Wallis test provided evidence of a difference (p < 0.000) between the mean 
ranks of at least one pair of groups. Dunn’s pairwise tests were carried out for the six pairs 
of groups. There was very strong evidence (p < 0.000, adjusted using the Bonferroni cor-
rection) of a difference between the four confinement regimes. The proportion of variabil-
ity in the ranked dependent variable accounted for by the confinement variable was η2 = 
0.148, indicating a large effect of confinement on the diversity of antibiotic resistance 
genes. 

2.3. Less Contact between Humans Reduces the Need for Antibiotic Use  
According to our algorithm, the use of antibiotics is triggered by exposure to bacterial 

pathogens during social interactions. When running the simulation, we assume that when 
an individual is more exposed to bacteria from other individuals, as part of a larger net-
work of contacts, there is an increased likelihood of being infected by a pathogen and 
taking antibiotics. Thus, we counted the number of antibiotic administrations that oc-
curred during the simulation. Compared with the unconfined condition, the number of 
antibiotic administrations fell 7, 11, and 16% in the other three conditions: Google data 
(assuming that mobility loss corresponds to the same connectivity loss), 60% of connec-
tions, and 40% of connections. Therefore, the daily use of antibiotics seems to follow a 
similar trend pattern of confinement. This trend may explain, at least partially, why, ac-
cording to data from Infarmed (a Portuguese drug agency), the number of antibiotics used 
in Portugal in the period between January and September 2020 was lower than the corre-
sponding months of 2019 [11]. In community pharmacies, the dispensing of these drugs 
decreased by 20%. However, the reduction in prescription and use of antibiotics may re-
flect a lower need for these drugs and a decrease in the number of medical appointments 
and access to primary health care due to the pandemic. 

3. Discussion 
Antibiotics are used as medicines to fight and eliminate bacterial infections, kill or 

inhibit their growth, and thus help the immune system resolve the disease [12–14]. In hu-
mans, antibiotic stewardship is dictated by bacterial infection, and, as such, the presence 
of bacterial pathogens can prompt an enrichment of human microbiomes with antibiotic 
resistance genes [7] whose expression enables bacteria to survive in the presence of these 
chemicals. Several examples in the literature on microbiome microbial dynamics are 
driven by human actions [15–17]. 

This work has shown that reducing contacts between people leads to a generally 
lower diversity of antibiotic-resistance genes among individuals’ metagenomes.  

In our simulations, we assume that interpersonal contact enriches the human micro-
biome with genes, namely those that confer resistance to antibiotics and leverages the risk 
acquisition of pathogens which, in turn, triggers the taking of antibiotics. Thus, it seems 
easy to understand that the reduction in mobility that occurred during a period of con-
finement, in our simulations, led to a decrease in bacterial infections in humans. It also 
decreased the prescription of antibiotics and a decrease in the accumulation of antibiotic 
resistance genes in the microbiome. This result is concordant with the 20% drop in the 
prescription of antibiotics in the first three quarters of 2020 reported by the Portuguese 
National Health Authorities [11]. This conclusion reinforces the general recommendations 
to improve hygiene in disease control and antibiotic resistance in human populations. 

For the parameterization of the model developed in this work, we have used data 
from a mixed origin: close-to-real data of the population of a geographical area, data that 
was estimated from the bibliography, for example, the network of contacts, or theoretical 
data, such as the probability of an individual taking antibiotics. However, during the de-
velopment of this work, we only varied one of the parameters, namely the changes in the 
human contact network as an indicator of the spread of pathogens among different indi-
viduals. Thus, we consider that the breakdown of human contacts leads to a decrease in 
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the enrichment of the human microbiome in antibiotic genes is significant and is also sup-
ported by reality. 

