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Abstract: Regular exercise is associated with pronounced health benefits. The molecular processes
involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced
mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular
exercise also benefits the brain and is a major protective factor against neurodegenerative diseases,
such as the most common age-related form of dementia, Alzheimer’s disease, or the most common
neurodegenerative motor disorder, Parkinson’s disease. While there is evidence that exercise induces
signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the
muscle–brain axis is incompletely understood. Mitochondria in both organs, however, seem to be
central players. Here, we provide an overview on the central role of mitochondria in exercise-induced
communication routes from muscle to the brain. These routes include circulating factors, such as
myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial
transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial
features and highlight their expected benefits with regard to neurodegeneration prevention or
mitigation. In addition, knowledge gaps in our current understanding related to the muscle–brain
axis in neurodegenerative diseases are outlined.
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1. Introduction

The umbrella term “neurodegenerative disease” refers to the progressive pathological
loss of neurons in specific neuronal circuits. Examples are Huntington’s disease, amy-
otrophic lateral sclerosis, spinocerebellar ataxia, and Alzheimer’s (AD) and Parkinson’s
diseases (PD). AD and PD are the most common causes of dementia and of neurodegenera-
tive motor diseases, respectively. Their global prevalence has been estimated to be about
30–40 million people suffering from AD in 2019 [1] and about 6.1 million people (2016) [2]
from PD. These prevalences are predicted to increase massively in the next decades [3]. The
vast majority of both PD and AD cases are sporadic, with age being the most important
risk factor for disease development [4].

Currently no treatment strategies that modify the disease course of AD or PD exist,
and symptomatic treatments are limited, in particular for AD. Lifestyle factors, notably
including physical activity and exercise, however, are major factors in modulating the
risk of developing these neurodegenerative diseases [5–7]. Exercise is defined as planned,
structured, and repetitive physical activity that is performed with the objective to improve
or maintain physical fitness [8]. An important aspect of both general physical activity and
exercise is the activation and training of skeletal muscles, which is associated with enhanced
mitochondrial function. Regular endurance exercise improves cardiorespiratory fitness
and skeletal muscle function and has well-documented health effects, including reduced
all-cause mortality [9]. It furthermore importantly influences mitochondrial health [10,11].
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Here, we review the evidence for signalling between skeletal muscle and the brain
contributing to the neuroprotective effect of exercise. We focus on the muscle–brain
crosstalk mediated by mitochondria for the beneficial effect of exercise in AD and PD.
The convergence of pathogenic mechanisms in many neurodegenerative diseases that
include mitochondrial dysfunction and oxidative stress [12,13], protein aggregation [14,15],
inflammation [16], and brain regional vulnerabilities [17] also highlight the relevance of
the related influences of muscle–brain crosstalk for other neurodegenerative diseases.

2. Mitochondrial Dysfunction in Neurodegenerative Diseases

Despite the highly divergent pathology and symptomatology associated with dif-
ferent neurodegenerative diseases, several intriguing commonalities exist. For example,
mitochondrial dysfunction (which may include deficits in mitochondrial metabolism, respi-
ration, dynamics, redox regulation, ion homeostasis, and cell death regulation) is at the core
of the aetiology of most neurodegenerative diseases [12,13]. Mitochondrial abnormalities
have, e.g., been described early in the substantia nigra of PD [18] and in the cortex of
AD [19] and Huntington’s disease [20] patients.

Even if it is unclear whether mitochondrial dysfunction is a cause or consequence
of neurodegenerative diseases, it certainly is a determining factor of disease progression.
Based on their multitude of functions in the cell, mitochondria affect the cellular fate
in different ways. Some of the main functions of mitochondria that are thought to be
compromised in neurodegeneration are summarized in the following sections.

2.1. Mitochondrial Respiration and Energy Provision

The brain has high energy requirements for which it mostly relies on oxidative en-
ergy metabolism [21]. It therefore critically depends on continuous adequate oxygen and
substrate supplies. Mitochondrial oxidative phosphorylation (OXPHOS) is the most im-
portant energy-providing process in the brain. OXPHOS consists of the electron transport
system (mitochondrial complexes I–IV) that establishes a proton gradient across the inner
mitochondrial membrane. The resulting mitochondrial membrane potential is used by
the second OXPHOS component, the phosphorylation system, to generate and transport
ATP. Dysfunction of distinct complexes of the respiratory chain traditionally have been
linked to different neurodegenerative diseases. Thus, for example complex I dysfunction
has been attributed a prominent role in PD pathogenesis [12], complex IV in AD [12], and
complex II in Huntington’s disease [22,23]. It is, however, becoming increasingly clear that
significant individual differences in mitochondrial dysfunctions exist even within specific
neurodegenerative disease categories and that numerous mitochondrial components can
be defective in all of these categories, as recently shown for PD [24].

