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Abstract: Hydrogen Sulfide (H2S), an endogenously produced gasotransmitter, is involved in various
important physiological and disease conditions, including vasodilation, stimulation of cellular
bioenergetics, anti-inflammation, and pro-angiogenesis. In cancer, aberrant up-regulation of H2S-
producing enzymes is frequently observed in different cancer types. The recognition that tumor-
derived H2S plays various roles during cancer development reveals opportunities to target H2S-
mediated signaling pathways in cancer therapy. In this review, we will focus on the mechanism
of H2S-mediated protein persulfidation and the detailed information about the dysregulation of
H2S-producing enzymes and metabolism in different cancer types. We will also provide an update
on mechanisms of H2S-mediated cancer progression and summarize current options to modulate
H2S production for cancer therapy.

Keywords: hydrogen sulfide; gasotransmitter; persulfidation; cystathionine β-synthase; cystathion-
ine γ-lyase; 3-mercaptopyruvate sulfurtransferase; cancer metabolism

1. Introduction

Hydrogen sulfide (H2S), a colorless, flammable, water-soluble gas, is recognized as
the third gasotransmitter in 2002 [1]. Similar to the other two gasotransmitters, nitric oxide
(NO) or carbon monoxide (CO), H2S acts as a critical mediator in multiple physiological
processes, including regulation of blood vessel vasodilation [2–4], cardiac response to
ischemia/reperfusion injury [5], and inflammation [6]. In mammalian cells, H2S is actively
synthesized endogenously by three enzymes: cystathionine β-synthase (CBS), cystathion-
ine γ-lyase (CTH), and 3-mercaptopyruvate sulfurtransferase (3-MST) [1,7]. Accumulated
evidence indicates that dysregulation of these H2S producing enzymes was observed in
multiple cancer types (See Section 4), suggesting H2S may play an important role during
cancer development. Therefore, in this review, we will summarize the current understand-
ing of H2S production, regulation, and biological functions during cancer development. We
will particularly focus on how H2S-mediated protein persulfidation accomplishes cancer
formation in different aspects of cancer hallmarks.

2. Hydrogen Sulfide

H2S is a colorless gas that smells like rotten eggs at low concentrations. Bernardino
Ramazzini, the father of occupational health, wrote De Morbis Artificum Diatriba [8] (Dis-
eases of Workers) in 1700. He described the effects of sewer gas exposure on the sewer
workers, which causes irritation and inflammation to their eyes. In the early 19th century,
people found out the major cause was H2S appearance in sewers that caused these harmful
effects [9]. From then on, numerous toxicological effects of H2S on animals including
humans have been reported [10,11]. Interestingly, although H2S was well-known as an
environmental toxin, it can also be produced endogenously in bacteria [12], plants [13,14],
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and animals [15,16]. However, endogenously produced H2S was considered as a metabolic
waste for a long time until K Abe and H Kimura suggested that the endogenous H2S func-
tions as a neuromodulator in the brain in 1996 [17]. A few years later, Rui Wang proposed
that H2S serves as the third gasotransmitter [1], while the first is NO and the second is CO.
Gasotransmitters are endogenously produced small gaseous molecules and play different
roles in multiple physiological conditions [18,19]. As the third gasotransmitter, H2S modu-
lates a wide range of physiological processes, including smooth muscle relaxation [20,21],
vasorelaxation [4], regulation of myocardial ischemia-reperfusion injury [22–24], neuron
protection [25–27], inflammation [6,28,29], and angiogenesis [30,31].

