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Abstract: We performed ab initio numerical simulations with the density functional theory to
investigate the variations in the band structure, optical absorption, and the reflectivity of vacancy-
graphene doped with nitrogen, oxygen, and fluorine for different densities. We considered the
density values 0.78%, 1.02%, 1.39%, 2.00%, 3.12%, 5.55%, and 12.5% for the vacancies and doping. In
the infrared and visible ranges for all cases, vacancies included, there is a substantial increment in
the absorption and reflectivity concerning graphene. The most significant changes are for fluorine
and oxygen at a concentration of 12.5%.

Keywords: graphene; optical properties; nitrogen; oxygen; fluorine; vacancies

1. Introduction

The fact that semiconductors have electrical and optical properties tunable by changes
in the band structure is one of continuing importance and interest. Recent research on
graphene and other 2D materials [1] has focused on bandgap opening to unlock appli-
cations such as electrodes [2]. Other studies have achieved a bandgap corresponding to
visible light (1.6–1.7 eV), essential for applications in photocatalysis [3,4].

One of the main ways of tuning the graphene’s bandstructure is doping it using
different atoms. Using nitrogen has shown to be relevant for energy, sensor development,
and environmental applications [5,6]. Oxygen is another studied dopant candidate. The
adsorption of oxygen atoms at a single graphene site has yielded an opening of the bandgap
of about 0.6 eV [7]. In this case, the research lines focus on several applications. Among
these, the sensors [8,9] and water desalination applications [10]. Another investigated
aspect is the oxygen evolution reaction [11], or the oxygen reduction reaction [12]. Similarly,
we have the tailoring of optical and electrical properties [13,14].

Combining nitrogen and fluorine to dope graphene resulted in good electrochemical
performances when tested as the anode for lithium-ion batteries [15]. However, doping
with fluorine alone also affects the electrical properties [16] and chemical stability of
graphene [17]. Fluorine-doped graphene has shown the potential to be an efficient, cost-
effective, and durable catalyst for its use in the fuel cell industry [18].

Other authors’ studies focused on tuning the band structure via the symmetry of the
dopant atoms to the graphene surface and modifying the graphene positions concerning the
substrate [19,20]. Studies involving fluorine, nitrogen, and oxygen have helped compare
the different resulting properties obtained for each of them, although they have focused on
a single value dopant concentration [21,22].

This work explores how graphene’s band structure and its optical properties change
by varying graphene vacancy density or dopant concentration. The band structure, optical
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absorption, and reflectivity variations are useful tools for electronic and optical applications
and detecting dopants and defects in the surface. We considered fluorine, nitrogen, and
oxygen as dopants in the graphene vacancies. The concentration values we took were
0.78%, 1.02%, 1.39%, 2.00%, 3.12%, 5.55%, and 12.5%. We performed first-principles
numerical simulations.

2. Results
2.1. Optimized Structures

We considered seven configurations in terms of the dopant density, performing struc-
tural relaxations for each. Table 1 shows the number of atoms per unit cell mentioned
above, their corresponding doping percentage, and the corresponding adsorption energies
with each of the three dopants separately. Figures 1 and 2 show the unit cells we used for
the different vacancy-dopant ratios.

Table 1. Absorption energies (in eV) for each of the 21 cases of substitutional doping we considered
after performing the structural relaxations.

% Doping F-Graphene N-Graphene O-Graphene Atoms in the
Unit Cell

12.5 −4.373371287 −12.83995707 −7.955791861 8
5.55 −4.806661273 −13.78657355 −8.806335029 18
3.12 −5.137406876 −13.99255507 −8.953832994 32
2.00 −5.266265993 −14.01279697 −8.967541945 50
1.39 −5.323285282 −14.02436461 −8.939755112 72
1.02 −5.403380587 −14.03414828 −8.964265388 98
0.78 −5.439137917 −14.04038286 −8.967093484 128
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Figure 1. Top view of the XY plane for graphene vacancy/dopant at: 12.5% top, 5.55% middle, and 

3.12% bottom. We mark the boundaries of the unit cells with lines. 

Figure 1. Top view of the XY plane for graphene vacancy/dopant at: 12.5% top, 5.55% middle, and
3.12% bottom. We mark the boundaries of the unit cells with lines.

