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Abstract: The chloroplast is a semi-autonomous organelle with its own genome. The expression of
chloroplast genes depends on both chloroplasts and the nucleus. Although many nucleus-encoded
proteins have been shown to localize in chloroplasts and are essential for chloroplast gene ex-
pression, it is not clear whether transcription factors can regulate gene expression in chloroplasts.
Here we report that the transcription factor NAC102 localizes in both chloroplasts and nucleus in
Arabidopsis. Specifically, NAC102 localizes in chloroplast nucleoids. Yeast two-hybrid assay and
co-immunoprecipitation assay suggested that NAC102 interacts with chloroplast RNA polymerases.
Furthermore, overexpression of NAC102 in chloroplasts leads to reduced chloroplast gene expression
and chlorophyll content, indicating that NAC102 functions as a repressor in chloroplasts. Our study
not only revealed that transcription factors are new regulators of chloroplast gene expression, but
also discovered that transcription factors can function in chloroplasts in addition to the canonical
organelle nucleus.
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1. Introduction

One of the major differences between plants and animals is that plants contain chloro-
plasts, which carry out photosynthesis, produce various metabolites, and sense external
cues. Chloroplasts are believed to derive from cyanobacterium in an endosymbiotic event.
During evolution, most bacteria genes were transferred to the host nucleus and only a small
portion of genes were retained on the own genome [1,2]. Therefore, the crosstalk between
chloroplasts and the nucleus is essential to maintain cellular homeostasis, which is achieved
through anterograde (nucleus-to-chloroplasts) and retrograde (chloroplasts-to-nucleus)
signaling [3,4].

As a semi-autonomous organelle, the gene expression in chloroplasts is controlled by
both chloroplasts and the nucleus [2]. For example, both plastid-encoded RNA polymerase
(PEP) and the nuclear-encoded RNA polymerase (NEP) contribute to chloroplast gene
expression [5,6]. While the expression of photosynthetic genes, such as psbA, psbB, and rbcL,
is preferentially dependent on PEP, the expression of the housekeeping genes, including
ribosomal RNAs and the core subunits of the PEP, is dependent on NEP [7–9]. NEP is a
phage-type RNA polymerase with a single subunit, encoded by two nuclear genes, rpoTp
and rpoTmp, in Arabidopsis. PEP is a bacteria-type RNA polymerase that consists of four
core subunits (α, β, β′, and β′′), encoded by rpoA, rpoB, rpoC1, and rpoC2 in the chloroplast
genome, and a promoter-recognizing sigma factor (σ) encoded by the nuclear genes [10,11].
Furthermore, PEP forms a big complex with many PEP-associated proteins (PAPs) to
regulate gene expression. All PAPs are encoded by the nuclear genome [12–14].

In addition to PAPs, many other nucleus-encoded proteins have been reported to
regulate chloroplast gene expression at the transcriptional level or the post-transcriptional
level (including RNA splicing, RNA editing, and translation) [13,15,16]. Although much
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progress has been made towards understanding their functions in post-transcriptional
regulation, how they regulate chloroplast gene expression at the transcriptional level is less
well-understood.

In plants, the NAC (NAM, ATAF, and CUC) family is one of the largest plant-
specific transcription factors and plays important roles in plant development and stress
responses [17,18]. Previous studies have revealed that the transcription factor NAC102
is involved in oxidative stress responses and the nac102 mutant is sensitive to excessive
light [19–21]. Here we show that NAC102 associates with the chloroplast genome, inter-
acts with chloroplast RNA polymerases, and regulates chloroplast gene expression. To
our knowledge, NAC102 is the first transcription factor reported to regulate chloroplast
gene expression directly. Our study not only revealed that transcription factors are new
regulators of chloroplast gene expression, but we also discovered that transcription factors
can function in chloroplasts in addition to the canonical organelle nucleus.

2. Materials and Methods
2.1. Plant Materials and Growth Condition

All Arabidopsis thaliana used in this study were in the Columbia (Col-0) background.
The nac102 mutant (SALK_030702) was obtained from ABRC. The transgenic lines were
generated by the floral dip method [22]. Arabidopsis was grown on half-strength (1/2)
Murashige and Skoog (MS) medium or in soil under long-day conditions (16 h of light and
8 h of dark) at 22 ± 2 ◦C.