3. Hydrogen Sulfide Mediated Protein Persulfidation

H2S regulates diverse cellular signaling pathways through persulfidation (S-
sulfhydration) [3,32–45]. This novel and reversible posttranslational modification cova-
lently adds a thiol group (-SH) to active cysteine residue (PSH/PS-) in its target protein,
which forms protein persulfidation (PSSH/PSS-) (Figure 1A) [46]. The direct reaction
between cysteine residue on the protein and hydrogen sulfide is unfeasible because of
the thermodynamic constrains resulted from the release of hydrogen gas. Zhang et al.
addressed several potential pathways for persulfidation under physiological conditions
(Figure 1B,C) [47], including the reaction of S-Sulfenylated (PSOH) [48] or S-Nitrosated
(PSNO) [49] proteins to form S-sulfhydrated modification through H2S [47]. In addition,
protein disulfides can be reduced by H2S to form S-sulfhydrated proteins [50]. However,
incubation of disulfide-containing protein, such as BSA [47] or immunoglobulin [51], with
H2S did not lead to any detectable protein persulfidation. H2S can also be oxidized by
metal centers such as heme iron and converted to HS• radical [52], which subsequently
reacts with protein thiol and O2 to give protein persulfides in the end [47]. Furthermore,
Greiner et al. confirmed the presence of polysulfides in NaHS solution and suggested that
perhaps polysulfides are the actual persulfidating mediators than H2S (Figure 1C) [53].
Moreover, glutathione persulfide (GSSH/GSS-) and cysteine persulfide (CysSSH/ CysSS-),
both are highly presented in mammalian cells and tissues, also thought of as possible
persulfidating agents (Figure 1C) [54].
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Figure 1. Possible reaction mechanisms for protein persulfidation. (A) Illustration of protein persul-
fidation, also called protein S-sulfhydration. (B) Proposed possible persulfidating reaction by H2S
as the sulfide donor. In solution, H2S will dissociate into HS− and H+. A direct reaction between
protein thiol and HS- is impossible. In contrast, persulfidation can result from a sulfide anion on
an oxidized protein thiol, including S-OH, S-N=O, and S-SR. HS• radical can be generated by H2S
through oxidation by metal centers. HS• will then react O2 to generate protein persulfidation and
HO2•. (C) Other sulfide donors, such as polysulfides, glutathione persulfide (GSS-), and cysteine
persulfide (CysSS-), may also act as persulfidating agents to stimulate protein persulfidation.
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4. Regulation of Hydrogen Sulfide Production in Cancer

H2S has been admitted as a regulator of tumor progression and metastasis in recent
years [55]. Endogenous H2S is catalyzed by three different H2S-producing enzymes, CBS,
CTH, and 3-MST (Figure 2) [1,7]. Dysregulation of H2S-producing enzymes has been
discovered in many cancer types (Summarized in Table 1). By regulating the expression of
H2S-producing enzymes, the amount of tumor-derived H2S is changed, thereby altering the
tumor microenvironment and affecting tumor growth and metastasis [56]. Therefore, in this
section, we will summarize recent findings to unveil the possible regulatory mechanisms
to modulate H2S production during cancer development.
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Figure 2. Simplified illustration of endogenous H2S production pathways. Three principal enzymes
responsible for H2S production are CBS, CTH, and 3-MST. Homocysteine is the major substrate for
H2S production. CTH and CBS generate H2S majorly in the cytosol, while 3-MST generate H2S in mi-
tochondria. CBS, cystathionine β-synthase; CTH, cystathionine γ-lyase, 3-MST, 3-mercaptopyruvate
sulfurtransferase; CAT, cysteine aminotransferase.

Table 1. Overview of upregulation and downregulation of three H2S producing enzymes in different
cancer types.

H2S-Producing Enzymes Dysregulation Cancer Types

CBS
Upregulation

colon cancer [57]

ovarian cancer [58]

breast cancer [59]

thyroid cancer [60]

gallbladder adenocarcinoma [61]

Downregulation
hepatocellular carcinoma [62]

gastrointestinal cancer [63]

CTH
Upregulation

breast cancer [64]

prostate cancer [65]

gastric cancer [66]

bladder cancer [67]

hepatoma [68]

colon cancer [69]

Downregulation clear cell renal cell carcinoma [70]

3-MST
Upregulation

glioma tumor [71]

colon cancer [72]

Downregulation Unknown
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4.1. CBS

