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Abstract: Protein–protein interactions (PPIs) are the basis of most biological functions determined by
residue–residue interactions (RRIs). Predicting residue pairs responsible for the interaction is crucial
for understanding the cause of a disease and drug design. Computational approaches that considered
inexpensive and faster solutions for RRI prediction have been widely used to predict protein interfaces
for further analysis. This study presents RRI-Meta, an ensemble meta-learning-based method for RRI
prediction. Its hierarchical learning structure comprises four base classifiers and one meta-classifier to
integrate predictive strengths from different classifiers. It considers multiple feature types, including
sequence-, structure-, and neighbor-based features, for characterizing other properties of a residue
interaction environment to better distinguish between noninteracting and interacting residues. We
conducted the same experiments using the same data as previously reported in the literature to
demonstrate RRI-Meta’s performance. Experimental results show that RRI-Meta is superior to several
current prediction tools. Additionally, to analyze the factors that affect the performance of RRI-Meta,
we conducted a comparative case study using different protein complexes.

Keywords: protein complex; residue–residue interaction; stacked meta-learning

1. Introduction

Proteins are the basis of cellular machinery. They are responsible for cellular functions
such as cell signaling, molecular motors, and other biological mechanisms. Most protein
functions are based on protein–protein interactions (PPIs). Therefore, understanding the
binding or interaction mechanisms helps accelerate research on cellular functions, dis-
ease causes, immune responses, and drug designs. PPIs have been studied extensively
from the cellular to molecular level [1–3]. However, understanding protein functions re-
quires more than knowing proteins that can interact; discovering how the proteins interact
by identifying binding interfaces between them provides insights into protein functions.
Protein–protein binding interfaces can be recognized using X-ray crystallography [4], nu-
clear magnetic resonance (NMR) [5], and mutagenesis-based approaches [6]; however,
these methods are costly and time consuming, which hinders their applicability to all
complexes. Therefore, computational methods have been used to predict protein inter-
faces as preliminary results for further investigation. Protein interactions are driven by
hydrophobic effects [7], electrostatic interactions [8], covalent bonds, and physicochemical
principles [9]. However, these properties have not been completely understood, which
makes the prediction difficult.

Docking-based methods aim to form a protein complex model for its three-dimensional
(3D) structure from which protein–protein binding sites can be identified. Docking can be
performed using fast Fourier transform (FFT) called FFT docking [10,11]. Other approaches
employ geometric hashing [12] and Monte Carlo search [13] to infer possible protein struc-
tures. However, these methods are limited by structural information availability such as
resolution [14,15].
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The increasing availability of protein 3D structures enables learning protein patterns
from existing protein structures. A homologous complex is considered a template to infer
protein interfaces [16,17]. A homologous complex can be identified based on sequence or
structural similarity. Homology-based methods are comparable to the docking methods,
but their performances are limited to the number of template structures known.

Several machine learning approaches have been proposed for interface prediction to
overcome the unavailability of high-quality protein structural data [18,19]. They extract
features from different sources and learn patterns from these features. They can be catego-
rized into two types based on their purpose. The first is partner-independent binding site
prediction [20,21], which determines whether the residue of a given protein interacts with
any other protein. The other is partner-specific binding site prediction, which identifies the
two amino acids that interact in a specific PPI. It describes how the complex is formed by
showing the residues involved in interactions.

Partner-specific methods can be further divided into three classes: sequence-based,
structure-based, and mixed methods, according to the features they employ. For example,
a sequenced-based method extracts features from sequences and uses an artificial neural
network with long short-term memory to predict binding sites [18]. By contrast, structure-
based methods only use protein structural information. They use various structural prop-
erties of proteins for prediction [22]. Unlike sequence- or structure-based methods, mixed
methods use different features to increase the prediction accuracy, such as PAIRpred [19],
Graph convolutional neural network (Graph CNN) [23], and convolutional neural network
(CNN) [24]. They use both sequence and structure information. Sequence features include
residue amino acid type and sequence profiles. Structural features include relatively acces-
sible surface area, secondary structures, half-sphere exposure, protrusion index, and depth
index. To predict residue–residue-interactions (RRIs), PAIRpred uses a special-purpose
pairwise kernel in a support vector machine; by contrast, Fout et al. [23] and Xie et al. [24]
proposed using CNNs.

This paper presents RRI-Meta (RRI-Meta-classifier), which is a tool for RRI prediction
based on protein sequences or protein structures. We evaluated RRI-Meta on the complexes
listed in docking benchmark 5.0 (DBD 5.0) via leave-one-out cross-validation (LOOCV).
Experimental results show that RRI-Meta is superior to several other current RRI predictors
for several performance metrics.

2. Results

We developed RRI-Meta based on a stacked generalization approach to predict the
partner-specific interfaces of PPIs. RRI-Meta is structured as an ensemble of four inde-
pendent base classifiers and one meta-classifier. We compared RRI-Meta with other RRI
prediction methods, following the same methodology in the previous studies [18,19,22,24]
to maintain consistency and unbiasedness.