As a conclusion, the key points of this study are: (i) The resistance of bacterial path-
ogens to antibiotics remains a silent and life-threatening human pandemic; (ii) Our simu-
lations show that a reduction in human contacts decreases bacterial transmission and 
drives a reduction in the diversity of antibiotic resistance genes in human microbiomes; 
(iii) Our simulations also predict that a reduction in the spreading of pathogenic bacteria 
in a human network also reduces the need to use antibiotics; (iv) Hygienic measures are 
critical in reducing human infections and in antibiotic stewardship. 

4. Methods 
The model used in this article is based on our previously developed model [7]. 

4.1. Data 
In this work, we used mobility data from Google 

(https://www.google.com/covid19/mobility?hl=pt-PT, accessed on 30 October 2020) [9]. 
This data is made available to provide statistics on what has changed in response to poli-
cies aimed at combating COVID-19. The data are divided by region and discriminated 
into the following categories: grocery and pharmacy, parks, transit stations, workplaces, 
and residential. For this study, we used data from Portugal, namely from the Lisbon and 
Tagus Valley region, with approximately 3,658,623 individuals. Data were collected to 
correspond to the period between 1 April and 30 September 2020, which includes a full 
lockdown period, between 1 April and 4 May, followed by a lighter one. 

4.2. Building the Human Network 
We simulated a network where each node represents a person or, more precisely, a 

person’s metagenome. The edges represent possible transmission avenues of microorgan-
isms.  

We built the social contact network following the Watts and Strogatz method [18]. At 
the beginning of each simulation, we construct a regular network in which each individual 
is connected to the n nearest nodes. Subsequently, we allow each connection to change 
with a probability (p) of 0.5. If it changes, the node will be connected to another node 
chosen at random. In this way, we obtain a small-world network that remains unchanged 
in all cycles. 

4.3. Number of Contacts 
The distribution of the number of contacts per individual per day is not known in 

Portugal. We, therefore, used the data from the Polymod project, based on diaries of indi-
vidual daily contacts in eight European countries [19]. In this project, participants were 
chosen to register all the individuals they had contact during the day. This provided an 
idea of the average number of daily contacts for each country analyzed in the project.  

In order to estimate the average number of daily contacts in Portugal, we assumed 
that mobility is correlated with the number of contacts. By comparing the mobility data 
of google from the different countries that participated in this project with the mobility 
data from Portugal, we found that the country’s most similar to Portugal are Belgium and 
Poland. In these countries, there are an average number of 12 and 16 daily contacts, re-
spectively. Following this line of reasoning, in our simulations, we define that the average 
number of connections—which may or may not become a contact in a given day—be-
tween two individuals in the network (n) is 14. 

4.4. Contacts per Cycle 
As previously mentioned, we initially established a small-world contact network. 

From the beginning of the simulation, each individual has an assigned set of different 
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individuals to whom he or she will be connected during all the cycles. However, in each 
cycle, not all contacts occur as there may be a reduction in mobility (in percentage). This 
reduction is reflected in an equal percentage decrease in the number of contacts that each 
individual has. For example, suppose with a 100% mobility (base line), an individual is 
connected to 10 other individuals, with 60% mobility in one cycle. In that case, the indi-
vidual will be connected in that cycle to only six other individuals. We assume that the 
connections occurring preferentially are the ones with the closest individuals in the net-
work (representing, for example, the household). For instance, if the connections of indi-
vidual 1 defined initially are with individuals 2, 4, 5, 9, 18, 22, 27, 35, 48, 87 (ten connec-
tions), if there is 60% mobility (a reduction of 4 connections), the connections that do not 
occur will be with individuals 27, 35, 48 and 87. 

In the simulations, we considered three mobility scenarios: (i) using the real mobility 
data from Google from the period between 1 April and 30 September; (ii) with fixed mo-
bility of 60%; and (iii) with fixed mobility of 40%. 