The graphene surface’s most prominent deformation occurs for the F dopant–this case
is as F-graphene. The N dopant–labeled as N-graphene–incorporates smoothly into the lat-
tice without deforming it, apart from a slight displacement of 0.1 Å over the graphene plane,
observed only at dopant densities of 5.55% and 12.5%. For the case of O-graphene, while
increasing the dopant density, its distance from the surface slightly decreased, remaining
approximately 0.5 Å from the graphene sheet.
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Figure 2. Top view of the XY plane for graphene with vacancy/dopant at: 2%, 1.39%, 1.02%, and
0.78%. We mark the boundaries of the unit cells with lines.

Adding dopants of similar size to carbon could be incorporated into the lattice while
preserving the structure, as shown when nitrogen and oxygen adsorbed in the graphene’s
plane. Whereas fluorine, being more prominent and with one missing electron to fill its
shell, tends to bond with only one carbon. Furthermore, this bond deforms the graphene
lattice, creating a bulge in the system.

All oxygen and nitrogen percentages bounded with the three-carbon surrounding the
vacancy, with an average bound size of 1.53 and 1.42 Å, respectively. O-graphene has a
bond length of 0.11 Å greater than pristine graphene, bringing oxygen slightly out of the
graphene’s plane. In comparison, F-graphene is bound to one carbon, with an average
bound distance of 1.38 Å.

The distances between carbons remain almost constant regardless of the dopant
percentages. The separation between the first neighbors is an average of 1.3871 Å in the
vacancies cases. F-graphene maintains an average distance of 1.4021 Å. O-graphene keeps
an average spacing of 1.3889 Å (same as with vacancy), while in the case of nitrogen, the
average spacing is 1.4151 Å.

Figure 3 shows the variation of the adsorption energy with the dopant density. The
absorption energies decrease almost linearly as the percentage increased. Nitrogen pre-
sented the highest adsorption energy, and fluorine the lowest. All the values correspond to
intense interactions and stable adsorptions.

2.2. Projected Density of States (PDOS)

In Figure 4, we show the variation of the PDOS as the vacancy density changes. The s
and p states’ hybridization for the lowest vacancy density is mainly in the Fermi energy
neighborhood. As this density increases, the s and p hybridization spreads beyond the
Fermi energy.

In Figure 5, we present the PDOS when the dopant is oxygen. There is a small
hybridization of orbitals s and p around the Fermi energy for carbon in all cases. We can
observe a general tendency. The orbitals s from carbon and oxygen hybridize with the
orbitals p from oxygen and carbon in tiny contributions below the Fermi energy. As the
dopant density increases, this hybridization occurs at lower points, and the contributions
from orbitals s grow. We must mention that this general tendency fails for the densities of
1.39% (not shown in Figure 5) and 5.55%. For these two dopant densities, the hybridization
occurs at the Fermi energy.
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Figure 4. We show the PDOS for different values of vacancy densities. (a) 2.00%; (b) 3.12%; (c) 5.55%;
(d) 12.5%. Orbitals s (H) and p (N) for graphene with a vacancy.

Figures 6 and 7 show the PDOS when the dopant is nitrogen. For all cases, the
hybridization occurs below the Fermi energy (below −5 eV). The contribution of s orbitals
is tiny. For 0.78% of dopant density (not shown in the figure), this hybridization occurs
above the Fermi energy at 2.9 eV.

In Figure 8, we show the PDOS for different vacancy density values when the dopant
is fluorine. In this case, the contributions of all the s orbitals are meager. In all cases, the
hybridization occurs at the Fermi energy. We can observe the hybridization of orbitals s
and p above the Fermi energy in all cases. The hybridization is more intense as the density
increases. We can see the same kind of hybridization below −0.5 eV.



Int. J. Mol. Sci. 2021, 22, 6832 5 of 17

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 5 of 18 
 

 

dopant density increases, this hybridization occurs at lower points, and the contributions 

from orbitals s grow. We must mention that this general tendency fails for the densities of 

1.39% (not shown in Figure 5) and 5.55%. For these two dopant densities, the hybridiza-

tion occurs at the Fermi energy. 

 

Figure 5. We show the PDOS for different vacancy densities values when the dopant is oxygen. (a) 

2.00%; (b) 3.12%; (c) 5.55%; (d) 12.5%. For carbon: orbital s:q ; and for orbital p: ▲. For oxygen: orbital 

s: ; and orbital p: . 

