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Abstract: We report an ultra-high vacuum low-temperature scanning tunneling microscopy (STM)
study of the C60 monolayer grown on Cd(0001). Individual C60 molecules adsorbed on Cd(0001)
may exhibit a bright or dim contrast in STM images. When deposited at low temperatures close to
100 K, C60 thin films present a curved structure to release strain due to dominant molecule–substrate
interactions. Moreover, edge dislocation appears when two different wavy structures encounter each
other, which has seldomly been observed in molecular self-assembly. When growth temperature
rose, we found two forms of symmetric kagome lattice superstructures, 2 × 2 and 4 × 4, at room
temperature (RT) and 310 K, respectively. The results provide new insight into the growth behavior
of C60 films.

Keywords: STM; C60; heptamer; kagome lattice; superstructure

1. Introduction

The structures and growth process of C60 monolayer grown on metal surfaces have
attracted widespread interest in the past decades due to the unique physical and chemical
properties [1–3]. In the fullerene family, C60 was the first member to be created and
most extensively discussed. C60 molecules form various self-assembled structures when
deposited on different types of substrate, such as Au [4–9], Ag [10–14], Cu [15,16], Pb [17],
Pd [18], P [19], Al [20], graphene [21–24], WSe2 [25], Si [26–29], and Ge [30–32]. Many
results indicate that C60 molecules are easy to nucleate at the terrace edge and may form
a close-packed structure under appropriate conditions, regardless of the types of substrate,
such as the 2

√
3 × 2

√
3 R30◦ domain on Au(111) [33,34] and the 4 × 4 superstructure on

graphene/Cu(111) [22].
Strain plays a central role in governing the structures of self-assembled thin films

when organic molecules are deposited onto solid surfaces [35–38]. Strain derives from
the competition between molecule-molecule interactions and molecule-substrate interac-
tions. Currently, several strain relaxation mechanisms are known, such as step bunch-
ing [39], faceting [40], misfit dislocations [41,42], and the formation of periodic domain
boundaries [43,44], due to the dominant molecule–substrate interactions of the different
layers [45]. In the STM images of the C60 monolayer, the individual C60 molecules ap-
pear as a bright or dim contrast [4–16]. The various arrangements of the bright and dim
C60 molecules combined with the multiple molecular orientations lead to the formation
of a series of superstructures in the C60 monolayer, such as 2 × 2 [8,25,26], 3 × 3 [5,21],√

19 ×
√

19 [28,29], 7 × 7 [4,5,9], and a triple-stripe phase [18]. Moreover, the kagome
lattices built from intersecting triangles and hexagons are observed in some C60 mono-
layers [8,13,23]. It is necessary to study the behavior of bright or dim contrast in kagome
lattice when the C60 thin film is under strain.

In divalent metal Cd, there is a Coulomb repulsion between the 4d electrons and
conduction band electrons, which leads to electrons with strong anisotropy in the mean
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free path and heat conduction. Recently, the Cd(0001) surface was shown to be a good
substrate for observing and investigating strain phenomena of epitaxial films [46,47].

In this study, we used Cd(0001) thin films grown on Si(111)-7 × 7 as a substrate
to explore the interface structures of the C60-Cd system. The STM study demonstrated
that the C60 thin films on the Cd(0001) surface presented diversity at different growth
temperatures. When the growth temperature was close to 100 K, an unexpected wavy
structure driven by compressive strain appeared. Two lines of the molecular arrangements
were curved and corresponded to the

√
3 directions of the Cd(0001) surface. Moreover,

an edge dislocation was observed when two neighboring wavy domains with different
directions were encountered. When the growth temperature increased, two kinds of
symmetric kagome lattice, superstructures (2 × 2 and 4 × 4) were identified in the C60
domains, where individual C60 molecules exhibited a bright or dim contrast.