2.2. Mitochondrial ROS and Oxidative Stress

Oxygen, even though essential for human life, can in some conditions be highly
reactive and therefore a potentially dangerous element. The formation of reactive oxygen
species (ROS) is part of aerobic metabolism, and a delicate balance between too little
and too much defines cellular homeostasis [25]. Oxidative stress represents an imbalance
between oxidants and antioxidants in favour of the oxidants. Moderate elevations in
ROS levels are considered physiological, since they are implicated in protective redox
signalling and redox regulation [25,26] and are also required for beneficial adaptations
to exercise [27,28]. ROS production during oxidative phosphorylation can be aggravated
by mitochondrial damage [29]. In contrast, supraphysiological high mitochondrial ROS
levels result in the oxidative damage of multiple biomolecules, such as DNA, lipids, and
proteins. This impairs cellular processes, such as the maintenance of membrane potential,
trans-membrane transport, proteostasis, and enzyme activities, and is also implicated
in the pathogenesis of many diseases [30,31]. Oxidative stress is a core mechanism in
neurodegenerative disease pathogenesis [13]. This is reflected, for example, by increased
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levels of oxidative modifications in the substantia nigra of PD patients [32] and oxidative
stress as an early pathological process in AD [33].

2.3. Mitochondrial Biogenesis

The increase of mitochondrial mass from pre-existing mitochondria (mitochondrial
biogenesis) is controlled by numerous pathways and revolves around the cotranscriptional
factor peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and other
molecules [27,34]. The PGC-1α-mediated activation of mitochondrial transcription factor
A induces mitochondrial growth and division to generate new mitochondria [35]. An
important regulator of mitochondrial biogenesis is the exercise-inducible PGC-1α activa-
tor AMP-activated protein kinase (AMPK) [35]. The reduced responsiveness of AMPK
signalling in aging [36] may be a determinant of increased vulnerability to neurodegen-
erative disease, not only due to its effects on mitochondrial biogenesis but also on its
modulatory role in inflammatory responses, antioxidative defences, and autophagy [36,37].
Impairments of mitochondrial biogenesis are implicated in the pathogenesis of several
neurodegenerative diseases and are increasingly considered for treatment strategies in
such disorders [38]. Deficits of mitochondrial biogenesis have been shown for both AD [39]
and PD [40].

2.4. Mitochondrial Dynamics and Mitophagy

Mitochondria are highly dynamic organelles, which can change their number and
size by fusion and fission [41]. Fusion denotes the process of several smaller separated
mitochondria merging into one bigger mitochondrion, while fission refers to the division
of one mitochondrion into several smaller mitochondria. In contrast to mitochondrial
biogenesis and mitophagy, these processes are not associated with a change in mitochon-
drial mass but also influence mitochondrial function. Fusion of the outer mitochondrial
membrane is effectuated primarily by mitofusin 1 (Mfn1) and Mfn2 and fusion of the inner
mitochondrial membrane by optic atrophy 1 (Opa1). Mitochondrial fission is executed by
dynamin-related protein 1 (Drp1), a cytosolic protein that is recruited to the mitochondrial
surface in response to various physiological cues [42]. The morphological changes have
functional implications; enhanced fusion facilitates oxidative phosphorylation and the
intermitochondrial exchange of metabolites and mitochondrial DNA [43]. Fission enables
more efficient mitophagy [44]. Mitophagy ensures mitochondrial quality via the clearance
of damaged (e.g., impaired mitochondrial membrane potential or oxidative phosphoryla-
tion and mitochondrial DNA mutations [45]) mitochondria by autophagy and lysosomal
degradation. Additionally, mitochondrial trafficking within the cell—for example, for cell
membrane repair [46]—depends on fission. Alterations of mitochondrial dynamics are
suspected to be involved in the neurodegenerative process and have been demonstrated in
models for all major neurodegenerative diseases, including AD [47] and PD [48]. Missense
mutations in proteins involved in mitochondrial dynamics, furthermore, are associated
with parkinsonism and dementias, such as AD [49].

The efficient clearance of dysfunctional mitochondria is crucial for cell survival. Dam-
aged mitochondria pose a threat to cells as they release excess ROS and inflammatory and
cell-death related factors, and this threat may be increased in neurodegenerative diseases:
impaired mitophagy has, for example, been demonstrated in models of AD [50]. Familial
forms of PD can be caused by mutations in the mitophagy-related genes PTEN-induced
kinase 1 (PINK1) [51] and Parkin [52], which is a strong indication for the role of defective
mitophagy in PD.

2.5. Mitochondrial Control of Cell Death and Survival

Mitochondria are integrally involved in the control of cellular survival. One important
mechanism mediating this control is the mitochondrial membrane potential that regulates
mitochondrial import and export and, upon deterioration, can trigger mitochondrial cell
death signalling [53] and induce mitophagy, apoptosis, or necrosis. While the clearance of
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damaged or senescent cells is important to maintain a healthy cellular environment and
to limit mitochondrial damage signalling, too much cell death is obviously detrimental.
Neurons are in general vulnerable to imbalances in cell death signalling based on their
postmitotic nature that renders them difficult to replace; this vulnerability increases with
age, and certain neuronal populations are more vulnerable than others [17], which is likely
an important factor in the pathogenesis of neurodegenerative diseases.

In summary, functional mitochondria are important to maintain brain health. The
exacerbation of mitochondrial DNA mutations and oxidative stress, as well as of deficits
in mitochondrial biogenesis, dynamics, and quality control [35,54–58] during aging likely
contributes to the increased risk of neurodegenerative disease at an older age. The capacity
of exercise to improve mitochondrial function will be discussed in the next sections.

3. Improving Mitochondrial Functions by Exercise in Skeletal Muscle

The prominent health effects of regular exercise are well established and include
reduced all-cause morbidity and mortality [9]. Regular exercise slows down [59,60] age-
related decreases [61] of cardiorespiratory fitness. The general antiaging effects of exercise
have recently been reviewed by Radak et al. [62].