Figures 6 and 7 show the PDOS when the dopant is nitrogen. For all cases, the hy-

bridization occurs below the Fermi energy (below −5 eV). The contribution of s orbitals is 

tiny. For 0.78% of dopant density (not shown in the figure), this hybridization occurs 

above the Fermi energy at 2.9 eV. 

In Figure 8, we show the PDOS for different vacancy density values when the dopant 

is fluorine. In this case, the contributions of all the s orbitals are meager. In all cases, the 

hybridization occurs at the Fermi energy. We can observe the hybridization of orbitals s 

and p above the Fermi energy in all cases. The hybridization is more intense as the density 

increases. We can see the same kind of hybridization below −0.5 eV. 

Figure 5. We show the PDOS for different vacancy densities values when the dopant is oxygen.
(a) 2.00%; (b) 3.12%; (c) 5.55%; (d) 12.5%. For carbon: orbital s: H and for orbital p: N. For oxygen:
orbital s: 5; and orbital p: 4.
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Figure 6. We show the PDOS for different values of vacancy densities when the dopant is nitrogen.
(a) 2.00%; (b) 3.12%; (c) 5.55%; (d) 12.5%. For carbon; orbital p: N. For nitrogen: 4. The energy range
is from −1.0 eV to +1.0 eV. The orbitals s for carbon and nitrogen are too close to zero and don’t
appear in the figure.
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Figure 7. We show the PDOS for different values of vacancy densities when the dopant is nitrogen
again. The energy range is from −7.0 eV to −5.0 eV. (a) 2.00%; (b) 3.12%; (c) 5.55%; (d) 12.5%. For
carbon: orbital s: H; and for orbital p: N. For nitrogen: orbital s: 5; and orbital p: 4. The orbitals s for
nitrogen and carbon are close to zero.
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Figure 8. We show the PDOS for different vacancy density values when the dopant is fluorine. In
this case, the dopant atom is bound to a carbon atom. (a) 2.00%; (b) 3.12%; (c) 5.55%; (d) 12.5%. For
unbound carbon: orbital s: 5; and for orbital p: 4; For bound carbon: orbital s: H; orbital p: N. For
fluorine: orbital s: O; orbital p: •. The energy range is from −1.0 eV to +1.0 eV.

2.3. Electron Transfer

Figure 9 shows the change in the number of electrons for the dopant atoms with the
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concentration. In the cases of oxygen and fluorine, the dopants gain electrons. However,
nitrogen starts transferring electrons to graphene, and as the dopant concentration increases,
the electron loss is minor. When the nitrogen concentration reaches 12.5%, the dopant takes
electrons from graphene.
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2.4. Band Structure

In Figures 10–12, we present the energy band structure for pristine graphene, graphene
with a vacancy, and graphene with a dopant for several concentrations.
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Figure 10. Energy band structures. The left column corresponds to pristine graphene for unit cells of
different sizes (containing 2N × N carbon atoms). The 12.5% of dopant (or vacancy) corresponds
to a unit cell of 8 bits (N = 2). 5.55% compares to a unit cell with N = 3; 3.12% refers to a unit cell
with N = 4. The Fermi energy corresponds to the dotted lines. The second column from the left
relates to different vacancy percentages. The middle column shows fluorine’s influence as a dopant
on the energy band structure when its presence changes several ratios. The other two columns refer
to nitrogen and oxygen, respectively.
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energy bands could imply many-body phenomena (i.e., no-conventional superconductiv-

ity or ferromagnetism [24–26]. 

Figure 11. Energy band structures. The left column corresponds to pristine graphene for unit cells of
different sizes (containing 2N × N carbon atoms). The 2.0% of dopant (or vacancy) corresponds to a
unit cell of 50 bits (N = 5). 1.39% compares to a unit cell with N = 6; The Fermi energy corresponds
to the dotted lines. The second column from the left relates to different vacancy percentages. The
middle column shows fluorine’s influence as a dopant on the energy band structure when its presence
changes several ratios. The other two columns refer to nitrogen and oxygen, respectively.
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Figure 12. Energy band structures. The left column corresponds to pristine graphene for unit cells of
different sizes (containing 2N × N carbon atoms). The 1.02% of dopant (or vacancy) corresponds to a
unit cell of 98 bits (N = 7). 1.39% compares to a unit cell with N = 8; The Fermi energy corresponds
to the dotted lines. The second column from the left relates to different vacancy percentages. The
middle column shows fluorine’s influence as a dopant on the energy band structure when its presence
changes several ratios. The other two columns refer to nitrogen and oxygen, respectively.

