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Abstract: Cannabinoid receptors typically include type 1 (CB1) and type 2 (CB2), and they have
attracted extensive attention in the central nervous system (CNS) and immune system. Due to
more in-depth studies in recent years, it has been found that the typical CB1 and CB2 receptors
confer functional importance far beyond the CNS and immune system. In particular, many works
have reported the critical involvement of the CB1 and CB2 receptors in myocardial injuries. Both
pharmacological and genetic approaches have been used for studying CB1 and CB2 functions in these
studies, revealing that the brother receptors have many basic differences and sometimes antagonistic
functions in a variety of myocardial injuries, despite some sequence or location identity they share.
Herein, we introduce the general differences of CB1 and CB2 cannabinoid receptors, and summarize
the functional rivalries between the two brother receptors in the setting of myocardial injuries.
We point out the importance of individual receptor-based modulation, instead of dual receptor

modulators, when treating myocardial injuries.

Keywords: cannabinoid receptor 1; cannabinoid receptor 2; myocardial injury; functional rival

1. Introduction

The endocannabinoid system (ECS) is a widely conserved lipid signaling system in
mammals. Based on current knowledge, the ECS consists of cannabinoid receptors, endoge-
nous cannabinoids (endocannabinoids), and the enzymes responsible for the synthesis and
degradation of the endocannabinoids. Cannabinoid receptors typically include cannabi-
noid type 1 (CB1) and type 2 (CB2) receptors, and some recently identified orphan receptors
such as GPR18, GPR55, and GPR119 [1] that exhibit limited sequence homology with CB1
and CB2 [2]. Six endocannabinoids have been recognized so far, namely anandamide
(AEA), 2-arachidonoyl glycerol (2-AG), N-arachidonoyl-dopamine (NADA), 2-arachidonyl
glyceryl ether (noladin ether), virodhamine (OAE), and lysophosphatidylinositol (LPI) [1,3],
with AEA and 2-AG being the most active ones. In addition to endogenous ligands, ex-
ogenous cannabinoids such as natural phytocannabinoids and synthetic cannabinoids also
bind to cannabinoid receptors [4]. There are currently over 100 different phytocannabinoids
isolated from cannabis plants, with the most abundant one being delta-9 tetrahydrocannabi-
nol (THC) which has a high affinity to both CB1 and CB2 [3]. The synthetic cannabinoids
are a heterogeneous group of compounds that can be generally classified as dual CB1/CB2
receptor actions (non-selective), CBl-selective actions, and CB2-selective actions. WIN
55,212-2 and CP 55,940, for example, are common synthetic cannabinoids that show non-
selectivity over CB1 and CB2 receptors. Arachidonyl-2'-chloroethylamide (ACEA), noladin
ether, and arachidonylcyclopropylamide display higher affinity for CB1 than CB2, while
AM 1241, JWH-133, and HU-308 display higher selectivity for CB2 than CB1 [4].

The discovery of cannabinoid receptors and their related ligands is an interesting
journey (Figure 1). In the year 1964, THC was isolated and characterized as the active
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chemical constituent of Cannabis sativa. The target receptors of THC remained elusive for a
long time until 1987, when the cDNA of CB1 (initially named SKR6) was cloned from a rat
cerebral cortex cDNA library [5]. Interestingly, CB1 was initially considered as an orphan
receptor due to a lack of ascertained ligands [6]. One year later (1988), CB1 was determined
and characterized as the specific membrane receptor of a cannabinoid compound CP
55,940 [7], leading to the recognition of CB1 as the first cannabinoid receptor, instead of an
orphan receptor [6]. Five years later (1993), a peripheral cannabinoid receptor was found
in macrophages of spleen and verified to be also the target of exogenous cannabinoids.
Hence, this peripheral cannabinoid receptor was adopted and named as CB2, holding a
brotherhood with CB1 in the cannabinoid family. Due to the antecedent discovery and
isolation, exogenous ligands were considered to be the “statutory guardians” (ligands)
of these “orphans” (cannabinoid receptors). Then, at almost the same time that CB2 was
identified, the endogenous ligands AEA and 2-AG were discovered in 1992 and 1995,
respectively [8,9]. Due to endogenous ligand-receptor binding in physiological conditions,
scientists then realized that the endogenous ligands should be the long-lost “immediate
parents” (ligands) of these “orphans” (cannabinoid receptors). These seminal discoveries
laid the foundations for research on the CB1 and CB2 cannabinoid receptors in both
physiological and pathological conditions.
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Figure 1. The timeline of the discovery of the cannabinoid family.