CBS, which catalyzes H2S by driving beta-replacement, has been observed to be
selectively upregulated in colon cancer, ovarian cancer, breast cancer, thyroid cancer,
and gallbladder adenocarcinoma tissues [57,60,61,73]. CBS is a constitutively expressed
enzyme and its activity can be regulated post-translationally [74]. The first reported
post-translational modification of CBS is the small ubiquitin-like modifier (SUMO) modifi-
cation [75]. SUMOylation facilitates CBS to translocate into the nucleus and further losses
its catalytic activity [76]. Other than SUMOylation, CBS can be S-glutathionylated and then
phosphorylated under oxidative stress, resulting in the increased activity of CBS and sub-
sequent H2S production [77,78]. The catalytic activity of CBS can also be inhibited by the
other two gasotransmitters, CO and NO, through binding to the ferrous heme of CBS [79].
Tu et al. observed that the DNA methylation on the CpG island of CBS promoter facilitates
cell proliferation in colon cancer [80]. The activity of CBS could be allosterically elevated
by S-adenosylmethionine (SAM), a universal methyl donor, which stabilizes CBS [81,82], to
promote cell proliferation in colon cancer cells [83]. Additionally, CBS can also be controlled
via its redox sensitivity through 272CXXC275 motif [84]. Under reductive-stress conditions,
the redox-active disulfide bond (Cys272-Cys275) harbored by the CXXC motif induces the
activity of CBS and further amplifies H2S production [84]. In contrast to the numerous
studies in which CBS overexpression stimulates tumor growth in different cancer types,
decreased CBS levels were also observed in glioma tumor cells, gastrointestinal cancer cells,
and hepatocellular carcinoma [62,63,85]. The underlying mechanism remains unclarified,
and reduced expression of CBS in glioma tumor cells may cause upregulation of 3-MST to
generate H2S production alternatively [86].

4.2. CTH

CTH, another H2S-producing enzyme, is demonstrated as being up-regulated in
several different cancer types, including prostate cancer, gastric cancer, and melanoma
cells [45,66,87]. CTH is highly expressed in the liver, kidney, and brain [74]. Unlike CBS,
CTH is an inducible protein stimulated by oxidative stress, ER stress, Golgi stress, inflam-
mation, and starvation [88]. Expression of CTH is primarily controlled at the transcriptional
level in response to cellular stress [74]. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
is a transcription factor responsible for antioxidant stress [89]. Under oxidative stress,
Nrf2 induces CTH expression through binding to its antioxidant response element (ARE)
at 5′-untranslated region (UTR) [90], resulting in the increased level of H2S production,
and in turn, H2S stimulates Nrf2 expression as positive feedback [90]. Overexpression
of another transcription factor, specificity protein (SP) 1, also modulates H2S generation
through binding and activating to the core promoter of CTH [91]. Tumor necrosis factor α
(TNFα) promotes H2S production through this SP1 mediated CTH expression pathway [33].
In prostate cancer, overexpression of CTH increased H2S production leads to the activation
of nuclear factor-κB (NF-κB)-mediated interleukin 1β (IL-1β) signaling, resulting in the
enhanced cell invasion, angiogenesis, lymphangiogenesis, tumor growth, and metastasis
in prostate cancer [45]. In addition, induction of CTH expression by signal transducer and
activator of transcription 3 (STAT3) signaling facilitates cell proliferation and migration in
breast cancer, whereas induction of CTH expression by Wnt/β-catenin pathway stimulates
cell proliferation in colon cancer [64,69]. CTH is also involved in the hepatoma cell prolifer-
ation via phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2)
through H2S [68].

4.3. 3-MST

3-MST is the only pyridoxal 5′-phosphate (PLP)-independent H2S-producing en-
zyme [74]. Unlike CBS and CTH, the catalytic activity of 3-MST is primarily regulated
through its redox-sensitive characteristics [74], in which 3-MST is activated via oxidation at
Cys247, the catalytically active site of 3-MST [92,93]. Although up-regulation of 3-MST in
different cancer tissues has been confirmed, the underlying mechanism of 3-MST mediated
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H2S signaling is rarely discussed before [87,94]. Recently, several 3-MST inhibitors have
been developed and the function of 3-MST in cancer can now be studied through inhibition
of 3-MST activity [94,95]. More investigations will be needed to understand the underlying
mechanism of 3-MST to evaluate the therapeutic potential of 3-MST specific inhibitors.