4.5. The Metagenome, Pathogenic Bacteria, and Antibiotic Administration 
The model considers the transmission of bacterial pathogens (capable of causing in-

fections) and antibiotic resistance genes between people. These genes are present in the 
metagenome. We focused on the presence or absence of genes encoding different func-
tions, irrespective of their copy-number in the metagenome. In the simulations, each gene 
represents a gene family (with similar functions). We divided resistance genes into 
groups, each group having the same number of families. Each group represents genes 
associated with resistance to an antibiotic. Of note, we did not consider resistance to mul-
tiple drugs in our simulations. Therefore, there will be as many groups as there are anti-
biotics accounted for in the simulations. We define the diversity of a specific gene kind as 
the number of genes of that type present in a human metagenome.  

We inserted some different bacterial pathogenic species into random individuals per 
cycle to simulate the migration of bacteria from individuals outside the network or the 
contamination from sources such as food or contaminated water. In this model, the only 
difference that we consider between species is the antibiotic to which they are susceptible, 
as explained below.  

Individuals infected by pathogenic bacteria feel sick and take an antibiotic. The anti-
biotic administered is specific for the bacteria that caused the infectious disease. The anti-
biotic selects cells carrying resistance genes by eliminating the remaining susceptible bac-
teria. We assume that all families of resistance genes are present in all metagenomes, but 
in two different possible states: in some metagenomes, they are present in low copy num-
ber, so they are not likely to be transmissible to other individuals in the network; in other 
metagenomes, the copy number of resistance genes is high due to the selective pressure 
of antibiotics to which they were previously submitted. In the latter case, resistance genes 
are likely to be transmissible from person to person.  

Moreover, upon antibiotic consumption, the following events can occur (i) elimina-
tion of susceptible pathogenic bacterial species; (ii) selection of resistance genes belonging 
to the group of resistance to that antibiotic (which means their copy number gets so high 
that they become transferable); (iii) loss of resistance genes associated with other antibiot-
ics with a given probability (becoming non-transferable but still present in minute copy 
number).  

Several processes lead to gene loss. First, genes are lost because of the selective pres-
sure by antibiotics and because we assume that resistance determinants impose a fitness 
cost (in the absence of antibiotics). To include this cost in the simulations, we consider that 
each metagenome may lose specific resistance genes according to a “loss rate” (with this 
process, these genes become non-transferable). 

  



Int. J. Mol. Sci. 2021, 22, 6891 9 of 11 
 

 

4.6. Algorithm of the Program 
Each simulation is composed of several cycles, where each one corresponds to a day. 

In each cycle, we considered all procedures described in the pseudocode (Figure 3). In 
addition, we used as default the parameterized values of our model [7]. The main steps of 
the program in each cycle are: 
(i) Choose the connections that will occur in that cycle according to the percentage of 

mobility in that cycle (as explained above). 
(ii) Transfer of pathogenic bacteria and resistance genes between people (i.e., between 

linked nodes in this cycle). 
(iii) Look for people infected by at least one pathogenic bacterial species. These people 

take antibiotics (chosen according to the pathogen). The antibiotic eliminates the 
pathogenic species and selects the resistance genes associated with the antibiotic 
used. The antibiotic also eliminates resistance genes unrelated to the administered 
antibiotic. Finally, the metagenome loses a few more resistance genes not associated 
with the antibiotic. The cause of this loss is the fitness cost of resistance genes. 

(iv) The metagenomes of people that did not take an antibiotic in this cycle lose resistance 
genes. This loss is a consequence of the fitness cost imposed by resistance genes on 
their hosts.  

(v) Insert five bacterial pathogenic species in individuals randomly chosen from the pop-
ulation. 
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Figure 3. Flowchart of the algorithm of the program. 

4.7. Statistical Analysis 
In each simulation, we counted the number of resistance genes of each individual. 

From these data, we constructed a graph that represents how many individuals (vertical 
axis) have each amount of resistance genes (horizontal axis) at the end of the 180 cycles. 
Next, a Kruskal–Wallis test was used to compare the effect of different confinement re-
gimes, followed by a Dunn post hoc analysis. We performed both tests with R—version 
3.5.1 [20] and used the FSA package [21] to perform Dunn’s test. 
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