2.2. Vector Constructions

For localization analysis of NAC102, the coding sequence of enhanced yellow fluores-
cent protein (eYFP) was fused to the C-terminus of the NAC102 fragment (NAC102-eYFP)
using fusion PCR. The NAC102∆N43-eYFP was generated by using NAC102-eYFP as a
template. To generate NAC102N43-eYFP, NAC102N60-eYFP, and NAC102N80-eYFP, the 43,
60 and 80 aa N-terminal parts of NAC102 were cloned and fused to eYFP, respectively.
To generate NAC102-eYFPNES, the coding sequence of nuclear export sequence (NES)
(CLPPLERLTLD) [23] was further fused C-terminally to NAC102-eYFP (Figure 1). To
generate TRXz-CFP, the coding sequence of cyan fluorescent protein (CFP) was fused to
the C-terminus of TRXz. All fusion fragments were inserted into pFGC5941 at the NcoI and
XbaI sites. For Y2H assays, the coding sequence of NAC102 was inserted into pGBKT7 at
the NdeI and PstI sites. The coding sequences of the subunits of PEP and NEP were inserted
into pGADT7 at the NdeI and PstI sites. All recombination reactions were performed
using a Lightening Cloning kit (Biodragon, Beijing, China). The primers used for vector
constructions are listed in the Supplementary Materials, Table S1.
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Figure 1. A schematic diagram of NAC102 fusion proteins. 

  

Figure 1. A schematic diagram of NAC102 fusion proteins.

2.3. Transient Expression

For transient expression in Arabidopsis protoplasts, the plasmids were transfected into
protoplasts as described previously [24] and incubated under dark for 16–24 h before imaging.
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2.4. Confocal Laser Scanning Microscopy

Images were captured using a confocal laser scanning microscope (Leica TCS SP8 or
DMi8, Wetzlar, Germany). The excitation wavelengths for DAPI, CFP, eYFP, and chloro-
phyll autofluorescence were 405 nm, 448 nm, 488 nm, and 514 nm, respectively. The
emission filters were substrate for DAPI, 448–514 nm for CFP and eYFP, and 500–530 nm
for chlorophyll autofluorescence.

2.5. Y2H Assay

The pGADT7 vectors were transformed into yeast strain AH109, while the pGBKT7
vectors were transformed into yeast strain Y187. After mating AH109 with Y187, the yeasts
were plated on DDO media. The colonies were resuspended and diluted using distilled
water, and were then plated on DDO or QDO media, respectively. The photos were taken
after incubation at 28 ◦C for 2 d on DDO media or 3 d on QDO media.

2.6. CoIP Assay

The 8-day-old seedlings were ground in liquid nitrogen and incubated with IP buffer
(50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 20 mM
EDTA, 1 mM PMSF, 100 µM MG132, and 1× protease cocktail) for 30 min. After cen-
trifugation at 12,000× g for 5 min, the resulting supernatants were incubated with 40 µL
GFP-Trap beads (Chromotek, Planegg-Martinsried, Germany) for 1 h. After washing
three times with washing buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% Triton X-
100, 1% sodium deoxycholate, 0.1% SDS, and 20 mM EDTA), the beads were incubated
with 40 µL 2× SDS-PAGE buffer for 10 min at 98 ◦C. The eluted proteins were subjected
to Western blotting using anti-GFP (Roche, Basel, Switzerland, 11814460001), anti-rpoA
(PhytoAB, San Jose, USA, PHY1241S), anti-rpoB (PhytoAB, PHY1701), anti-rpoC1 (Phy-
toAB, PHY1240), anti-rpoC2 (PhytoAB, PHY0382A), anti-rpoTp (PhytoAB, PHY0836S),
and anti-rpoTmp (PhytoAB, PHY0838S).

2.7. RNA Isolation and qPCR

Total RNA was extracted from 8-day-old Arabidopsis seedlings using TRIZOL reagent
(Thermo Fisher Scientific, Carlsbad, USA). The reverse-transcription reaction was per-
formed using HiScript II Q RT SuperMix (Vazyme, Nanjing, China) according to the
manufacturer’s instructions. The qPCR assays were performed on the CFX96 Touch Real-
Time PCR Detection System (Bio-Rad, Hercules, CA, USA) using ChamQ Universal SYBR
qPCR Master Mix (Vazyme, Nanjing, China). The primers used for qPCR analyses are
listed in Table S1.