2.1. Performance Measure

The performance measure used in the comparison is the area under the receiver oper-
ating characteristic curve (AUROC). A receiver operating characteristic (ROC) curve is a
technique for visualizing and comparing classifiers based on their performance [25], where
a classifier is a mapping from instances to predicted classes. In RRI prediction, an instance
is a residue pair, and a predicted class is either interacting (positive) or noninteracting
(negative). There are four possible outcomes given a classifier and an instance. If the
instance is positive, and the prediction is also positive, it is counted as a true positive (TP);
if it is classified as negative, it is counted as a false negative (FN). By contrast, if the instance
is negative, and the prediction is also negative, it is counted as a true negative (TN); if it is
classified as positive, it is counted as a false positive (FP). Given P positive and N negative
instances, we define the true positive rate (TPR) and false positive rate (FPR) as follows.
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TPR = TP/P = TP/(TP + FN) (1)

FPR = FP/N = FP/(FP + TN) (2)

An ROC curve is a 2D graph in which TPR is plotted on the Y-axis, and FPR is plotted
on the X-axis. The plot for a classifier that curves more toward the left upper corner
suggests a higher prediction performance. To compare the performance between two
classifiers, we calculate the area under the ROC curves, and a higher AUROC indicates
higher performance.

2.2. Performance Comparison between RRI-Meta and Other RRI Prediction Methods

We compared RRI-Meta with four recent RRI predictors, i.e., PPIPP [18], PAIRpred [19],
Graph CNN [23], and CNN [24]. Among these, PAIRpred, Graph CNN, and CNN use
sequence and structure information to learn patterns from training data and predict whether
there is an interaction between each residue pair in the testing data, whereas PPIPP is
a sequence-based method. We followed the standards of previous studies [18,19,23,24]
to construct a set of protein interaction interfaces on protein complexes of DBD 5.0. The
procedures are specified in the method section. These interfaces are the gold standard in
the evaluation process, and they also serve as the positive instances of the machine learning
methods in the following experiments.

In the comparisons, all predictors except GCNN were trained and tested on the same
dataset, i.e., DBD 5.0, because GCNN was pretrained and pretested on specific datasets,
and it cannot be trained or tested on different data in its current settings.

The protein sequences and protein data bank (PDB) files were downloaded from
UniProtKB [26] and RCSB PDB websites [27], respectively to ensure that the test was
consistent and unbiased. We conducted LOOCV for all RRI predictors using DBD 5.0 and
evaluated their performances based on AUROC. In LOOCV, each complex was reserved
for testing the predictive accuracy, and the remaining complexes were used to train the
RRI predictors. The same training–testing process was iterated on each protein complex, as
illustrated in Figure 1. The final average results are presented in Table 1 and Figure 2.

Table 1 shows that RRI-Meta outperformed the other prediction tools in terms of
AUROC. In addition, the ROC curve for RRI-Meta shows that it reached 0.9 TPR with a
much lower FPR compared with the other predictors (0.25 vs. 0.4), as shown in Figure 2.
Due to the special setting of GCNN [23], it was trained on a dataset of 175 complexes and
tested on an independent dataset of 55 complexes. To maintain consistency in comparison,
we trained and tested RRI-Meta on the same data; the corresponding results are presented
in the last two rows of Table 1. With the same but smaller training dataset than DBD 5.0,
RRI-Meta also outperformed GCNN on the same test dataset. We use protein complex
4G6M as an example and visualize its 3D structure to demonstrate that RRI-Meta is a
more accurate RRI predictor than the other tools. In Figure 3, we show the true interaction
interface and the noninteracting part on 4G6M. RRI-Meta was able to classify these sites
correctly. By contrast, PAIRpred failed to make the correct predictions.

Table 1. Average results for LOOCV on DBD 5.0.

Method AUROC

PAIRpred 0.86
PPIPP 0.80
CNN 0.85

RRI-Meta 0.90
GCNN * 0.86

RRI-Meta * 0.89
* Using a training dataset of 175 complexes and an independent test dataset of 55 complexes for evaluation.
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Figure 3. The 3D structure illustration for protein complex 4G6M. Its A chain and L chain are
colored in yellow and green, respectively. The red balls indicate the true residue interacting sites,
for which RRI-Meta predicted correctly, whereas the predictions of the competing tool, PAIRpred,
were incorrect. The gray balls mark the part without residue interactions. RRI-Meta classified it as
noninteracting correctly; however, PAIRpred misclassified it to be interacting.
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2.3. Case Study

We conducted a case study to address three factors affecting the performance of RRI
predictors, i.e., (a) missing amino acids, (b) feature set, and (c) training complexes, using
three protein complexes, 1ML0, 3HMX, and 1RKE, respectively. We show the AUROCs
produced by different predictors in the case study in Table 2.

Table 2. AUROCs of RRI predictors in case study.

Complex RRI-Meta PPIPP PAIRpred CNN

1ML0 0.74 0.62 0.72 0.66
3HMX 0.97 0.89 0.93 0.91
1RKE 0.86 0.76 0.81 0.82

The protein complex 1ML0 comprises of proteins 1DOL (D chain) and 1MKF (A
chain). The A chain and D chain of 1ML0 have 382 and 77 residues, respectively, but
some are missing. Only 371 and 71 residues can be found in their PDB files, which causes
inconsistency between the sequences of PDB and UniProtKB. Current RRI prediction tools
retrieve protein sequences from PDB files. By contrast, RRI-Meta obtains sequences from
UniProtKB because it is more complete than PDB files.