With regard to mitochondria, exercise benefits are best understood in skeletal muscle.
While muscle mitochondria regulate skeletal muscle mass and function [63], they are
in turn regulated by exercise. Exercise induces mitochondrial plasticity [27,64,65] and
improves mitochondrial biogenesis and respiration. It also enhances antioxidant capacities
and the affinity of mitochondria for oxygen [27,66–70], improving fatty acid oxidation,
aerobic performance, health [71–74], and healthy aging [75]. These mechanisms crucially
depend on the mitochondrial integrity and quality control, as well as on the mitochondria’s
capacity to adequately change their morphology, increase their numbers, and enhance their
mobility and distribution throughout cells.

Hormetic adaptations are thought to be important mediators of exercise-induced
mitochondrial benefits [76]. “Hormesis” is a biphasic response to a stimulus (here exercise),
which results in protective adaptations at low levels but that can be detrimental at high
doses. It is termed “mitohormesis” if mitochondrial adaptations are concerned. Hormesis
following exercise has been suggested to promote healthy brain aging [77]. According to
the nature of hormetic effects, however, doses of exercise that are too high have been shown
to be detrimental for mitochondria [78], further discussed in an associated editorial [79].

Muscle mitochondrial ATP production has been shown to decrease by around 8% per
10 years of higher age in a population of 146 healthy men and women of ages between
18 and 89 years [80]. This deterioration of mitochondrial function was attributed mainly
to physical inactivity [81], suggesting that regular exercise may at least partially prevent
the aging-related decline of mitochondrial function. While acute exercise induces the
formation of ROS, with oxidative damage occurring more frequently during high intensity
bouts [82], regular moderate exercise reduces oxidative stress by bolstering the antioxidant
defences of muscle tissue [30,83–85]. Accordingly, aging-related deficiencies in antioxidant
capacities can be mitigated by life-long regular exercise [83]. One of the most thoroughly
investigated effects of mitochondrial adaptations in response to exercise is mitochondrial
biogenesis. A single bout of high intensity exercise is enough to upregulate proteins
involved in mitochondrial biogenesis and energy production [69], to induce the translation
of oxidative phosphorylation-linked proteins [69], and to improve ATP generation [27]
in skeletal muscle. In combination with increased mitochondrial protein synthesis and
the induction of mitochondrial fusion, this leads to increased mitochondrial biogenesis
and efficiency [69]. Higher exercise volumes [70], multiple exercise sessions per day, and
elevated intensity [69] are associated with increasing stimulation of mitochondrial protein
synthesis and mitochondrial fusion, improving structural and functional mitochondrial
features. Mechanistically, exercise-induced AMPK [35] and PGC-1α [86] upregulation are
thought to mediate mitochondrial biogenesis effects.
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PGC-1α furthermore contributes to the anti-inflammatory effects of physical activ-
ity [87]. Exercise can promote mitochondrial fusion and inhibit aggravated fission [88].
Mitochondrial fusion is thought to increase respiratory efficiency [43], while pronounced
mitochondrial fission is linked to aging and to age-related disease [89].

Acute moderate intensity exercise induces mitochondrial fusion in muscle tissue
and high intensity bouts increase it even further [69,90]. Chronic exercise also leads to an
enhanced expression of the pro-fusion proteins Opa1 and Mfn2 and to a reduced expression
of the pro-fission protein Drp1 [27]. Mice performing lifelong voluntary exercise showed
reduced age-related mitochondrial fragmentation [91].

Stimulation of mitophagy by acute and chronic exercise has been demonstrated in
animal experiments [27], and while this effect is also thought to occur in humans, it may be
most robust as a result of lifelong, as opposed to transient chronic, exercise [92].

In summary, regular exercise has the capacity to improve both mitochondrial structure
and function in skeletal muscle: the main effects are summarized in Figure 1.
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4. Exercise Effects on the Brain: A Focus on Mitochondria and Oxidative Stress

The brain is well known to be responsive to regular exercise. Pronounced structural
changes have recently been confirmed by the demonstration of differential brain volumes
depending on exercise levels [93]. The associated aerobic fitness is further correlated with
reduced brain tissue loss [94,95] and with cognitive benefits [96] during the aging process.
Accordingly, exercise has emerged as an important protective factor for neurodegenerative
diseases, such as AD [5] and PD [6,97].

The vulnerability of the brain to energy deficits, oxidative stress, and dysregulated cell-
death signalling becomes even more pronounced with advancing age, when the occurrence
of mitochondrial dysfunction, oxidative damage, and impaired molecular waste disposal
increases [98]. Unsurprisingly, age is thus a central risk factor for the development of
sporadic neurodegenerative diseases [4]. While potentially attenuated at a higher age [27],
the beneficial effects of mitochondrial adaptations to exercise occur throughout life [99].
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An obvious benefit of physical activity and exercise with respect to neurodegenerative
diseases is the reduction of cardiovascular risk factors [100]. However, the brain can
also benefit from exercise and improved muscle function in ways that suggest a direct
muscle–brain crosstalk [101,102], and we hypothesize that mitochondria are central in
this crosstalk.