2.8. Chlorophyll Content Measurement

Chlorophyll contents were measured as described previously [25]. The 3rd and 4th
leaves of 3-week-old seedlings were used.

3. Results
3.1. NAC102 Localizes in Both Chloroplasts and Nucleus

In Arabidopsis thaliana, there are 105 NAC transcription factors [26], among which
NAC102 (AT5G63790) is predicted to localize in both chloroplast and nucleus according
to TAIR (https://www.arabidopsis.org; 1 June 2016). To our knowledge, no transcription
factors have been reported to localize in the chloroplast. Therefore, we decided to study
NAC102 further. NAC102 has two alternative transcripts, AT5G63790.1 and AT5G63790.2.
As shown in Figure S1, compared to AT5G63790.1, AT5G63790.2 encodes a protein with
an additional 10 amino acids at the N-terminus. To confirm the subcellular localization
of NAC102, both NAC102 variants were fused with enhanced yellow fluorescent pro-
tein (eYFP) and were transiently expressed in Arabidopsis protoplasts. The CFP-tagged
E2Fa transcription factor (E2Fa-CFP) was used as the nucleus marker and the chlorophyll
fluorescence was used as the chloroplast marker. As shown in Figure 2, both AT5G63790.1-

https://www.arabidopsis.org
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eYFP and AT5G63790.2-eYFP localized in chloroplast and nucleus. In the following study,
we only used AT5G63790.1. To further confirm its localization, we generated the trans-
genic Arabidopsis expressing NAC102-eYFP (AT5G63790.1) driven by the 35S promoter
(35S:NAC102-eYFP). Consistently, the eYFP fluorescence was detected in both chloroplast
and nucleus (Figure 2C).
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Figure 2. NAC102 localizes in both the nucleus and the chloroplast. (A,B) The localization of
NAC102-eYFP when it was transiently expressed in Arabidopsis protoplasts. E2Fa-CFP was used
as the nucleus marker and the chlorophyll fluorescence was used as the chloroplast marker. Both
isoforms of NAC102, AT5G63790.1 (A) and AT5G63790.2 (B), were shown. (C) The localization of
NAC102-eYFP in epidermal cells derived from NAC102 (AT5G63790.1) transgenic lines. The nucleus
was stained with DAPI. The pictures were captured using confocal microscopy. Bars = 10 µm.

3.2. The N-Terminal Sequence of NAC102 Is Necessary and Sufficient for Its
Chloroplast Localization

Most nucleus-encoded chloroplast proteins contain transit peptides at their N-terminus
to direct them to the chloroplast. To map the transit peptide of NAC102, we performed
a prediction using the ChloroP server [27]. However, no transit peptide was identified.
Interestingly, when the NAC102 orthologs from other plant species were aligned, we found
that the N-terminal 43 amino acid residues (N43) of NAC102 from Arabidopsis thaliana is
very unique (Figure S2). We speculated that N43 is necessary for its chloroplast localization.
To test this hypothesis, we transiently expressed the truncated NAC102-eYFP without
N43 (NAC102∆N43-eYFP) in Arabidopsis protoplasts. In support of the hypothesis, the
NAC102∆N43-eYFP was only detected in the nucleus (Figure 3A). To investigate whether
N43 is sufficient for its chloroplast localization, we fused eYFP with N43 (N43-eYFP) and
examined its localization. As shown in Figure 3B, the N43-eYFP could not localize in
chloroplasts, suggesting that more amino acid residues are required for the chloroplast
localization of NAC102. Therefore, we investigated the localization of eYFP fused to N-
terminal 60 or 80 amino acid residues (N60 or N80). We found that the N80-eYFP but not
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N60-eYFP could localize in chloroplasts (Figure 3C,D). These results suggested that the
N-terminal sequence of NAC102 is necessary and sufficient for its chloroplast localization.
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Figure 3. The effects of the N-terminal sequence of NAC102 on its chloroplast localization. The fusion
proteins were transiently expressed in Arabidopsis protoplasts. NAC102∆N43-eYFP (A) represented
the truncated NAC102-eYFP without N-terminal 43 amino acid residues (N43); NAC102N43-eYFP
(B), NAC102N60-eYFP (C), and NAC102N80-eYFP (D) represented eYFP fused with N-terminal 43,
60 or 80 amino acid residues, respectively. E2Fa-CFP was used as the nucleus marker and the
chlorophyll fluorescence was used as the chloroplast marker. The pictures were captured using
confocal microscopy. Bars = 10 µm.