With more in-depth studies of the cannabinoid receptors (orphans “grew up”), sci-
entists then realized that the two brothers looked to be largely different, not only in their
appearance (sequence and structure), but also in their characters (molecular functions).
This review generally introduces the basic differences between CB1 and CB2 cannabinoid
receptors, and then summarizes the functional rivalry between the two brother receptors
with emphasis on myocardial injuries.

2. General Differences of Cannabinoid Receptors

Generally, the brother receptors have many different and sometimes antagonistic char-
acters in their origin, cellular distribution, structure, and downstream signaling pathways
(Figure 2).
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Figure 2. A summary of basic differences between the CB1 and CB2 receptors.

2.1. Origin Differences of Cannabinoid Receptors

CB1 is encoded by the gene CNRI1 located on chromosome 6 (6q15, HGNC ID:2159)
in Homo sapiens. CB2 is encoded by the gene CNR2 located on chromosome 1 (1p36.11,
HGNC ID: 2160) in Homo sapiens [4]. Only 33.2% of the CB1 sequences share similarity
with the CB2 sequences, while only 45.2% of the mouse CB2 sequences share identity
with CB1 (Figure 3A). After translation, CB1 is expressed throughout the body, highly in
central nervous system (CNS), especially in the axons and presynaptic termini of neurons
in the amygdala, hippocampus, cortex, basal ganglia outflow tracts, and cerebellum [10].
However, CB2 is mainly expressed in the immune system, astrocytes, and microglia in the
CNS [11]. These origin differences have led to a conventional recognition of the CB1 as a
central receptor and CB2 as a peripheral receptor [12], mirroring the difference in “birth”
background of the brother receptors.

2.2. Cellular Location Differences of Cannabinoid Receptors

In addition to the organ distribution differences, cannabinoid receptors share great
differences in cellular distribution within the heart (Figure 3B). Both CB1 and CB2 re-
ceptors share a similar localization in cell types such as cardiomyocytes, monocytes,
adipocytes, atrial myocytes, smooth muscle cells, endothelial cells, platelets, neutrophils,
and macrophages. However, the distribution spectrum of CB2 is wider than that of CB1, as
CB2 further localizes in myocardial fibroblasts, B cells, and T cells. This difference under-
scores the potent involvement of CB2 in inflammatory responses by affecting immune cell
attraction, macrophage polarization, and lymphocyte clusters in the pericardial adipose
tissue [1].

CB1 and CB2 belong to the G-protein-coupled receptors (GPCRs) family, which have
long been considered to localize on the cell surface. However, many researchers have
suggested that GPCRs can also localize in the intracellular compartment and membranes [3].
It has been reported that CB1 can localize in the outer membrane of neuronal mitochondria
and regulate neuronal energy metabolism [13]. Mutagenesis analysis identified the first
22 amino acids (amino acid residues 2-23) of the CB1 protein as responsible sequences
for mitochondria localization [14]. CB1 can also localize in endosomal and lysosomal
compartments [15,16]. CB2 has also been found to localize intracellularly in rodent medial
prefrontal cortical pyramidal neurons [15] and specifically co-localizes with endolysosomes
in U20S cells [15].
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Figure 3. The amino acid sequence alignment of mouse CB1 with the CB2 receptor (A) and the cell tropism of CB1 and CB2
receptors within heart (B). The identical amino acid sequences are highlighted with red boxes in (A).