2. Results and Discussion
2.1. An Individual C60 Seven-Molecule Cluster at Two Bias Voltage

When a small amount of C60 molecules was deposited on the Cd(0001) surface at 100 K,
they formed individual small clusters. Figure 1A shows a typical C60 heptamer (seven-
molecule cluster) with one central C60 molecule surrounded by six peripheral molecules.
At the bias of 1.2 V, except for the central molecule with a dim protrusion, the other six
peripheral C60 molecules revealed a similar bright contrast. When the bias was reduced
to 0.5 V, the upper-right C60 molecule marked by the arrow became dim and revealed
a two-lobe shape (Figure 1B). We speculate that the main mechanism for the contrast
changes of this molecule arises from the modification of the molecular orientation during
low-bias scanning. To the best of our knowledge, such forms of isolated C60 heptamers
were not reported in previous experiments.
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Figure 1. Isolated C60 heptamer form on the Cd(0001) surface at 100 K. (A,B) The empty-state STM
images (6 × 6 nm) recorded at 1.2 and 0.5 V, respectively. The central molecule which is marked by
a red circle manifests a triangle shape at 1.2 V(A), and a two-lobe motif at 0.5 V (B). The peripheral
C60 molecule marked by the arrow also shows a two-lobe motif in (B).

2.2. Wavy Structure of the C60 Submonolayer Appears at 100 K

As molecule coverage increased, an unexpected wavy structure of the C60 submono-
layer appeared. Figure 2A is the STM image of a wavy domain where the C60 molecules

in the (120) direction present a wavy arrangement while the molecules in the (1
−
10) di-

rection are arranged in a straight line. Both directions correspond to the
√

3 directions
of the Cd(0001) surface. The three rows marked with red curves demonstrate the wavy
arrangement clearly. Figure 2B displays another wavy domain and the direction of straight
alignment has an angle of 60 degrees with respect to Figure 2A. The intermolecular spacing
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is 9.8 ± 0.1 Å in the straight rows and 9.4 ± 0.1 Å in the wavy rows. Both are apparently
smaller than the preferred spacing (10.02 Å) of the (111) plane in fcc C60 crystals [48],
indicating a 2% compressive strain in straight molecular rows, and a 6.3% compressive
strain in wavy molecular rows.
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arrangement in the (120) direction, and the straight arrangement in the (1
−
10) directions, 0.9 V, 20 × 20 nm. Both directions

correspond to the
√

3 directions of the Cd(0001) surface. (B) Another domain showing the wavy alignment of C60 molecules,
0.4 V, 22.7 × 22.7 nm. The direction of straight alignment has an angle of 60 degrees with respect to that in (A).

When C60 submonolayers were subjected to external forces, C60 molecules correspond
with stable orientations to attach to the substrate. However, it was not enough to release
the stress by orientation and a wavy structure appeared. Driven by the compressive stress,
the individual C60 molecules deviated from linear arrangement, and the molecular rows
became wavy in order to release the strain. In early studies, when the molecule-substrate
force worked as a dominant role, slightly curved stripes were also observed in C60 films
deposited on an Si(111) 4 × 1 In surface [49]. In addition to unidirectional wavy structures,
we observed another strain relaxation pattern through the formation of edge dislocations
in the C60 monolayer.

2.3. High-Resolution Topological Graph of the Edge Dislocation

Figure 3A shows another area of the wavy structures comprising two neighboring
wavy domains (I and II) with different directions for the straight alignments. The straight
arrangements and wavy arrangements in Domain I and II are marked with blue curves
and red lines, respectively. The straight arrangement in Domain II is in the (120) direction,
while the straight arrangement in Domain I is in the (210) direction. When these domains
encounter each other, an edge dislocation appears at the domain boundaries, tagged with
white dotted lines. To the best of our knowledge, edge dislocation is seldomly precisely
observed in molecular self-assembly. A similar phenomenon was achieved in the work
of Klyachko, who found the edge dislocation in the third layer of C60 films grown on
Ge(100) [31]. Unfortunately, the detail of the edge dislocation was hard to obtain due to
the absence of a high-resolution STM diagram.
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Figure 3. Two neighboring wavy domains (I and II) with different directions for the straight align-
ments. (A) Edge dislocation appears at the domain boundaries (white dotted lines), 23 × 15 nm,
2.8 V. (B) Close-up view of the edge dislocation as marked by the black and purple dotted curves,
7.5 × 13.5 nm, 3.0 V.