Mitochondrial plasticity in response to exercise is best known in skeletal muscle,
but it has also been reported for other tissues, including the brain [103–107]. Similar
to the effects in skeletal muscle, the exercise-induced enhancement of the mitochondrial
electron transport system [108], biogenesis [103], and antioxidative capacities [108] has been
reported in the mouse brain. Exercise-induced transient increases in ROS levels can affect
the redox regulation, even in the brain [109,110]—as in skeletal muscle—and also induce
adaptive responses therein, enhancing endogenous antioxidant capacities [111]. These
adaptations, already observed following single bouts of exercise, are reinforced by regular
exercise by increasing cellular antioxidative and repair capacities, inducing an increased
tolerance to oxidative stress [112]. For example, chronic (daily, for 15 weeks) moderate
treadmill exercise reduced ROS levels and protein carbonyls and increased superoxide
dismutase 1 and glutathione peroxidase in the hippocampus of adult female rats [104].
Regular exercise likely protects from neurodegenerative disease both by an upregulation
of antioxidative stress defences and related beneficial mitochondrial adaptations as well as
indirectly by the regulation of neuroprotective factors, such as brain-derived neurotrophic
factor (BDNF) via ROS [111].

As much as is understood about brain–muscle communication through efferent and
afferent neuronal signalling, little is yet understood about humoral exercise signalling
between the muscle and the brain. In the next section, we will summarize some important
routes of the muscle–brain axis that are likely involved in such communication with a focus
on the potential role of mitochondria.

5. How Do Muscles Communicate with the Brain?

Exercise induces muscle adaptations that affect remote tissues. The mechanistic
underpinnings of this communication are still not fully understood (reviewed by [113]
and [114]) but are thought to mainly involve endocrine signalling of skeletal muscle [105]
by exercise-induced myokines [102,115]. Many of these molecules travel systemically (in
blood or lymph) via extracellular vesicles that are today considered as key messengers
of paracrine exercise signals [116–119], as they have been described to be released from
skeletal muscle only in 2015 [120]. Apart from myokines, they transport various other
bioactive molecules, such as proteins and microRNAs [116,118].

5.1. Exercise-Induced Alteration of Systemic Parameters

Exercise probably also contributes to the metabolic and mitochondrial “reprogram-
ming” of remote tissues via its effect on systemic parameters, such as temperature, hypoxia,
blood pressure, or pH, which are sensed, e.g., by baro- and chemoreceptors [121]. The
regulation of the cerebral blood flow (CBF) is likely involved in such reprogramming.
CBF increases during exercise [122,123], which is necessary to maintain brain oxygenation.
The brain is much more vulnerable to drops in oxygenation than skeletal muscle [116],
and an inappropriate oxygen supply would compromise brain function and increase risk
of long-term damage. A tight control of CBF is important due to the highly regulated
permeability across the blood–brain barrier (BBB), changing oxygen demands with neu-
ronal activation and the particular vulnerability of the brain’s microvasculature [124]. The
enhanced general clearance mechanisms of harmful substances from the brain in response
to exercise might also contribute to a reduction of damaged mitochondria. This may result
from enhanced CBF [122,123], following increased activity of the glymphatic system during
sleep due to exercise [125]. The glymphatic system allows clearance of waste products via
the cerebrospinal fluid through the interstitial space into the peripheral circulation [126].
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While it is debated whether CBF declines with age, chronically reduced CBF in clinical
cohorts has been linked to cognitive decline, and it has been speculated that exercise
protects from this vulnerability [127].

The potentially neuroprotective outcome of these exercise-induced signals to the
brain, in turn, contributes to increased or maintained brain function, including improved
cognitive function associated with the hippocampus [128] and improved resilience of hy-
pothalamic neurons involved in hormonal control of hunger and satiety to detrimental
high-fat diet effects [106]. The mitochondrial reprogramming, improved waste clearance,
and enhanced nutrient and oxygen supply in response to exercise may increase mitochon-
drial functioning as a potential mechanism of exercise benefits for the brain.

5.2. Myokines

Exercise exerts pronounced effects directly on skeletal muscle tissues but also on distal
tissues, including the cardiovascular, pulmonary, metabolic, and neuroendocrine systems.
These adaptations are initiated from muscle tissue through different paracrine factors such
as nitric oxide (NO), ATP, ROS [129], or myokines, defined as “ . . . cytokines or other
peptides that are produced, expressed and released by muscle fibres” [102]. The term
“exerkines” has been proposed to more broadly define peptides and nucleic acids that are
released in response to exercise from skeletal muscle and other organs [130].

The release or uptake of these substances from and into contracting muscle cells allows
tissue interactions, including crosstalk between skeletal muscle and the brain. Contracting
muscle fibres produce and release myokines [131] that play an important role in skeletal
muscle crosstalk with other organs and tissues [132]. The functional consequences of their
release are determined by factors such as exercise volume, intensity, and frequency [113].
Numerous exercise-induced myokines have been identified, among them irisin, cathepsin
B, fibroblast growth factor 21 (FGF-21), BDNF, and many more (for review, see [133]), and
together, these molecules have been termed the “myokinome” [132]. They all participate
in systemic exercise signalling, and some of them have been specifically linked to central
nervous system effects by modulating, for example, adult neurogenesis and cognitive
function. This suggests that these myokines at least partially mediate brain benefits in
response to regular exercise. Although such benefits include well-defined outcomes, for
example, on hippocampal plasticity and memory [134], the mechanistic understanding
of myokine-related effects on the brain is still insufficient [135]. In the following sections
some of the myokines—and other factors released from muscle upon exercise—with
known neuroprotective effects are briefly discussed and their effects on brain mitochondria
outlined (see Figure 2).