2.3. Structural Differences of Cannabinoid Receptors

The first crystal structure of CB1 was reported in 2016 as a complex with antagonist
AMG6538 [17]. The overall architecture of the CB1 structure is comprised of seven transmem-
brane (TM) « helices (I to VII) which are connected by three extracellular loops (ECL1-3),
an amphipathic helix VIII, and three intracellular loops (ICL1-3) [17]. The ECL2 region
consists of 21 residues folding into an intricate structure projecting four residues, which are
vital to mediating interactions with certain classes of ligands, and the two cysteines (Cys257
and Cys264) in ECL2 [18] into the binding pocket. The ELC3 region has a three-helical-turn
extension of helix VII, thereby increasing the rigidity and probably decreasing the flexibility
of the loop region in CB1 [17]. The overall CB2 structure also contains seven TM helices
(I to VII), an amphipathic helix VIII, ECL, and ICL, generally similar to CB1 [19]. CB2
also exhibits a constrained conformation of ECL2, which is stabilized by a disulfide bond
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between two cysteines (Cys174-Cys179) [19]. The significant difference between CB1 and
CB2 lies in helices I and II, which may influence the combination of antagonists. Besides,
the non-truncated part of the N terminal in CB2 is in contrast to the V-shaped loop in CB1.
The non-truncated part of the N terminal in CB2 forms a short helix over the orthosteric
pocket with no direct involvement in antagonist binding [19], while part of the N terminal
of CB1 (residues 99-112) forms a V-shaped loop that inserts into the ligand-binding pocket
and plays a role in ligand binding [17].

The structural difference of both receptors is further supported by the observation that
CB1 agonists share a high degree of conformational similarity with CB2 antagonists [19].
The synthetic CB2 antagonist AM10257, for example, has been verified to confer both
CBl1-selective agonism and high CB2-selective antagonism effects [19].

2.4. Signaling Difference of Cannabinoid Receptors

Both CB1 and CB2 can couple with Gi/o proteins to inhibit adenylate cyclase activ-
ity, causing decreases of intracellular cAMP levels [4] and leading to the dysregulation
of downstream cascades (i.e., MAPK signaling [20,21]) controlled by protein kinase A
(PKA) [22]. CB1 and CB2 receptors can also internalize through G-protein regulatory
kinases/ 3-arrestins, and transduce signals to the Ras/MEK/ERK pathway through inter-
action with Gy and (-arrestin proteins [3]. However, unlike CB2, CB1 can also couple
with Gs proteins to stimulate adenylyl cyclase activity, leading to receptor-mediated Ca?*
fluxes and phospholipase activations [21].

3. Functional Rivalries between Cannabinoid Receptors in Myocardial Injury

The mechanisms of the cardiovascular effects of CB1 and CB2 are complex, and may
involve the modulation of autonomic outflow in the central and peripheral nervous systems
as well as direct effects on the myocardium and vasculature [23]. Due to the above basic
differences, the functions of the two brother receptors have many differences in myocardial
injuries (Table 1). Generally, signaling through CB1 causes negative inotropy in heart, while
CB2 causes positive inotropic effects [24,25].

Table 1. A summary of the functional rivalry between CB1 and CB2 receptors in myocardial injuries.

Category

CB1 Function

CB2 Function

References

Myocardial infarction

CB1 aggravated cardiac ischemic
injuries

CB2 mitigated cardiac
ischemic injuries

[20,23,26-28]