Figure 3B depicts the close-up view of the edge dislocation. Represented by black
dotted lines, Domain I has an extra C60 row compared to Domain II. The same situation also
occurs along the purple dotted lines. This observation indicates that the edge dislocation
may occur in the monolayer regime and provides an intuitive STM diagram for the study
of edge dislocations. Moreover, we noticed that this type of dislocation is absent when
Cd(0001) substrate is kept at RT during C60 deposition.

2.4. Two Regular Domains in R26◦ and R33◦

When growth temperature is raised to RT, two types of domain appear in the C60
monolayer. Figure 4A shows the topography of a R26◦ domain, in which all the C60
molecules adopt the same orientation. Each molecule reveals a two-lobe contrast corre-
sponding to the C60 orientation with a 6:6 bond facing upward, similar to the C60 molecule
in Au(111) and graphene [4,22]. The molecules in this domain exhibit a hexagonal lattice
constant a1 = 10.0 ± 0.1 Å, close to the same value (10.02 Å) in C60 crystals [48]. This means
that there is almost no strain when C60 molecules adopt the same orientation. Figure 4B
shows a R33◦ domain that is composed of symmetric kagome lattices. Inside this domain,
each dim C60 molecule is surrounded by six bright molecules, constituting a head-to-head
arrangement of hexagonal rings. In other words, the C60 monolayer is composed of two
types of molecular rows: In row-b, all the molecules show a bright protrusion, while in
row-a, one bright and one dim C60 molecule alternately appear. As a result, the bright
and dim molecules constitute a 2 × 2 superstructure, with each unit cell containing four
molecules. The measured intermolecular distance is a2 = 10.2 ± 0.1 Å, indicating a 2%
tensile strain in the R33◦ domain. These types of symmetric kagome lattices also exist in
the reported C60 domains in Au(111) [8,23].
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Figure 4. Two regular domains were obtained by deposition at room temperature. (A) Homogeneous orientation of C60

molecules in a R26◦ domain, 1.2 V, 10 × 10 nm. (B) The symmetric kagome lattice which is marked by hexagons in green
reveals a 2 × 2 superstructure in an R33◦ domain, 2.0 V, 15 × 15 nm. Arrow b represents the molecular rows with bright
molecules, and arrow a represents the rows with one bright and one dim molecules alternately arranged.

2.5. A larger 4 × 4 Superstructure of Kagome Lattice in an R44◦ Domain

When the growth temperature rises to 310 K, the C60 monolayer presents a larger
kagome lattice with a 4× 4 superstructure, shown in Figure 5A. The intermolecular distance
is a3 = 10.5 ± 0.1 Å, much larger than the value (10.02 Å) in C60 crystals. The tensile strain
is as large as 5%. These properties indicate that the packing density of C60 molecules
decreases with an increase in growth temperature due to thermal expansion of the C60
layer. As displayed in Figure 5B, the six trigonal regions distribute symmetrically around
the central hexagon, constituting the kagome lattice. Each kagome unit cell contains sixteen
molecules: a C60 heptamer located at the inner hexagon and nine peripheral molecules.
The heptamer consists of a central dim molecule and six bright surrounding molecules. We
noticed that the C60 monolayer in this domain is composed of three types of molecular
rows: all C60 molecules in row-a show a dim contrast; two dim molecules and two bright
molecules are alternately arranged in row-b; one bright and one dim molecule appear
alternately in row-c.



Int. J. Mol. Sci. 2021, 22, 6880 6 of 8

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 9 
 

 

 

Figure 5. Kagome lattice formed at 310 K. (A) Symmetric kagome networks reveal a 4  4 superstructure in an R44 domain. 

The rhombus shows the primitive cell of the superstructure. 20  20 nm, 1.2 V. (B) Close-up view of the kagome network 

with each unit cell containing sixteen C60 molecules, 1.2 V, 10  10 nm. The molecular rows a, b, and c contain dim mole-

cules, alternate two bright and two dim molecules, alternate one bright and one dim molecule, respectively. 

3. Materials and Methods 

The experiments were performed in an ultra-high vacuum low-temperature scan-

ning tunneling microscopy (Unisoku, Japan) with a base pressure close to 1.5 × 10-10 Torr. 