4.4. Hypoxia-Induced H2S Production

In cancer, hypoxia is a common feature of the microenvironment in solid tumors [96].
It is important to note that hypoxia profoundly evaluates the level of H2S because it
inhibits the catabolism of H2S [97] and induces the expression of CTH [98]. Although the
number of mitochondria decreases in cancer cells, mitochondria in cancer cells exhibit
maximal sulfide-detoxifying capacity and a high level of sulfide:quinone oxidoreductase
(SQR), which helps to transfer the H2S-derived electrons to the coenzyme Q (CoQ) [99].
The expression of H2S-producing enzymes and their translocation into mitochondria is
enhanced under hypoxia, and subsequently increases the level of H2S [56,98]. In addition,
H2S can stimulate ischemia-induced angiogenesis by enhancing the expression of hypoxia-
inducible factor 1-alpha (HIF-1α) [73]. Zhou et al. revealed that H2S downregulated the
expression of miR-640 and enhanced the expression of HIF-1α through the VEGFR2/mTOR
pathway [100]. Wang et al. suggested that H2S might mediate HIF-1α via the PI3K/AKT
pathway and promote the expression of vascular endothelial growth factor (VEGF) in
non-small cell lung cancer [101]. In conclusion, cancer cells under hypoxia may produce
H2S through induction of CTH to facilitate angiogenesis [102] and tumor growth.

5. The Role of Hydrogen Sulfide in Cancer

Dysregulation of H2S-producing enzymes was observed in multiple cancer types and
hypoxia conditions as mentioned in the previous section, resulting in the increased level
of endogenous H2S, thus contributing to cancer development in different aspects. In this
section, we will focus on how H2S contributes to cancer progression through targeting
different cancer hallmarks, including anti-apoptosis, DNA repair, tumor growth, cancer
metabolism, metastasis, and angiogenesis (Summarized in Figure 3).
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5.1. Hydrogen Sulfide in Anti-Apoptosis

Apoptosis is a naturally occurred and programmed cell death process in physiological
and pathological conditions [103]. Evading apoptosis, one of the hallmarks during cancer
progression, allows cancer cells to survive under various stresses [104]. The anti-apoptosis
role of H2S has been recognized in different disease models, such as cardiovascular dis-
eases [105], ischemia-reperfusion injury [106], and multiple cancer types [107–110]. One
of the potential mechanisms of H2S-mediated suppression of apoptosis is scavenging
reactive oxygen species (ROS) and reactive nitrogen species (RNS) by exerting the activities
of classic antioxidants, like GSH and Trx, leading to profound antioxidant protection in
cells [74]. The other potential mechanism is the activation of anti-apoptotic pathways
through H2S-linked persulfidation on NF-κB [33], Kelch-like ECH-associated protein 1
(Keap1) [34], and Mitogen-activated protein kinase kinase1 (MEK1) [36].

Activation of NF-κB signaling stimulates multiple anti-apoptotic genes, including
X-linked inhibitor of apoptosis protein (XIAP), cellular Inhibitors of Apoptosis Proteins
(cIAPs), and the B-cell lymphoma 2 gene (Bcl-2) [111]. Activation of NF-κB requires translo-
cation of NF-κB to the nucleus [111]. Persulfidation of NF-κB p65 subunit at Cys38 promotes
its nuclear translocation [45] and promoter binding to those anti-apoptotic genes [33], re-
sulting in the suppression of cellular apoptosis pathways [24,33].

Keap1, another protein mediated by persulfidation, is an adaptor of the Keap1-Cul3-
RBX1 E3 ligase complex, which targets Nrf2 to proteasomal degradation through polyu-
biquitination [112]. Nrf2 is a transcription factor that controls genes containing antioxi-
dant response elements (AREs) in their regulatory regions to escape from apoptosis [112].
Through H2S-mediated persulfidation at Cys151, Keap1 can undergo a conformational
change which leads to the dissociation of Nrf2 from the Keap1-Cul3-RBX1 E3 ligase com-
plex, and subsequently, the free Nrf2 translocates into the nucleus to exert its role on
apoptosis escape [24,34,38,42,90].