Majority of the literature documents
CB1 as a medjiator of I/R injury,

CB2 potently protected from

Cardiac I/R injury although there is some controversy I/R injury [29-371
across studies
Majority of the literature documents
Pathological cardiac CB1 as a pro-hypertrophic receptor, CB2 potently conferred [38-40]
hypertrophy and CB1 tended to be not as potent as anti-hypertrophic property :
CB2 in controlling hypertrophy
CB1 promoted fibrogenesis mainl CB2 ameliorated cardiac
Cardiac fibrosis p & y fibrosis via TGFf31-dependent [23,27,29,30,40-46]
through TGF-31/Smad3 pathway .
and independent manners
. . . - Pharmacological inhibition of CB1 Pharmacological activation of
Antipsychotics cardiotoxicity was cardioprotective CB2 was cardioprotective [47-501
Anti-tumor dru Genetic ablation or pharmacological
. crug antagonism of CB1 was Unknown [51,52]
cardiotoxicity . .
cardioprotective
Ethanol-induced myocardial Less known CB2 attenuated ethanol [53,54]

injury

toxicity
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3.1. Acute Myocardial Infarction (MI)

CB1 aggravates the inflammatory response in cardiac ischemic injury [20]. It has been
reported that the CB1 antagonist rimonabant (also named as SR 141716A) is able to improve
survival rate and restrict infarct size in rodents bearing left descending coronary artery
ligation [23]. Additionally, one study showed that chronic daily rimonabant injection,
initiated before and continued for 6 weeks after MI, could improve cardiac functions [20].
Currently, the mechanisms underlying CB1-antagonism-conferred protection against MI
remain to be elucidated. Of note, as a representative CB1 antagonist, rimonabant has
been marketed for antiobesity therapeutics and showed potent metabolism-modulation
capacity [4]. Since systemic metabolic disorder is a high risk factor for myocardial ischemia
and infarction, the mechanism of rimonabant-induced protection against MI may be a
result of peripheral metabolism modulation rather than a direct effect on hearts [55].

In contrast, CB2 mitigates the inflammatory responses in cardiac ischemic injury [20].
The expression of CB2 increases in the situation of hypoxia and inflammatory stimula-
tion [26]. Compared with wild-type (WT) mice, CB2~/~ mice had a more aggravated reduc-
tion in ejection fraction following MI [27]. In response to MI induced in WT mice, plasma
and cardiac levels of the endocannabinoid 2-AG, but not AEA, palmitoylethanolamide, or
oleoylethanolamide, were significantly elevated 24 h after infarction. The increased 2-AG
promoted cardiac neutrophil and monocyte counts 24 h after infarction in WT mice but not
in CB2~/~ mice [28], reinforcing the strong modulation of inflammatory responses by the
2-AG/CB2 axis. Modulation of the inflammatory responses by CB2 is mainly through di-
rectly affecting immune cell attraction, macrophage polarization, and lymphocyte clusters
in the pericardial adipose tissue [20].

3.2. Cardiac Ischemia/Reperfusion (I/R) Injury

During early cardiac I/R injury, CB2 was upregulated in ischemic cardiomyocytes
from WT mouse heart [29]. It has been reported that within hours of cardiac I/R, the
activation of CB2 by its selective agonist JWH-133 exerted a potent anti-inflammatory
effect, including the limitation of I/R infarct area and the increase of cardiac myocyte
survival in response to stress [30]. The activation of CB2 is also the key to the reduction of
leukocyte-dependent second-wave myocardial damage [31]. In a genetic depletion model,
it has been reported that CB2~/~ mice have a more widespread injury than WT mice at
3 days [30] and 60 days following I/R injury [29]. In diabetic rats, CB2 activation can
also attenuate I/R injury by counteracting tachycardia and restoring coronary perfusion
pressure [32]. Besides, CB2 activation can promote lipopolysaccharide (LPS)-induced
cardioprotective effects [33], and also enhance the protection effect of WIN 55,212-2 against
cardiac I/R injury [32].