5.2.1. Irisin

Irisin is an exercise-induced myokine released by the cleavage of the membrane-
bound precursor protein fibronectin type III domain-containing protein 5 (FNDC5), a
transmembrane precursor protein expressed in muscle under the control of PGC-1α [136].
Aerobic exercise is a potent stimulus for its secretion [137,138]. Irisin exerts its beneficial
effects mainly via acting on mitochondria. These effects, however, are better understood in
adipose tissue, the heart, the lung, and the liver than in the brain. Irisin has been first iden-
tified as a factor involved in adipocyte browning by stimulating mitochondrial uncoupling
protein 1 [139]. In the lung, irisin protects mitochondria from ischemia-reperfusion injury
by interacting with mitochondrial uncoupling protein 2, resulting in reduced oxidative
stress [140]. It was later shown to be cardioprotective by increasing the activity of the
antioxidative enzyme superoxide dismutase (SOD) and restoring mitochondrial localiza-
tion to SOD2 [141]. Recently, it was demonstrated that irisin prevents excessive oxidative
stress and aberrant mitochondrial fission, while promoting mitochondrial biogenesis in
hepatocytes after ischemia/reperfusion [142].
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The increased understanding of the actions of irisin on the brain was recently sum-
marized [143]. Briefly, FNDC5/irisin is also expressed in the hippocampus, a brain region
involved in learning and memory, where irisin stimulates the expression of BDNF [144] (see
below). The effect of irisin released from muscle on the brain is not entirely clear yet, but it
includes disinhibition of BDNF (through histone deacetylase (HDAC)-mediated inhibition)
in the brain [145]. Supporting this notion, regular swimming exercise (1 h per day, 5 days
per week for 5 weeks) has been shown to be protective in a mouse model of AD, with
the FNDC5/irisin-mediating exercise effects of reducing neurodegeneration, enhancing
synaptic plasticity, and ameliorating memory deficits [136].

5.2.2. Cathepsin B

Cathepsin B (CTSB) is a lysosomal cysteine protease secreted by muscle in response to
exercise with beneficial effects on cognition [135]. Its release has been shown to be linked
to PGC-1α expression [146]. Similarly to those of irisin, the positive effects of CTSB seem
to be partially mediated by increased BDNF expression [147].

CTSB is involved in mitochondrial cell death signalling by regulating the release of
proapoptotic molecules [148,149], at least in certain cell types. Accordingly, the inhibition
of CTSB has been shown to be beneficial in models of AD and other brain disorders, as
recently reviewed [150]. In mice, CTSB has been shown to be necessary for running-induced
adult neurogenesis and memory improvements [135].

5.2.3. BDNF

BDNF signalling plays a major role in neurogenesis and in the process of learning and
memory formation [147,151]. Exercise enhances BDNF release in the brain [152], supporting
exercise-induced learning and memory benefits [153]. BDNF is also expressed by skeletal
muscle satellite cells and plays a key role in maintaining muscle progenitors cells [154]
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but also muscle nerve development and maintenance [155]. BDNF is also released from
muscle, but this effect may be sex specific, as at least in response to fasting, it was observed
in female but not male mice [156]. In exercising humans, this sex difference has not been
described, with serum BDNF levels increasing following exercise in an intensity-dependent
manner [157]. This may affect the brain as BDNF readily crosses the BBB.

BDNF has been reported to exert effects on mitochondria. It activates AMPK, en-
hances fatty acid oxidation [156,158], and prevents a decline of mitochondrial mass in
response to fasting [156] in muscle cells. It is noteworthy that BDNF has further been
demonstrated to increase mitochondrial biogenesis in cultured murine hippocampal neu-
rons [159]. Decreased levels of BDNF have been reported in AD patients’ brains [160], as
recently reviewed [161]. Accordingly, increased BDNF levels (together with enhanced adult
neurogenesis) have been shown to constitute an important part of the beneficial effects of
exercise on cognition in AD [162].

5.2.4. FGF21

Several myokines are induced by mitochondrial stress or modulate mitochondrial
function. They are referred to as mitokines if released in response to perceived mitochon-
drial stress and in turn produce beneficial effects in distal tissues [163].

Among muscle-derived mitokines is FGF21, the serum level of which is increased
by acute exercise [164], and which is implicated in the regulation of mitophagy [165],
mitochondrial dynamics [166], and possibly mitochondrial biogenesis [167]. Similar to
irisin and CSTB, FGF21 expression is regulated by PGC-1α [168]. Importantly, FGF21 can
penetrate the BBB [169], but whether its effects on the brain are direct or indirect is not
well understood [170]. FGF21, however, has been reported to exert protective effects on
the BBB [171], and FGF21 signalling has been demonstrated to regulate behavioural and
metabolic adaptations to food alteration and restriction [172]. The beneficial effects of
FGF21 have also been observed in cellular and murine models of AD [173] and PD [174].

5.2.5. Humanin

Another group of myokines comprises molecules released from mitochondria in
response to exercise that may then exert systemic effects, such as the mitochondrially
encoded, apoptosis-suppressing [175] peptide humanin [176,177]. It is noteworthy that
humanin has been shown to be neuroprotective in cellular models of AD [178,179] and
PD [180,181], likely via preventing mitochondrial dysfunction and the initiation of aberrant
mitochondrial cell death signalling.