MEK1, also known as MAP2K1, is one of the classical MAP kinase families that control
a wide range of different cellular activities [113]. Activation of ERK1/2 by MEK1 generally
inhibits apoptosis through modulating expressions of apoptotic-related proteins, including
Bad, Bim-EL, Caspase 9, MCL-1, and TNFR [113]. Persulfidation of MEK1 at Cys341 leads to
the phosphorylation of ERK1/2 and translocation of ERK1/2 into the nucleus to stimulate
ERK1/2 mediated downstream signals in human endothelial cells and fibroblasts [36].
However, currently there is no direct evidence proving whether expressions of those
apoptotic related genes are enhanced upon persulfidation of MEK1, more studies will be
needed to clarify the role of persulfidation of MEK1 in anti-apoptosis.

5.2. Hydrogen Sulfide in DNA Repair

Protein poly [ADP-ribose] polymerase 1 (PARP1) is a well-known sensor of DNA
single or double strand breaks, and thus it can initiate DNA damage repair pathways [114].
PARP1 inhibitor has been developed to create synthetic lethality of DNA repair systems in
BRCA mutated cancers [115]. The idea is by blocking DNA repair pathways through PARP1
inhibitor in BRCA mutated cancers, the DNA damage responses will initiate signaling
pathways to promote cell-cycle checkpoint activation, thus apoptosis will be triggered
to eliminate cancer cells efficiently [115]. A study on MEK1 persulfidation indicates that
persulfidation on MEK1 at Cys341 leads to MEK1 phosphorylation and translocation into
the nucleus to stimulate PARP-1 activation and DNA damage repair, protecting cells from
senescence [36]. Therefore, the activation of PARP1 through H2S mediated signaling may
help to promote damaged cancer cell survival during cancer development.

In addition to stimulating DNA repair pathway in cell nucleus, H2S also helps mi-
tochondrial DNA (mtDNA) repair through persulfidation on mt-specific DNA repair
enzymes EXOG at Cys76 [116]. The stimulation of this mtDNA repair pathway by H2S thus
results in the apoptotic resistance to the cancer standard chemotherapy.
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5.3. Hydrogen Sulfide in Tumor Growth

Elevated H2S-producing enzymes have been observed in multiple cancer
types [45,57,64,94], and depletion of CBS or CTH activities results in the suppression
of tumor growth in colon cancer [57], lung cancer [116], prostate cancer [45], and breast
cancer [117]. Activation of MEK1, which belongs to the classical MAPK kinase pathways,
is synonymous with cell proliferation and tumor growth [113]. Therefore, it is highly
possible that ERK1/2 activities, which can be stimulated by H2S-mediated persulfidation
on MEK1 [36], are the key drivers to promote tumor growth in CBS or CTH overexpress-
ing tumors.

5.4. Hydrogen Sulfide in Cancer Metabolism

Exogenous H2S has a long history as an environmental toxin through inhibition of
mitochondrial Complex IV, leading to the suppression of mitochondrial electron transport
and inhibits aerobic ATP generation [118]. In contrast, endogenously produced H2S acts
differently in mitochondria and cell metabolism. In mitochondria, H2S acts as a metabolic
substrate to stimulates the mitochondrial electron transport chain [119]. Mitochondria are
the powerhouse of cells to generate ATP via oxidative phosphorylation (OXPHOS). H2S
oxidation by SQR, the mitochondrial respiratory Complex II, leads electron transfer to
coenzyme Q (CoQ), facilitating the aerobic respiratory ATP synthesis [119]. In addition
to serve as a metabolic substrate in the mitochondrial electron transport chain, H2S also
increases the catalytic activity of mitochondria ATP synthase through persulfidation at
Cys244 and Cys294 on the α subunit of ATP synthase (ATP5A1) [120], which may result in
the higher ATP production in mitochondria through aerobic respiration. In cancer, currently
it is still unclear whether this H2S-mediated mitochondria ATP production contributes to
cancer progression, and we may guess tumor cells may generate ATP through this pathway
only when O2 supply is sufficient.