The surfaces showed some relevant band gap variations. The first column on the left
corresponds to pristine graphene for seven different unit cells. Each cell contains 2N × N
atoms. The 12.5% of dopant (or vacancy) corresponds to a unit cell of 8 bits (N = 2). 5.55%
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compares to a unit cell with N = 3; 3.12% refers to a unit cell with N = 4; 2.0% corresponds
to 50 atoms (N = 5). 1.39% refers to N = 6; 1.02% refers to a unit cell with N = 7 (98 bits);
1.39% compares to a unit cell with N = 8. Finally, 0.78% corresponds to a unit cell with
N = 8 and 128 atoms.

We can observe that the Dirac cones appear at the K points, except for the unit cells
that contain 18 and 72 atoms (i.e., N = 3 and 6). These unit cells follow the 3N× 3N rule [23].
In these cases, the Dirac point folds from the K to the Γ point. The Brillouin folding is
a symmetry consequence that does not affect the description of the system’s properties.
Furthermore, and for the same cases, for all the dopants, doped graphene (corresponding
to 5.55% and 1.39%) has a zero-gap or a neglectable gap, which occurs in the vacancy case
as well. The Dirac points fold from K to Γ points and makes the band diagrams different
from the rest. For the other unit cells, there is a gap. The opening of this gap depends on
the dopant concentration.

We may say that, in general, the structures are semimetallic. For the vacancies, there
is a quasi-flat energy band, around the Fermi energy, for concentrations below 2%. Flat
energy bands could imply many-body phenomena (i.e., no-conventional superconductivity
or ferromagnetism [24–26].

From Figure 13, we see that for each dopant, the most significant gap occurs for the
greatest concentration (12.5%, N = 2, i.e., a unit cell with eight atoms). The largest bandgap
was for oxygen-graphene (0.95 eV). Furthermore, there is a linear behavior of the bandgap
with the dopant concentration in nitrogen-graphene. This behavior agrees with previous
reports from other authors [23]. Figure 14 shows the bandgap around the Dirac points. In
this case, the biggest bandgap is for fluorine at 12.5%.
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Figure 13. We show the bandgap variation around the Fermi energy for different dopant (vacancy)
percentage densities. The arrows indicate the unit cell sizes that follow the 3N rule [23] (1.39%
and 5.55%). Nitrogen: 4; oxygen: O; Fluorine: 5; vacancy: �. In the case of nitrogen, there is a
linear behavior.

2.5. Optical Absorption and Reflectivity

We calculated the dielectric tensor, and we obtained the absorption and reflectivity for
each case. We considered the electromagnetic wave propagating in a direction perpendicu-
lar to the graphene plane. Our results for pristine graphene agree with reports from other
authors [27]. We show our calculations for vacancies and dopants in Figures 15–17 for the
optical absorption and the reflectivity in Figure 18.
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Figure 14. We show the bandgap variation around the Dirac points for different dopant (vacancy)
percentage densities. Nitrogen: 5; oxygen: O; Fluorine: 4; vacancy: �. We drew the lines only to
keep track of the changes for each dopant. The bandgap collapses to zero for the unit cell sizes that
follow the 3N rule [23] (1.39% and 5.55%).
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Figure 15. We show the absorption in the infrared region for different dopant (or vacancy) concen-
trations. For 0% (pristine graphene): O; for 0.78%: •; for 1.02%: �; for 1.39%: �; For 2.0%: H; for
3.12%: 5; for 5.55%: 4; for 12.5%: N. At the top, we have the absorption for different vacancy
concentrations. At the bottom, we have the optical absorption for different oxygen percentages. As in
the two previous cases, we show the absorption for fluorine and nitrogen for the same concentration
variation in the middle. The horizontal axis marks the energy of incident electromagnetic radiation.
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Figure 16. We present the absorption in the visible region for different dopant (or vacancy) con-
centrations. For 0% (pristine graphene): O; for 0.78%: •; for 1.02% �; for 1.39%: �; For 2.0%: H;
for 3.12%: 5; for 5.55%: 4; for 12.5%: N. At the top, we have the absorption for different vacancy
concentrations. At the bottom, we have the optical absorption for different oxygen percentages. As in
the two previous cases, we show the absorption for fluorine and nitrogen for the same concentration
variation in the middle. The horizontal axis marks the energy of incident electromagnetic radiation.