The cardioprotective effect of CB2 activation can be further evidenced by its antag-
onists. It has been reported that the CB2 antagonist SR 144,528 increases the infarct area
in ischemic preconditioning models [33]. The CB2 antagonist SR 144,528 also blunts the
protective effect of palmitoylethanolamide and 2-AG on hearts in rat cardiac I/R injury
models [34], whereas the CB2 agonist JWH-015 enhances the cardiac protection of palmi-
toylethanolamide by activating the p38/ERK 1/2 kinases and PKC signaling [34]. Further,
although the treatment of animals with the CB1/CB2 dual agonist WIN 55,212-2 30 min
before induction of cardiac I/R significantly reduced the extent of infarct size in the area
at risk, the selective CB2 antagonist AM 630 but not the selective CB1 antagonist AM
251 abolished the protective effects of WIN 55,212-2 [31], strongly enhancing the notion
that CB2 dominantly protects against the I/R injury. In fact, the CB2 antagonist AM 630
alone produced a slight but significant increase in infarct size compared with vehicle
alone [31], suggesting the endogenous cardioprotection of CB2 under physiological states.
Of note, although the pharmacology of 2-AG and AEA is quite similar, in that both can
bind to and stimulate CB1 and CB2 receptors [56], it is 2-AG and not AEA that has received
wide attention for its protective effects on I/R injury, predominantly via a CB2-dependent
manner [35,56]. The endocannabinoid AEA has only been recently found to transiently
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increase in mouse heart undergoing early I/R injury [29], and treatment of the AEA (1 mM)
significantly reduced infarction of the left ventricle by 10% in rat isolated hearts subjected
to I/R injury. However, the infarct-limiting action of AEA was not mimicked by agonists
selective for CB1 or CB2 receptors, suggesting the involvement of a novel cannabinoid
mechanism beyond the CB1 and CB2 receptors [35].

Unlike the well-recognized cardioprotection of CB2, the biological function of CB1
remains controversial in cardiac I/R injury. In some research, the CB1 antagonist rimon-
abant has been demonstrated to protect against cardiac I/R injury [36]. On the other
hand, another CB1 antagonist, AM 251, has also been proven to further aggravate cardiac
I/R injury [37]. This controversial finding may be explained by the fact that CB1 will be
desensitized after chronic endocannabinoid elevations. The upregulation of CB1 in hearts
only occurs in the early stage of MI, while the upregulation of CB2 can be monitored in
both acute and late phases of MI [20]. Thus, it is much harder to study CB1 than CB2.

3.3. Pathological Cardiac Hypertrophy

Inflammatory response is a significant pathological process to cardiac remodeling [57].
It has been reported that predominant expression of CB2 on cardiomyocytes associates with
persistent inflammation and active remodeling in hypertrophic myocardium of patients
with aortic stenosis [57]. Interestingly, both CB1 and CB2 mediate R-methanandamide-
suppressed hypertrophic indicators. However, the selective CB2 agonist JWH-133 pre-
vented only myocyte enlargement but not brain natriuretic peptide gene activation, while
the CB1/CB2 dual agonist CB-13 inhibited both hypertrophic indicators [38], indicating
that the two brother receptors individually suppress myocyte enlargement and fetal gene
activation, respectively (Figure 4A). Furthermore, CB2~/~ mice showed vulnerability
to pro-inflammatory responses such as higher macrophage infiltration and lower IL-10
expression than WT mice after left pulmonary artery occlusion, and accordingly showed
stronger cardiomyocyte hypertrophy, presenting with higher tenascin-C expression and
lower reactive oxygen scavenger enzymes induction than WT hearts [39].

Similar to the CB2 agonists, the CB1 antagonist rimonabant (or SR 141716A) attenuates
left ventricular hypertrophy in chronic kidney disease mice by the upregulation of Akt
phosphorylation [40]. The selective CB1 antagonist rimonabant also prevents adverse
cardiac remodeling and improves cardiac functions after ischemic injury [23].