On the other hand, tumor cells require the acquisition of necessary nutrients from
the poor environment and utilize these nutrients to maintain viability and build new
biomass [121]. To support their high growth rates on proliferation, cancer cells preferen-
tially convert glucose to lactate by aerobic glycolysis even in the presence of sufficient
O2 [121]. This phenomenon is so called Warburg effect [122], in which cancer cells adapt
glycolysis to use the intermediates of the glycolysis to synthesize lipids, fatty acids, and
nucleotides required for uncontrolled cell proliferation. To do that, cancer cells utilize
lactate dehydrogenase A (LDHA) to elevate the rate of glycolysis [123]. The enzyme activity
of LDHA thus is considered as a therapeutic target for the suppression of tumor growth
and distant metastasis in different cancer types [123]. H2S-mediated persulfidation of
LDHA at Cys163 enhanced its enzymatic activity, leading to the increased production of
lactate in HCT116 colon cancer cells [124]. Consistent with these observations, depletion of
H2S production by CBS knockdown resulted in the reduced oxygen consumption and ATP
production in both colon cancer [57] and ovarian cancer cells [58], indicating the importance
of H2S in the modulation of cancer metabolism to support tumor cell uncontrolled growth.

5.5. Hydrogen Sulfide in Cancer Metastasis

Cancer metastasis is an important milestone during cancer development, in which
cancer cells invade surrounding tissues, spread to distant sites, and grow secondary tumors
in another part of the body [104]. The initial development of cancer metastasis requires
cancer cells to gain migration and invasion ability through epithelial to mesenchymal
transition (EMT) [125]. Endogenous H2S promotes cancer cell migration and invasion in
multiple cancer types, such as prostate cancer [45], lung cancer [101], colon cancer [95,126],
and liver cancer [109], partly through induction of ATP citrate lyase (ACLY) to facilitate
EMT [95]. Moreover, NF-κB, a key molecule driving cancer metastasis [111], is involved in
the H2S-modulated cancer metastasis through persulfidation. Persulfidation at Cys38 of
the NF-κB p65 subunit facilitates nuclear translocation of p65 and then induces expressions
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of metastatic promoting genes, especially IL-1β, resulting in enhanced cell invasion and
distant metastasis during prostate cancer progression [45].

5.6. Hydrogen Sulfide in Angiogenesis

Angiogenesis is the formation of new blood vessels from the pre-existing vascula-
ture [127]. During cancer development, tumor cells secrete pro-angiogenic factors, such
as VEGF, to support tumor growth and stimulate distant metastases [127]. Numerous
studies already confirmed that H2S acts as a pro-angiogenic factor in vitro and in vivo
under different physiological and disease conditions, including cancer [102]. Silencing
H2S producing enzyme, CBS, reduces the formation of tumor blood vessels in colon can-
cer [17,57] and ovarian cancer [58]. Depletion of another H2S producing enzyme, CTH, not
only blocks angiogenesis [30,45] but also lymphangiogenesis [45]. Moreover, H2S promotes
hypoxia-induced angiogenesis through induction of HIF-1α as we previously discussed in
Section 4.4.

Although H2S is an endogenous stimulator of angiogenesis through activation of
PI3K/AKT and MAPK signaling pathway [30], the underlying mechanism remains unclear.
One possibility is H2S may mediate angiogenesis through persulfidation of Kir6.1 subunit
of KATP channel at Cys43 [3] since pharmacological inhibition of KATP channel attenuates
VEGF mediated endothelial cell migration [30]. The other possibility is through H2S
mediated persulfidation of NF-κB p65 subunit and subsequent activation of NF-κB/IL-1β
signaling [45] since IL-1β is a known pro-angiogenic cytokine during cancer progression
through induction of VEGF [57,128]. More research will be needed to decipher how H2S
impacts angiogenesis during cancer development.

6. Hydrogen Sulfide Based Therapeutics

Upregulation of H2S producing enzymes and increased endogenous H2S production
are recognized in many cancer types, which in turn promotes cancer progression. However,
donors producing a higher level of H2S are considered as anti-cancer drugs [129] through
induction of uncontrolled intracellular acidification [130], resulting in the promotion of
apoptosis [131–136] and cell cycle arrest [131,133,137,138]. The controversial role of H2S
in cancer research field can be explained by the bell-shaped (biphasic) model, in which
Hellmich and Szabo suggested that lower concentrations of H2S display pro-cancer effects
while higher concentrations exhibit anti-cancer properties [55,139]. In that sense, both H2S
inhibitors and donors show some potential on cancer therapy.