A clean surface of Si(111)-7 × 7 was obtained through thermal flashing to 1550 K after 

uninterrupted degassing at 820 K for more than 7 hours. The flat and smooth Cd(0001) 

thin film was treated by depositing 15-20 monolayers onto the surface of Si-7 × 7. C60 mol-

ecules were evaporated from a homemade Tantalum boat at a rate of 0.4 ML/min onto the 

Cd(0001) thin films. After the process was completed, C60/Cd/Si was transferred into the 

STM observation chamber. The entire data were obtained in a constant current mode at 

78 K (liquid nitrogen temperature). 

4. Conclusions 

In summary, our research showed the morphology of C60 molecules on Cd(0001) sub-

strate in three different growth temperatures (100 K, RT, and 310 K). STM studies demon-

strated that C60 molecules are bright or dim in the thin film. At 100 K, we found the isolated 

C60 seven-molecule cluster, which indicates that the C60 heptamer can exist alone. As the 

molecule coverage increased, an unexpected wavy structure appeared, which suggests 

the C60 submonolayer was subjected to a large compressive strain. As a normal reaction, 

when under large external stress, the film of atoms or molecules may present larger bulk 

density or form superstructures. In this study, the arrangement of C60 curved instead of 

the aforementioned action. Additionally, an edge dislocation was captured when two dif-

ferent wavy structures encountered each other, which may develop a new phenomenon 

to study edge dislocation. Two types of symmetric kagome lattices were found at elevated 

growth temperatures, the 2 × 2 superstructure in the R33domain with a 2% tensile strain 

at RT, and the 4 × 4 superstructure in the R44 domain with a 5% tensile strain at 310 K. 

Our results provide a new routine to fabricate and investigate pressure-resistant materi-

als. 

Figure 5. Kagome lattice formed at 310 K. (A) Symmetric kagome networks reveal a 4 × 4 superstructure in an R44◦

domain. The rhombus shows the primitive cell of the superstructure. 20 × 20 nm, 1.2 V. (B) Close-up view of the kagome
network with each unit cell containing sixteen C60 molecules, 1.2 V, 10 × 10 nm. The molecular rows a, b, and c contain dim
molecules, alternate two bright and two dim molecules, alternate one bright and one dim molecule, respectively.

3. Materials and Methods

The experiments were performed in an ultra-high vacuum low-temperature scanning
tunneling microscopy (Unisoku, Japan) with a base pressure close to 1.5 × 10−10 Torr.
A clean surface of Si(111)-7 × 7 was obtained through thermal flashing to 1550 K after
uninterrupted degassing at 820 K for more than 7 hours. The flat and smooth Cd(0001)
thin film was treated by depositing 15-20 monolayers onto the surface of Si-7 × 7. C60
molecules were evaporated from a homemade Tantalum boat at a rate of 0.4 ML/min onto
the Cd(0001) thin films. After the process was completed, C60/Cd/Si was transferred into
the STM observation chamber. The entire data were obtained in a constant current mode at
78 K (liquid nitrogen temperature).

4. Conclusions

In summary, our research showed the morphology of C60 molecules on Cd(0001)
substrate in three different growth temperatures (100 K, RT, and 310 K). STM studies
demonstrated that C60 molecules are bright or dim in the thin film. At 100 K, we found
the isolated C60 seven-molecule cluster, which indicates that the C60 heptamer can exist
alone. As the molecule coverage increased, an unexpected wavy structure appeared, which
suggests the C60 submonolayer was subjected to a large compressive strain. As a normal
reaction, when under large external stress, the film of atoms or molecules may present
larger bulk density or form superstructures. In this study, the arrangement of C60 curved
instead of the aforementioned action. Additionally, an edge dislocation was captured
when two different wavy structures encountered each other, which may develop a new
phenomenon to study edge dislocation. Two types of symmetric kagome lattices were
found at elevated growth temperatures, the 2 × 2 superstructure in the R33◦domain with
a 2% tensile strain at RT, and the 4 × 4 superstructure in the R44◦ domain with a 5%
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tensile strain at 310 K. Our results provide a new routine to fabricate and investigate
pressure-resistant materials.
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