5.2.6. Cytokines

Regular exercise and high cardiorespiratory fitness are associated with reduced mark-
ers of general inflammation [182]. Mechanistically, this effect may be induced by the
exercise-induced release of cytokines [183,184]. Among these cytokines is interleukin-10
(IL-10), a potent anti-inflammatory signalling molecule that in the brain, for example,
modulates astroglial activation and neuroinflammation [185]. In macrophages, IL-10 has
been shown to directly regulate mitochondrial dynamics and respiration via mitochondrial
arginase-2 [186]. Neuroprotective IL-10 effects are therefore likely partially mediated by
the metabolic reprogramming of mitochondria.

Another exercise-induced cytokine (and classical myokine [187]) with prominent
effects on the brain, and brain mitochondria, is interleukin-6 (IL-6) [188]. While IL-6 has
been shown to regulate mitochondrial biogenesis in astrocytes [189], its mode of action is
complex and can result in both pro- and anti-inflammatory outcomes [183,190].

Interestingly, polymorphisms in both IL-6 and IL-10 have been linked to an increased
risk to develop AD [191,192]. The genetic transfer of human IL-10 has been shown to be
neuroprotective in a rat model of PD by reducing neuroinflammation [193], while IL-6
deficiency was associated with increased neurodegeneration in a mouse model of PD [194].
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Beneficial exercise effects are likely mediated in part via adaptations to proinflamma-
tory signals. The quality and intensity of the exercise stimulus determine inflammatory
responses resulting from muscle damage, with, for example, eccentric exercise resulting
in particularly high systemic inflammation [195]. An initial proinflammatory phase after
muscle damage is followed by adaptive processes that reduce inflammation [121]. Whether
high intensive exercise and associated pronounced mitochondrial damage in skeletal mus-
cle [78] and resulting inflammation affect the brain, as suggested by investigations on
ultramarathon runners [196], and which consequences this might have on the pathogenesis
of neurodegenerative diseases, remains to be elucidated. Experimental evidence from
studies in rats, however, indicates the adverse consequences of overtraining on cognitive
function [197].

5.3. Metabolites

While exercise exerts largely positive effects on brain metabolism, aging is associated
with metabolic deficits that may be involved in the development of neurodegeneration [198].
Several metabolites are involved in cellular exercise responses, and some muscle-derived
metabolites may physically reach the brain or exert indirect effects on the brain. Here, we fo-
cus on lactate, but other metabolites are certainly involved in muscle–brain communication.

Lactate levels in the brain are regulated mainly by astrocytes that provide lactate
as a substrate for energy metabolism to neurons [21]. Transport of lactate across the
brain endothelium conversely depends strongly on endothelial cells [199]. In response to
intensive exercise, lactate is released from the skeletal muscle and leads to increased lactate
levels in blood [200]. This impacts brain metabolism and correlates with lactate uptake
and oxidation in the brain parenchyma [201] as well as with increased the excitability of
the primary motor cortex [202]. Exercise-induced increased systemic lactate levels thus
may be involved in the brain effects of exercise, as has been demonstrated for cerebral
angiogenesis [200] and has been hypothesized for exercise-triggered neurogenesis [203,204].
The molecular mechanism of the lactate-mediated beneficial effects of exercise on the
brain may again depend at least partially on BDNF signalling [205], which is in line
with the potential effects on neurogenesis and is relevant for neurodegenerative diseases;
adult neurogenesis is impaired, for example, in AD and PD [206]. Lactate also induces
the upregulation of neuroangiogenesis through brain vascular endothelial growth factor
(VEGF) [200] and the synaptic plasticity genes cfos, Arc, and Zif [207].

Additionally, the citric acid cycle metabolite succinate has recently been shown to be
released into the skeletal muscle interstitium and into the systemic circulation in response
to exercise to exert paracrine effects [208]. Whether this succinate reaches the brain and
how the brain might profit from this are open questions. The reported anti-inflammatory
effects of extracellular succinate in the brain [209] indicate that neurons could potentially
benefit from the higher availability of this metabolite.

5.4. MicroRNAs

MicroRNAs are short noncoding RNAs that can repress gene expression post-transcrip-
tionally by binding complementary RNAs. The regulation and functions of microRNAs
have been reviewed in detail elsewhere [210].

Muscle-tissue-specific microRNAs have been referred to as “myomiRs” and are
thought to be key elements in skeletal muscle adaptations in response to contraction [211].
Alterations of circulating microRNAs (c-miRNAs) in response to exercise, depending on
the quality and extent of the exercise stimulus, suggest that microRNAs are involved in
systemic adaptations to exercise as well [212,213]. microRNAs play a role in angiogene-
sis [214], inflammation [215], the regulation of muscle contraction [216], the response to
hypoxia [217], and mitochondrial metabolism [218]. The interplay of microRNAs with
mitochondria and redox regulation is also important in the brain [219].

The patterns of c-miRNAs regulation differ. Some c-miRNAs are upregulated in
response to acute exercise and after (miR-146a, miR-222), some to acute exercise but not
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after (miR-21 and miR221), some are responsive only to sustained training (miR20), and
some are nonresponsive (miR-133a, miR-210 and miR-328) [220].

Future systematic investigations will be necessary to determine the mechanistic role
of such microRNAs [213,219], particularly in the communication with tissues distal from
muscle, such as the brain.