Of note, though the majority of the literature agrees that CB1 antagonists confer
an anti-hypertrophic property, the CB1/CB2 dual agonist CB-13 inhibited both myocyte
enlargement and fetal gene expression [38], indicating that CB1 protects against cardiac
hypertrophy, which is in contrast to the majority of reports. We hypothesize that this
inconsistent result may suggest the protective effect of CB1 on pathological hypertrophy
being related to CB2, since in the condition of sole activation of CB1 and the absence
of CB2 signaling, myocyte hypertrophy will persist and potentially give rise to adverse
endpoints such as ischemia [38]. Additional evidence supporting the dominant position of
CB2 in pathological cardiac hypertrophy lies in the fact that only CB2 exclusively locates in
myocardial fibroblast, B cells, and T cells (Figure 2). The cell-type-specific expression of
CB2 provides a biological basis for the direct modulation of inflammatory responses and
the following adverse cardiac remodeling.
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3.4. Cardiac Fibrosis

Cardiac fibrosis is an unwelcome consequence of multiple stimuli to myocardium,
and seriously curbs cardiac diastolic and systolic functions, ultimately leading to heart
failure [58,59]. TGF-p1/Smad signaling is a main pro-fibrotic pathway that drives fibro-
genesis in heart [41,60]. In addition, crosstalk between the TGF-f3 /Smad signaling and
other non-canonical pathways such as Wnt/3-catenin [61], EGFR signaling [62,63], and
mTOR [64,65] regulates myocardial fibrogenesis in a synergistic way.

Multiple sources of pharmacology-based evidence have suggested the critical involve-
ment of CB1 in the cardiac fibrogenesis process [4]. As a G-protein-coupled receptor, CB1
activates signal transduction and mediates fibrogenesis mainly through the TGF-f31/Smad3
pathway (Figure 4B). CB1 manipulates the transcription of pro-fibrotic molecules such
as collagens, fibronectin, and a-smooth muscle actin (x-SMA) [41,42], and selective CB1
neutral antagonists AM 6545 and AM 4113 interfere with TGF-f31-mediated inflammation
and fibrosis [42]. In an experimental model of chronic kidney disease, the expression of
pro-fibrotic factors such as collagen «1, TGF-f31 precursor, and x-SMA were evidently
reduced in myocardium after the pharmacological blockade of CB1 [40]. In a diabetic
model, selective CB1 antagonists rimonabant (or SR 141716A) and AM 281 prominently
ameliorated myocardial fibrosis, as evidenced by decreased collagen deposition and the
downregulation of mRNA markers of fibrotic factors such as collagen-1, fibronectin, and
TGEF-f31 [27]. Blockade of CB1 signaling by rimonabant decreased MMP-9 activity and TGF-
1 expression in rat myocardium with experimental metabolic syndrome, and extenuated
the extracellular matrix deposition and fibrosis progression [23]. These small molecules
are CBl-selective antagonists that should not confer off-target effects. Therefore, the above
pharmacology-based studies conclude that CB1 is a mediator of myocardial fibrosis.

In great contrast to CB1, CB2 displays a potent protection against fibrogenesis and de-
lays cardiac remodeling processes (Figure 4B). The activation of CB2 signaling by AM 1241
retarded myocardial fibrosis during the post-myocardial infarction phase via accelerating
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the translocation of the fibrogenesis-associated transcription factor Nrf2 to nucleus and
blocking the TGF-1/Smad3 pathway [43]. In fact, CB2 is found to be indispensable for
complete functional recovery and morphological regression of fibrosis in cardiac repair
from I/R injury. After genetic knockout of CB2 (CB27/~), reversible collagen III was
lowered and irreversible collagen I« was more prominent as compared to WT mice [29].
Moreover, myocardial fibrosis was intensified following four-week I/R injury after genetic
depletion of cardiac CB2, as featured by positive TGF-f31 staining and expanded fibrotic
scars [30]. All these pharmacological and genetic approaches suggest the endogenous
cardioprotection of CB2 towards myocardial fibrosis.

Mechanistically, unlike CB1, which mediates myocardial fibrosis via regulating cardiac
TGEF-f3/Smad signaling, CB2 blunts myocardial fibrogenesis in a more sophisticate manner
(Figure 4B). CB2 could exert its TGF-B1-dependent antifibrogenic property [30,44]. It
further regulates the expression of 3-isoform myosin heavy chain to decrease contractile
velocity under pressure overload in hearts [45]. CB2 also mitigates myocardial injury via
manipulating macrophage polarization to maintain M1/M2 macrophage balance [46]. Due
to the additional localization in fibroblast, CB2 also directly regulates the myofibroblast
activation and thereby defending unwelcome myocardial fibrosis [30].