The donors of H2S include sulfide salts, such as sodium hydrosulfide (NaHS) and
sodium sulfide (Na2S), which release H2S directly. Other H2S donors are categorized by
their release mechanisms. Donation of H2S can be triggered by hydrolysis, reactive oxygen
species (ROS), biological thiols, specific wavelengths of light, and enzymes [140–143].
Various H2S donors have been synthesized and tested preclinically to kill cancer cells at
high doses and/or long-term exposure [131,133,135,144–147]. A slow-releasing H2S donor,
GYY4137, enhances glucose uptake, glycolysis, and lactate production while decreasing
the activity of pH regulators, anion exchanger (AE), and sodium/proton exchanger (NHE),
resulting in the intracellular acidification in cancer cells [130]. Moreover, GYY4137 blocks
STAT3 signaling, leading to the cell cycle arrest, apoptosis, and inhibition of hepatocellular
carcinoma tumor growth [133]. Other H2S donors, diallyl trisulfide (DATS) and 5-(4-
hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), are also effective in the suppression
of tumor growth through inhibition of NF-κB activity and upregulation of Fas-associated
protein with death domain (FADD) in melanoma [134,136]. However, the toxicity of these
H2S donors in normal cells are the major concerns for the current drug development.

In contrast to H2S donors, options to inhibit endogenous H2S production are very
limited. Currently, there are only inhibitors for CTH and CBS, both are PLP-dependent
enzymes. The most frequently used inhibitor, DL-propargylglycine (PAG) [148], is an
irreversible inhibitor of CTH with IC50 at 40 µM and displays high selectivity for CTH
over CBS [149]. However, PAG is typically used at millimolar concentrations, in cell-based
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assays [30,64,69,150–152], due to limited cell permeability [153]. Studies have confirmed
that millimolar concentration of PAG results in the non-selective inhibition on enzymes
other than CTH [154–156]. The other frequently used inhibitor is aminooxyacetic acid
(AOAA), which inhibits both CBS and CTH and shows higher potency against CTH (IC50
at 1.1 µM) than CBS(IC50 at 8.5 µM) [149]. Additionally, AOAA is a general inhibitor of
several other PLP-dependent enzymes [157] including cysteine aminotransferase (CAT),
which catalyzes the transamination between L-cysteine and α-ketoglutarate (α-KG) to
produce 3-mercaptopyruvate (3-MP), a substrate for 3-MST (Figure 2) [158]. Furthermore,
AOAA inhibits non-enzymatic H2S production catalyzed by iron (Fe3+) and PLP [159].
As the result, AOAA suppresses H2S production through all enzymatic and non-enzymatic
pathways. There are several additional molecules that selectively inhibit activities of
CBS [160–164] or CTH [165–169] to exert anticancer effect. On the other hand, there was no
selective inhibitor for 3-MST until recently, Hanaoka, K. et al. (2017) established a high-
throughput screening (HTS) method to screen 174,118 compounds and several potential
inhibitors for 3-MST were identified. Among them, 2-[(4-hydroxy-6-methylpyrimidin-
2-yl)sulfanyl]-1-(naphthalen-1-yl)ethan-1-one (HMPSNE) showed the highest selectivity
for 3-MST [170–172] and dose-dependently inhibited cell proliferation in colon cancer
cell [94]. In a more recent study, derivative of HMPSNE was synthesized and exerted
antiproliferative effect in vitro and in vivo in colon cancer model through targeting 3-
MST [173]. More investigations will be needed to confirm their potency and efficacy in the
inhibition of H2S production.

7. Conclusions

Given the fact that the importance of H2S-mediated persulfidation in protein functions,
it is not surprising that aberrant expressions of H2S producing enzymes can contribute to
cancer development from different aspects, including anti-apoptosis, DNA repair, tumor
growth, cancer metabolism, metastasis, and angiogenesis (Figure 3). However, right
now there are only very limited and non-specific options available for pharmacological
inhibitors to suppress H2S production. For future perspectives, we hope more H2S-targeted
signaling molecules will be identified and pharmacological inhibitors with high selectivity
and potency will be developed to improve the future experimental therapy of cancer.
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