5.5. Direct Neuroprotective Signaling from Skeletal Muscle Mitochondria?

It is becoming increasingly clear that mitochondria not only control myriad intra-
cellular processes but that they influence mitochondria and cells in distant localizations
and thus have important communication roles also across cellular boundaries. They even
appear to be synchronized across cells without contact [221], a phenomenon that is not yet
well understood.

Mitochondria not only release and react to signalling molecules, but they can also
be transferred between cells as whole organelles or organelle components [222,223]. This
“mitochondrial transfer” has also been shown to have functional benefits, as it can rescue
respiration in recipient cells [224–227]. Such transfer of mitochondria between different
cell types includes, for example, the exchange of mitochondria between astrocytes and
neurons to assist with the degradation of damaged neuronal mitochondria [228] or to
support neurons with astrocytic mitochondria, e.g., after a stroke [229,230]. Furthermore
the delivery of exogenous isolated mitochondria [231] or mitochondrial transfer from
exogenous stem cells [232] has resulted in beneficial outcomes for brain tissues.

It is still debated how mitochondria are transferred between cells, but several routes
have been suggested. Apart from the direct release and uptake of mitochondria or their
components, transfer via tunnelling nanotubes to adjacent cells has been suggested as
well as transfer in extracellular vesicles, which is associated with a reduced release of
inflammatory factors as compared to the transfer of “naked” mitochondria [233]. Im-
portantly, the packaging of mitochondrial proteins in extracellular vesicles has recently
been demonstrated to be selective, with damaged proteins being transported directly to
lysosomes [233]. It is possible that mitochondrial components may also be transported by
extracellular vesicles from skeletal muscle to the brain, as the release of extracellular vesi-
cles from skeletal muscle into the systemic circulation occurs [120] particularly in response
to exercise [118]. Currently, however, the assessment of the origin of extracellular vesicles
is challenging [118], making the role of mitochondrial transfer in exercise-induced brain
effects speculative. Interestingly, the systemic administration of isolated mitochondria into
the blood resulted in the relocalization of the exogenously administered mitochondria in
the brain and has been shown to be beneficial in rodent models of AD [234] and PD [235].
We are not aware of studies showing the involvement of mitochondrial transfer from
skeletal muscle to the brain in exercise-dependent benefits on neurodegenerative diseases,
but this is a possibility that merits being investigated.

Taken together, although the mechanisms of muscle–brain signalling are incompletely
understood, regular exercise exerts clear beneficial effects on the brain. These include
molecular alterations, such as reduced ROS production and oxidative damage, as well as
improved enzymatic antioxidant defences [104] and prominent effects on components in-
volved in mitochondrial biogenesis [103,104] and on hippocampal adult neurogenesis [236].
The role of mitochondria and mitochondrial stress in skeletal muscle in response to exercise
on brain function is yet to be clearly delineated. While mitochondria are importantly
involved in the response of skeletal muscle to exercise, it remains to be elucidated how
they participate in systemic signalling, particularly to the brain. For example, the roles of
mitokines and of mitochondrial transfer in exercise signalling in general, and specifically
to the brain, are exciting topics for future research.

In summary, the benefits conferred onto the brain by exercise of the skeletal muscles
may be protective for numerous neurological pathologies, including notably AD, PD, and
other neurodegenerative diseases [127]. A summary of the potential routes of muscle–brain
communication is provided in Figure 3.
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6. Strategies to Boost Brain Mitochondria by Exercise

Although many open questions remain on the mechanistic details of the exercise-
induced benefits on brain mitochondria, the potential of exercise to prevent neurodegener-
ation is immense. Regular exercise improves brain function, including the cognitive func-
tion [107] and hormonal activity [106] of the brain. A direct outcome of exercise—improved
cardiorespiratory fitness—has been shown to protect from neurodegeneration risk factors
by enhancing, for example, resilience against disruptions of CBF [237]. High cardiorespira-
tory fitness is also associated with reduced cognitive dysfunction in older individuals [238].
A challenge for the clinical application of exercise as a medicine is the selection of the
appropriate exercise regimen, depending both on the capacities of the patients or at-risk
populations and the aim. Training plans to this end should be designed with the assistance
of sports science specialists [239] in order to both maximize health-promoting effects (selec-
tion of adequate exercise parameters) and exclude any risks arising, e.g., from pre-existing
morbidities or exercise loads that are too high for an individual.

The WHO guidelines “Global Recommendations on Physical Activity for Health” and
the recommendations from the American College of Sport Medicine (ACSM) both propose
at least 150 min per week of moderate intensity (endurance) or 75 min of vigorous physical
exercise (e.g., intense interval exercise) or an equivalent combination for health benefits in
older adults [240,241]. Strength and balance exercise on three or more days per week is
recommended for people to maintain force and to prevent falls.

Different exercise modalities and “doses” exert distinct benefits [242], including on
the mitochondrial level [243]. The main outcome of an exercise modality is determined
by the type, intensity, and frequency/duration of the exercise. Endurance training (main
effects on oxidative capacity and fatigue resistance), for example, has a particular potential
to improve mitochondrial biogenesis and cardiorespiratory fitness.