3.5. Miscellaneous Myocardial Injury
3.5.1. Antipsychotic Cardiotoxicity

Second-generation antipsychotics (SGAs) including clozapine, olanzapine, and queti-
apine are potent drugs for treating mental disorders such as schizophrenia, bipolar disorder,
and major depressive disorders [66]. Nevertheless, antipsychotic-induced cardiotoxicity
has been frequently observed and gradually cited as a major concern in long-term clini-
cal practice [67] and in forensic autopsy [68,69]. According to a population-based study,
current users of SGAs had higher rates of sudden cardiac death than non-users, with an
adjusted incidence-rate ratio of 2.26 [70].

While the knowledge regarding antipsychotic cardiotoxicity derives largely from clini-
cal and autopsy observations, deep mining of the molecular mechanisms has a long way
to go. We have shown that dysregulated spliceosome signaling paved common ways for
representative SGA cardiotoxicity, and the pharmacological blockade of a GPCR histamine
1 receptor (HRH1) only partially rescued the spliceosome signaling [47], leaving a wide
space for the conception of other GPCRs’ involvement in antipsychotic cardiotoxicity [48].
This has led us to identify the cannabinoid receptors as critical modulators of antipsy-
chotic cardiotoxicity in independent mouse models (Figure 4C). Upon chronic clozapine or
quetiapine stimuli, serum levels of both AEA and 2-AG significantly decreased in mice,
and CB1 translocated to cytoplasm, whereas CB2 remained in the plasma membrane of
myocytes [49,50]. In the clozapine-insulted mouse model, CB1 antagonists (rimonabant
and AM 281), but not its agonist ACEA, significantly attenuated clozapine-induced car-
diac dysfunction; the same was seen for selective CB2 agonists (JWH-133 and AM 1241)
but not its antagonist (AM 630). The extent of clozapine-induced cardiac fibrosis and
serum levels of inflammatory cytokines were accordingly decreased by these beneficial
compounds [49]. Similarly, in the quetiapine-treated mouse model, pretreatments with
CB2R agonists JWH-133 and AM 1241 or CB1R antagonists rimonabant and AM 281 led to
a relief in quetiapine-induced myocardium toxicity, particularly the quetiapine-induced
myocyte necroptosis [50]. These pharmacological studies suggest the critical yet opposite
functions of cannabinoid receptors in antipsychotic cardiotoxicity.

Of particular interest, antipsychotic use also raises critical concern regarding patients’
weight gain and metabolic disorders. There is also a strong link between CB1 and energy
intake/storage, as well as glucose/lipid metabolism [71]. Hence, CB1 antagonists seem
to confer dual actions, one to be marketed for weight loss and the second to be tested
for improving cardiovascular outcomes in patients with long-term antipsychotic use [72].
However, rimonabant—a representative CB1 antagonist that was withdrawn after being
marketed—was also reported to cause serious psychiatric disorders [72]. It is therefore



Int. J. Mol. Sci. 2021, 22, 6886

10 of 14

mandated to carefully select low-toxicity yet sufficiently effective CB1 antagonists for the
clinical intervention of antipsychotic cardiotoxicity.

3.5.2. Anti-Tumor Drug Cardiotoxicity

The toxic side effects of most chemotherapeutic agents have been widely acknowl-
edged in clinical practice, stimulating the rapid update of anti-tumor drugs [73]. However,
anthracyclines such as doxorubicin (DOX) are still important in first-line treatment for
breast cancer, lymphoma, sarcoma, and childhood hematological malignancy, owing to a
lack of effective alternatives [74]. The subclinical damage caused by the cardiotoxic effect
of anthracyclines, especially doxorubicin (DOX), is most frequently observed [75-77].