2.5.1. Optical Absorption

In Figure 15, for the infrared region, pristine graphene presents minimal absorption. In
general, we may say that as the vacancy concentration increases, the absorption increments
quickly. It is clear that for given incident radiation energy, this increment is not linear. At
12.5% of vacancy concentration, there is a prominent absorption peak at low radiation
energies, and then the absorption decreases as the frequency of the incident radiation
increments.

When a fluorine atom is a dopant, the absorption increases with incident radiation
frequency for all concentration values. Furthermore, the absorption increases when con-
centration increments. For the most significant concentration, there is a local maximum at
low frequencies. The absorption has a similar value to the vacancy’s case.

We found that the optical absorption has the same order of magnitude as graphene’s
when the nitrogen is the dopant. There are no local minima, but there is a slow increment in
absorption when the frequency grows.

In oxygen as the dopant, the absorption increases as the concentration increments.
Furthermore, the absorption has a magnitude more significant than in the nitrogen’s
case, but smaller than fluorine’s. The absorption increases when the concentration grows.
Overall, we see that the optical absorption increments as the frequency increases.

Figure 16 shows our results for the visible region. We see that pristine graphene presents
minimal absorption. Again, when the vacancy concentration increases, the absorption
overgrows. We see a prominent absorption peak for a concentration of 5.55%, which is
the maximum absorption at that energy radiation for all concentrations. The location of
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this peak is around 2.3 eV (i.e., 539 nm, green radiation). There is another maximum for a
concentration of 12.5% that occurs at 3.2 eV (i.e., near-ultraviolet region).
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Figure 17. We present the absorption in the ultraviolet region for different dopant (or vacancy)
concentrations. For 0% (pristine graphene): O; for 0.78%: •; for 1.02%: �; for 1.39%: �; For 2.0%: H;
for 3.12%: 5; for 5.55%: 4; for 12.5%: N. At the top, we have the absorption for different vacancy
concentrations. At the bottom, we have the optical absorption for different oxygen percentages. As in
the two previous cases, we show the absorption for fluorine and nitrogen for the same concentration
variation in the middle. The horizontal axis marks the energy of incident electromagnetic radiation.

With fluorine as the dopant, again, the optical absorption increases quickly with
concentration. In general, the absorption increases with all concentration values’ energy
radiation. However, the maximum absorption occurs for a concentration of 12.5% at the
energy around 1.6 eV (i.e., 774.9 nm, red radiation). After that, the absorption decreases
with increasing radiation energy. The maximum absorption is closely 1500 times the
absorption of graphene.

In nitrogen as the dopant, the optical absorption magnitude is two or three times
larger than the graphene’s corresponding absorption. The two significant peaks happen
for concentrations of 5.55% and 12.5%. The first one occurs around 2.75 eV (i.e., 450 nm,
blue radiation), and the second at about 3 eV (i.e., 413 nm, violet radiation).

When oxygen is the dopant, for concentrations below 2%, there is a peak value for
the optical absorption. This peak occurs at 2.25 eV (i.e., 551 nm, green radiation). Further-
more, in general, the absorption increase as the dopant concentration increments. When
the dopant percentage is 12.5%, the absorption grows with frequency. In this case, the
absorption is around one thousand times the corresponding absorption of graphene.

In Figure 17, we present the results for the optical absorption for the ultraviolet region.
In this range, pristine graphene shows two prominent peaks. One is for incident radiation of
11.02 eV, and the other for 14.58 eV. The absorption resembles pristine graphene for vacancy
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concentrations below 5.55%; when the percentages are 5.55% and 12.5%, the maximum on
the left moves about 1.5 eV to the right.
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Figure 18. We show the reflectivity for different dopant (or vacancy) concentrations. For 0% (pristine
graphene): O; for 0.78%: •; for 1.02%: �; for 1.39%: �; For 2.0%: H; for 3.12%: 5; for 5.55%: 4; for
12.5%: N. At the top, we have the reflectivity for different vacancy concentrations. At the bottom,
we have the optical reflectivity for different oxygen percentages. As in the two previous cases, we
show the reflectivity for fluorine and nitrogen for the same concentration variation in the middle.
The horizontal axis marks the energy of incident electromagnetic radiation.