For trained [244] and untrained [245] healthy individuals, as well as for deconditioned
lung cancer patients [246], time-efficient interval trainings may be equally beneficial or
superior to moderate-intensity continuous training (MICT). Interval training programs
are commonly classified as high-intensity interval training (HIIT; with intensities close to
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maximum capacities) and sprint interval training (SIT; ‘supramaximal’ intensities), with
MICT, HIIT, and SIT all improving aerobic capacity and mitochondrial content in skeletal
muscle. SIT can induce mitochondrial biogenesis and improve aerobic capacity similar to
MICT despite smaller durations, while HIIT can improve aerobic capacity more efficiently
than MICT [247]. Importantly, for the selection of optimal exercise parameters, the baseline
individual characteristics must be considered, with high intensity alternatives potentially
not being suited for certain aged populations and patient groups.

Resistance training (increasing strength and muscle fibre cross-sectional area) can be
applied to boost the function of selected muscles [247]. Intriguingly, training modalities
also affect mitochondrial functions differentially [70,248,249], although this phenomenon
is insufficiently understood, especially in tissues other than skeletal muscle. Enhanced
mitochondrial biogenesis is one of the earliest observed [68] and most studied effects of
endurance exercise. The effects of resistance exercise on muscle mitochondria have been less
frequently investigated but may be associated with smaller biogenesis effects and instead
with greater improvements of mitochondrial respiration [250]. The not yet fully understood
effects of resistance exercise that may be beneficial in neurodegenerative diseases have
been summarized recently [251]. The combination of resistance with endurance exercise
has been shown to be particularly effective to boost mitochondrial respiration, at least
in muscle [99].

Taken together, performing different types of exercises exerts specific effects on skeletal
muscle mitochondria and affects performance differentially. Although this is an important
characteristic to harness physical exercise as a treatment for neurological diseases, the
effects of specific exercise parameters on brain and brain mitochondria are still poorly
understood. Increasing the complexity of the field, the contributions of mitochondria in
different brain cell types (neurons, glial cells, endothelial cells, etc.) to the beneficial effects
of different exercise modalities remain to be better explored.

The potential reduction of aerobic exercise effects due to combination with strength
training [252] further highlights the importance of well-designed exercise programs with
adequate training loads and structures and sufficient regeneration times. The selection of
individually effective training programs is key for exercise benefits and is also important
to consider for clinical studies.

While it has been shown for former athletes that team and contact sports yield benefits
on overall mortality similar to endurance exercise [253], risk of traumatic brain injury
from, for example, contact sports [253] or—more debated [254] —team sports, such as
football [255], increases the risk for neurodegenerative diseases later in life. In contrast,
boxing—performed as a noncontact sport—for example, is explored as an intervention,
e.g., for PD [244,245,256].

7. Conclusions

Regular exercise benefits mitochondria in skeletal muscles but also in remote tissues,
such as the brain. Compromised mitochondria are probably key players in the pathogenesis
of numerous neurodegenerative diseases including PD and AD. Exercise, in theory, may
thus be an excellent preventive strategy. This assumption is confirmed by numerous
studies, as recently reviewed for PD [6] and AD [5]. While regular endurance exercise
seems to be the most efficient strategy to improve mitochondrial biogenesis and aerobic
capacity, its combination with resistance exercise may have a synergetic effect to maximize
energy metabolism outcomes. The release of numerous signalling molecules, including
myokines, from exercising muscles is associated with prominent neuroprotective effects.
The release of these factors depends on the exercise modality, intensity, frequency, and
duration. A well-designed mix of regular exercise of different modalities is thus expected to
be the best for enhancing different mitochondrial functions in the brain. The combination
of different exercise modalities (combining endurance and strength training, and including,
for example, exercise to improve balance) may also be most useful to slow down the loss of
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muscle mass and physical capacities that are major factors for decreased quality of life in
patients with neurodegenerative diseases [257].

Importantly, acute intensive exercise also involves risks such as injury, oxidative stress,
and acutely reduced immune functions [182]. These risks increase at an older age and
must be taken into account, especially when beginning a new training routine. Conversely,
regular moderate exercise has the potential to markedly improve both antioxidative and
immune capacities [182].

Despite the well-known benefits of regular exercise on brain mitochondria, the routes
of communication from mitochondrial adaptations in the contracting skeletal muscle to the
brain are still poorly understood. Here, we summarized several potential components of the
muscle–brain axis, including various signalling molecules and potential direct mitochondrial
transfer. Future investigations are needed to determine the contributions and potentially
differential roles of the outlined routes from muscle to the brain. This will help to establish
efficient pharmacological means to modulate the muscle–brain axis in order to strengthen
brain mitochondria as a preventive measure against neurodegenerative diseases.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alzheimer’s Association. 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2019, 15, 321–387. [CrossRef]
2. Dorsey, E.R.; Elbaz, A.; Nichols, E.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.-Y.J.; Collado-

Mateo, D. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden
of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [CrossRef]

3. Alzheimer’s Disease International. World Alzheimer Report 2019: Attitudes to Dementia; Alzheimer’s Disease International: London,
UK, 2019.

4. Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative
disease. Nat. Rev. Neurol. 2019, 15, 565–581. [CrossRef] [PubMed]

5. Valenzuela, P.L.; Castillo-García, A.; Morales, J.S.; de la Villa, P.; Hampel, H.; Emanuele, E.; Lista, S.; Lucia, A. Exercise benefits on
Alzheimer’s disease: State-of-the-science. Ageing Res. Rev. 2020, 62, 101108. [CrossRef]

6. Ellis, T.; Rochester, L. Mobilizing Parkinson’s disease: The future of exercise. J. Parkinson’s Dis. 2018, 8, S95–S100. [CrossRef]
[PubMed]
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