CBl is a crucial mediator of DOX-induced cardiotoxicity (Figure 4D). In CB1 knock-
out mice, DOX-induced increases in left ventricular end-diastolic pressure, prolongation
of relaxation time constants, and cardiac fibrosis were markedly alleviated [51]. CB1
knockout mice also presented resistance to DOX-induced left ventricular dysfunction,
oxidative/nitrosative stress, antioxidant defense impairment, MAPK signaling activation,
as well as cell death and/or fibrosis in hearts [51]. Likewise, CB1 antagonists exhibited
beneficial effects on improving the DOX-induced depression of load-independent indexes
of cardiac contractility such as PRSW (preload-recruitable stroke work) and ESPVR (end-
systolic pressure—volume relation) [52]. In turn, when the endocannabinoid AEA or the
synthetic CB1 agonist HU-210 was co-administered with DOX, the DOX-induced MAPK
activation and cell death were significantly enhanced [51]. At the cellular level, the CB1
antagonists’ beneficial effects were accompanied with blockade of early apoptosis in rat
HIC2 cells [52]. Interestingly, CB2 does not seem to be involved in DOX cardiotoxicity, ac-
cording to the currently available literature. This raises further questions as to whether CB1
and CB2 have additional unidentified distinction (i.e., affinity differences) as to anti-tumor
drugs.

3.5.3. Ethanol-Induced Myocardial Injury

Chronic ethanol exposure can impair the myocardium, leading to irreversible car-
diomyopathy as evidenced by progressive reduction in myocardial contractility, high level
of creatine kinase, and interstitial fibrosis [53]. It has been reported that 30-day ethanol
exposure significantly increased the serum level of AEA by 3—4-fold, while the serum level
of 2-AG showed a slight increase at this time and then tended to decrease after longer expo-
sure [54]. Pharmacological activation of CB2 protected against ethanol-induced myocardial
injury and myocyte necroptosis, while CB1 seemed to be less involved when compared
with CB2-mediated effects. Selective CB2 agonists JWH-133 and AM 1241 notably im-
proved cardiac function in 45-day continuous alcohol exposure. The mRNA expression
of pro-fibrotic factors and the necroptotic phosphorylating cascade were also significantly
alleviated by the CB2 agonists but not its antagonist AM 630 [54]. The CB2-dominant
involvement in ethanol toxicity again raises the question as to whether CB1 and CB2 have
additional differences beyond those depicted in Figure 2.

4. Conclusions

This review introduced the general differences of the two brother receptors CB1 and
CB2, and summarized their functional differences and rivalries in multiple myocardial
injuries. Current pharmacological and genetic approaches have documented CB1 as an
injury mediator, while CB2 is born to combat CB1’s detrimental effects and serves as an
endogenous cardioprotective receptor in most myocardial injuries, with the exception of
DOX and ethanol-induced cardiotoxicity where CB1 and CB2 individually dominate the
cardiotoxic effects. Due to the functional rivalry, this review also points to the notion that
the dual agonism or antagonism of cannabinoid receptors may not be necessarily clinically
efficacious, and the treatment of myocardial injuries might only be beneficial when based
on single-receptor activation or inhibition.
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Abbreviations

CB1 cannabinoid receptor type 1
CB2 cannabinoid receptor type 2
CNS central nervous system
ECS endocannabinoid system

AEA anandamide

2-AG 2-arachidonoyl glycerol
NADA  N-arachidonoyl-dopamine
OAE virodhamine

LPI lysophosphatidylinositol
THC delta-9 tetrahydrocannabinol
GPCRs  G-protein-coupled receptors

ECL extracellular loop
ICL intracellular loop
PKA protein kinase A

WT wild type

MI myocardial infarction
I/R ischemic/reperfusion

LPS lipopolysaccharide

a-SMA  a-smooth muscle actin

SGAs second-generation antipsychotics
DOX doxorubicin

PRSW  preload-recruitable stroke work
ESPVR  end-systolic pressure-volume relation

™ transmembrane
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