3.3. NAC102 Is in Chloroplast Nucleoids

In chloroplast, NAC102-eYFP forms puncta (Figure 2), which is reminiscent of chloro-
plast nucleoids [28]. To test whether NAC102 is in chloroplast nucleoids, we isolated the
chloroplasts from NAC102-eYFP transgenic lines and stained them with DNA-specific
dye, DAPI. As shown in Figure 4A, the eYFP and DAPI fluorescence largely overlapped.
TRXz (AT3G06730) is a well-characterized protein localized in chloroplast nucleoids [29,30].
Therefore, we fused TRXz with CFP to generate TRXz-CFP and co-expressed it with
NAC102-eYFP in Arabidopsis protoplasts. We found that the fluorescence of NAC102-
eYFP and TRXz–CFP co-localized in chloroplasts (Figure 4B). These results supported that
NAC102 localizes to chloroplast nucleoids.
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Figure 4. NAC102 associates with chloroplast nucleoids. (A) Colocalization of NAC102-eYFP and
chloroplast nucleoids. The chloroplasts were isolated from NAC102-eYFP transgenic lines and stained
with DAPI. The pictures were captured using confocal microscopy. Bar = 5 µm. (B) Co-localization
of NAC102-eYFP and chloroplast nucleoid marker TRXz–CFP. The NAC102-eYFP and TRXz-CFP
were transiently co-expressed in Arabidopsis protoplasts. The pictures were captured using confocal
microscopy. Bar = 10 µm.

3.4. NAC102 Interacts with Chloroplast RNA Polymerases

Transcription factors regulate gene expression by interacting with RNA polymerases [31].
In chloroplasts, there are two types of RNA polymerases, PEP and NEP. To test whether
NAC102 interacts with PEP and NEP, we carried yeast two-hybrid (Y2H) assays. The cod-
ing sequence of NAC102 was fused to the GAL4 DNA-binding domain (BD) as a bait. The
coding sequences of the subunits of PEP (rpoA, rpoB, rpoC1, and rpoC2) and NEP (rpoTp
and rpoTmp) were fused to the GAL4 activation domain (AD) as prey. Compared with the
AD control, the expression of PEP and NEP subunits promoted yeast growth on the selec-
tion media (QDO + 3-AT), indicating that NAC102 interacts with PEP and NEP subunits
(Figure 5A). To confirm these interactions, we carried out co-immunoprecipitation (CoIP)
assays using the NAC102-eYFP transgenic lines. In these assays, the transgenic line express-
ing the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and eYFP fusion
(SSU-eYFP) was used as a negative control. Total proteins were extracted and subjected
to immunoprecipitation with GFP-Trap. Both inputs and IP fractions were subjected to
immunoblotting analysis with specific antibodies against rpoA, rpoB, rpoC1, rpoC2, rpoTp,
and rpoTmp. Compared with SSU-eYFP, NAC102-eYFP could coimmunoprecipitate rpoA,
rpoB, rpoTp, and rpoTmp, but not rpoC1 and rpoC2 (Figure 5B).

3.5. NAC102 Represses the Expression of Chloroplast Genes

Since NAC102 associates with the chloroplast genome and interacts with chloroplast
RNA polymerases, we hypothesized that NAC102 may regulate the transcription of chloro-
plast genes. We first tested the chloroplast gene expression in the nac102 mutant. However,
the genes tested showed similar expression levels in Col-0 and nac102 (Figure S3). There-
fore, we next sought to test whether overexpression of NAC102 affects chloroplast gene
expression. Given that NAC102 localized both in chloroplast and nucleus (Figure 2), it
is possible that the nucleus fraction of NAC102 also regulates the transcription of chloro-
plast genes indirectly. To exclude the effect of nuclear NAC102, we generated transgenic
lines over-expressing NES tagged NAC102-eYFP (NAC102-eYFPNES), which localized in
chloroplasts, but not in the nucleus (Figure S4). As shown in Figure 5C,D, compared to
Col-0 control, the expression of both the PEP (Figure 5C) and NEP-dependent (Figure 5D)
genes was reduced in the NAC102-eYFPNES overexpression lines, suggesting that NAC102
represses the expression of these genes. In accordance with reduced chloroplast gene ex-
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pression, we found that the chlorophyll contents were also reduced in the NAC102-eYFPNES