When fluorine is the dopant, the absorption, again, resembles pristine graphene for
dopant percentages below 5.55%, for concentrations 5.55% and 12.5%, the maximum on the
left moves to the right about 2.5 eV. In this way, the two maxima come close to each other.
Furthermore, for 12.5% of dopant concentration, three small peaks appear below 7.5 eV.

In the nitrogen case, the changes are tiny. The most noticeable is 12.5% concentration,
where the peak on the left moves about 1 eV to the right.

When oxygen is the dopant, there are few changes concerning pristine graphene for all
dopant concentrations, except for 12.5%. There is a tendency to move the peak on the right
slightly to the left as the percentage increases. However, for 12.5%, the maximum on the
right moves about 1.5 eV to the left. Furthermore, the peak on the left moves about 5.0 eV
to lower energies.

2.5.2. Reflectivity

In Figure 18, we present the reflectivity for the whole range of energy of incident
radiation. The reflectivity of pristine graphene shows two maxima located in the ultraviolet
range. One is for radiation of 11.07 eV, and the other for 14.57 eV. For vacancies, we see
that for all concentrations, the reflectivity resembles pristine graphene. There is only a
noticeable change at 12.5%; the peak on the left moves 0.3 eV to the right, getting closer to
the other maximum.

When fluorine is the dopant for all concentrations, the reflectivity resembles graphene.
There is a significant change for 12.5%. In this case, the peak on the right moves 0.1 eV to
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the right. Furthermore, the maximum on the left disappears, and five peaks appear below
8 eV.

In the case of nitrogen, the reflectivity is similar to that of graphene for all dopant
concentrations. There are tiny changes only when the percentage is 12.5%. In this case, the
two peaks move to the right about the same amount, 0.12 eV.

Finally, with oxygen as a dopant happens something similar to fluorine. In general,
the reflectivity resembles graphene for all concentrations except at 5.55% and 12.5%. In
the case of 5.55%, one additional maximum appears between the two prominent peaks. At
12.5%, the maximum on the right moves 0.15 eV to the left. The peak on the left disappears,
and three maxima appear below 8 eV.

3. Discussion

We investigated the changes in the structure of the energy bands and the optical
properties of graphene when the concentration of vacancies and doping changed. We
considered fluorine, nitrogen, and oxygen as dopants. We investigated the concentration
values 0.78%, 1.02%, 1.39%, 2.00%, 3.12%, 5.55%, and 12.5%.

The three dopant atoms chemisorb in the graphene surface, with absorption energies
that suggest stability of the resulting systems. In the three cases, the magnitude of the
adsorption energies decreases with increasing doping density almost linearly. We found
that fluorine showed the lowest adsorption energy and nitrogen the highest. Nonetheless,
we found that the dopant density influences the hybridization of the atomic orbitals and
the energy band structure. Oxygen as a dopant at a concentration of 12.5% presents the
largest bandgap (0.95 eV). Fluorine shows a maximum bandgap of 0.8 eV at a concentration
of 3.12%. The widest bandgap we obtained for nitrogen as a dopant was 0.70 eV at a
concentration of 12.5%.

We found substantial variations in the optical properties when the vacancy and doping
concentrations change. The most significant changes in reflectivity are with fluorine and
oxygen as dopants. Five maxima appear below 8 eV, where the pristine graphene shows a
near-zero reflectivity in fluorine at a concentration of 12.5%. The highest of these maxima
has an intensity of 20% of the maximum reflectivity in pristine graphene. One of the two
prominent peaks in graphene disappears. Something similar happens with oxygen: three
peaks appear below 8 eV at 12.5%. The most intense of these peaks is 22% of the highest
maximum in pristine graphene. One of the two prominent peaks in pristine graphene also
disappears.

For the optical absorption, there are only two maxima in pristine graphene and occur
in the ultraviolet range. In the rest of the spectrum, the absorption is near zero. In the
infrared, in all cases (including vacancies), we obtained significant changes concerning
pristine graphene. Fluorine, at a concentration of 12.5%, shows the most significant change.
The most prominent peak was 4.0% of the maximum absorption in pristine graphene. We
should mention that the second-largest absorption occurred for the vacancies and was 3.6%
of the most prominent peak in graphene.