overexpression lines (Figure 5E).
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Ade) supplemented with 10 mM 3-AT. The yeast growth on QDO + 3-AT indicates interaction. AD, activation domain.
BD, DNA-binding domain. (B) CoIP assays. The total proteins of the NAC102-eYFP and SSU-eYFP transgenic lines
were immunoprecipitated by GFP-Trap, followed by Western blotting using antibodies against rpoA, rpoB, rpoC1, rpoC2,
rpoTp, and rpoTmp. The CoIP assays were repeated twice with similar results. (C,D) The relative expression level of the
chloroplast genes determined by qRT-PCR analysis using EF1α as the normalizer. (C) The PEP-dependent genes. (D) The
NEP-dependent genes. (E) Total chlorophyll content in the indicated plants. The 3rd and 4th leaves were used. Data
represent mean ± SD (n = 3). The statistical significances were determined using Student’s t-test (* p < 0.05, ** p < 0.01, and
*** p < 0.001).

4. Discussion

Many studies have shown that the chloroplast gene expression depends on nucleus-
encoded proteins. For example, the nucleus-encoded WHY1 and SIB1 have been shown to
play important roles in chloroplast gene expression [32–35]. However, these proteins are
transcriptional coregulators, but not transcription factors. In this study, we found that the
transcription factor NAC102 associated with chloroplast genome and repressed chloroplast
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gene expression. To our knowledge, NAC102 is the first transcription factor reported
to regulate chloroplast gene expression directly. Using ChloroP server [27], we found
that many other transcription factors such as ARF2 (AT5G62000), YABBY1 (AT2G45190),
WRKY3 (AT2G03340), bHLH014 (AT4G00870), and bZIP52 (AT1G06850) are predicted to
localize in the chloroplast as well as in the nucleus. It is possible that these transcription
factors also regulate chloroplast gene expression. Therefore, our study may encourage a
new research direction to investigate the roles of transcription factors in chloroplast gene
expression. Since transcription factors are well-known to regulate nuclear gene expression,
our study indicated that transcription factors can function in chloroplasts in addition to the
canonical organelle nucleus.

The crosstalk between chloroplast and nucleus plays an important role in plant
growth and stress responses [3,4]. Since NAC102 localizes in both chloroplast and nucleus
(Figure 2), it may function in both anterograde signaling and retrograde signaling. In the
nucleus, NAC102 may regulate the expression of chloroplast-targeted genes. In chloroplast,
NAC102 may regulate retrograde signals directly or indirectly. It is also possible that
NAC102 itself functions as a retrograde signal, translocating from chloroplast to nucleus in
certain conditions, which is worthwhile studying in the future.

Our data suggested that NAC102 represses chloroplast gene expression. When
NAC102 was overexpressed in chloroplasts, both chloroplast gene expression and the
chlorophyll contents were reduced (Figure 4). However, the chloroplast gene expression
was not significantly different between Col-0 and nac102 (Figure S3). One possible reason
is functional redundancy. In addition to NAC102, other chloroplast-localized transcription
factors may also regulate chloroplast gene expression. When NAC102 is mutated, other
transcription factors may compensate for the role of NAC102. Previously, it was reported
that the nac102 mutant was more sensitive to excessive light stress [21]. Although we
could not reproduce these results, it is possible that the chloroplast gene expression and
the chlorophyll contents were higher in nac102 in the experiment conditions, resulting
in more light energy absorbed by chlorophyll and production of more reactive oxygen
species (ROS), which triggered cell death. Although NAC102 functions as a repressor,
other transcription factors in chloroplast may function as activators. Therefore, our study
suggests that it is possible to regulate chloroplast gene expression using transcription
factors, which may represent a new strategy to manipulate chloroplasts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms22136769/s1. Figure S1: Alignment of two NAC102 isoforms, Figure S2: Alignment
of NAC102 orthologs, Figure S3: The chloroplast gene expression in the nac102 mutant, Figure S4:
Construction of NAC102 overexpression lines, Table S1: List of primers used in this study.
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