In the visible range, something similar happens. For all cases, vacancies included,
there is a substantial increment in the absorption. The most significant changes are for
fluorine and oxygen as dopants at a concentration of 12.5%. The maximum absorption
for fluorine was 13.6% of the most considerable absorption in graphene and for oxygen
was 8.2%.

For the ultraviolet region, the most relevant changes concerning pristine graphene
occur at a concentration of 12.5% for all instances, including vacancies. However, for
oxygen and fluorine, the peak on the left disappears. In oxygen, three maxima appear
below 8 eV. The maximum of these three is 27.2% of the maximum absorption in graphene.
In fluorine, five maxima appear below 8 eV, and the most prominent of these reaches 22.7%
of the maximum peak for pristine graphene.

We found significant variations in the optical properties, especially in the infrared
and visible ranges, implying changes in the material’s color. The changes in the tincture
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of defected or doped graphene may be a valuable tool for detecting the concentration of
dopants or vacancies.

4. Materials and Methods

We utilized density functional theory (DFT) via the Quantum ESPRESSO code [28,29]
to perform all the calculations under the pseudopotential and plane wave approximation.
We considered an energy cut-off value of 1400 eV, the generalized gradient approximation
(GGA), and the Perdew–Burke–Ernzerhof (PBE) expression for the exchange-correlation
functional [30]. We calculated the adsorption energy, the energy band structure, the pro-
jected density of states (PDOS), and the dielectric tensor for each case. For this purpose, we
utilized norm-conserving pseudopotentials with the Goedecker–Hartwigsen–Hutter–Teter
method and the Van der Waals VdW-DFT [31–34] correction. We took a 8 × 8 × 1 k-point
mesh within the Monkhorst–Pack scheme [35]. The energy convergence threshold was
10−6 eV. We considered a supercell size large enough to avoid spurious interactions. In this
way, the cell size on the z-axis was 15 Å.

Many studies are focused on calculating the properties when the dopant is inside
the graphene structure. We perform a geometrical optimization with the dopant out of
graphene’s plane to analyze which kind of interaction would be natural. Thus, we placed
each dopant atom at 3 Å from the vacancy graphene sheet. In all cases, we optimized the
graphene surface with vacancies. We then added the dopant and performed a geometry
optimization. We calculated the adsorption energies using the formula (1):

∆E = E( f inal structure)− [E(X) + E(vacancy− graphene)] (1)

where X = N, O, F.
For visualizations, we used the XCrySDen software [36]. We calculated the corre-

sponding band structures, densities, and projected densities of states (PDOS). We obtained
the optical properties, absorption, and reflectivity from the complex dielectric function. We
obtained the imaginary component of the dielectric tensor from electronic bands’ structure
in the linear optics limit. Within the random phase approximation (RPA) [37],

εαβ(ω) =
4n2

m2ω2 ∑
c,υ

∫
d3k〈ck|pα|υk〉〈υk|pβ|ck〉δ(εck − ευk −ω) fc(1− fυ) (2)

In Equation (2), n is the electron density, m is the effective mass, and ω is the photon
frequency. The indices α and β are the cartesian components of p that is the vector defining
the incident electric field’s polarization. The symbols ck and υk are the wave functions
corresponding to the conduction, and the valence bands with crystal wave vector k; f c is
the Fermi distribution function for the state c. The sum of the transitions from occupied
to unoccupied states is over the first Brillouin zone. Finally, we weigh the probability of
a change.

By the Kramers-Kronig relations [38] and using Equation (2)

Reεαβ(ω) = δ
αβ
+

2
n

P
∞∫
0

ω′Imε
αβ
(ω)

ω′2 −ω2 dω′ (3)

Considering a perpendicular incidence of the electromagnetic wave, the reflectivity
and absorption Rii and Aii are (with n and k being the refractive index and extinction
coefficient, respectively):

Rii(ω) =
(n− 1)2 + k2

(n + 1)2 + k2
(4)

Aii(ω) =
2ωk(ω)

c
(5)
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And

nii =

√
|εii(ω)|+ Reεii(ω)

2
(6)

kii(ω) =

√
|εii(ω)| − Reεii(ω)

2
(7)
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