We show the 3D structures of 1ML0 in Figure 4 based on the sequence stored in PDB.
Protein 1DOL is colored in green, and protein 1MKF is colored in yellow. A yellow or
green ball indicates where some residue(s) should be present but missing. Consequently,
the feature values derived from the sequences stored in PDB for 1ML0 are not the same as
those in UniProtKB. To verify the influence of the completeness of protein sequences on
RRI prediction, we performed a cross-comparison that tested RRI-Meta using sequences
in PDB files and CNN using sequences in UniProtKB. The AUROC of 1ML0 generated by
RRI-Meta decreased to 0.71, whereas the AUROC of 1ML0 generated by CNN increased to
0.68. The results suggest that a more complete protein sequence warrants more accurate
sequence-based features and consequently improves prediction performance. Further
analysis showed that the impact of missing residues is more significant when they are close
to interacting residues.
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yellow and green, respectively. A yellow or green ball indicates where some residue(s) should be
present but missing.

The features used to represent the data strongly affect the machine learning perfor-
mance. Compared with other RRI predictors in this study, RRI-Meta uses various features
to represent protein complexes. In addition to combining sequence-based and structure-
based features to utilize the synergy, RRI-Meta also considers neighbor-based features to
characterize 1D and 3D proximities. Neighbor-based features describe the surrounding
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environment of residue pairs providing information that may be the key factors in identi-
fying the interacting residue. To validate the benefit of richer feature representations, we
tested RRI-Meta on 3HMX using only the features adopted by PAIRpred and found that
the AUROC decreased from 0.97 to 0.94.

In addition to the features, the protein complexes used to train the predictors are also
crucial for prediction performance, especially when the number of noninteracting residues
is considerably larger than interacting ones. Protein complexes that are remotely related
to the test complex are not appropriate for training predictors. The irrelevancies in these
complexes can mislead the learning process of the predictors. By excluding the protein
complexes with low similarity to the test example from the training data, we can improve
AUROC in prediction. By contrast, we observed a decrease in the AUROC of RRI-Meta
from 0.86 to 0.84 for 1RKE without the complex-filtering mechanism. Furthermore, we
noted that the complex-filtering mechanism could improve PAIRpred and CNN; their
AUROCs increased to 0.83 and 0.85, respectively. These findings indicate the importance of
training data selection, and we have embedded a filter in RRI-Meta to address the issue.

2.4. Ratio of Positive Data to Negative Data for Training

RRI prediction is a class-imbalanced classification problem in which there are sig-
nificantly more noninteracting residues than interacting residues in a protein complex.
The imbalance between the numbers of noninteractions and interactions in a complex
obstructs the predictors from learning the correct concept of RRI even after removing
the irrelevant protein complexes from the training dataset. One consequence of using an
imbalanced dataset in the training phase is that the classifier would predict most instances
as the majority to achieve higher accuracy. For example, if there is one interacting residue
pair and 1000 noninteracting ones, the classifier could easily achieve 0.999 accuracy if it
classifies all residue pairs as noninteracting. Sampling techniques such as oversampling
and undersampling have been commonly used to resolve class imbalance problems. In this
work, we used undersampling to mitigate the class imbalance problem.

We conducted the experiments with different ratios between noninteracting and
interacting residues because the noninteracting residues can sometimes be 1000 times more
than interacting residues in a protein complex, and undersampling the noninteracting
residues to the same number of interacting residues may not necessarily reflect the correct
class boundary. We analyzed the effects of class ratios on prediction performance. We
varied the ratio from 1:1 to 1:6; the corresponding results are given in Table 3.

Table 3 reveals that the AUROC can vary as the ratio changes, but the difference is
minor, suggesting that RRI-Meta is relatively stable and insensitive to class ratio settings.
Increasing the number of noninteracting residues in training data did not necessarily
improve the prediction performance.

Table 3. Prediction performances based on different class ratios.

Ratio
Interacting/Noninteracting AUROC

1:1 0.88
1:2 0.89
1:3 0.90
1:4 0.90
1:5 0.89
1:6 0.89

2.5. Ablation Study of Features

The superiority of RRI-Meta over other predictors in our comparisons is partly at-
tributed to the use of a wider variety of features. Benefiting from the synergy of various
features, RRI-Meta can more easily identify the class boundary between noninteracting
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and interacting residues. To further investigate the importance of different features, we
conducted an ablation study to evaluate various feature combinations.

We divided the features into three categories according to their distinct properties:
sequence-, structure-, and neighbor-based features. Then, we evaluated the prediction
performance of RRI-Meta using six different combinations of feature types; the correspond-
ing results are given in Table 4. Although the differences in prediction performance using
different feature combinations were marginal, RRI-Meta achieved the highest AUROC
when considering all feature types. In addition, Table 4 reveals that compared with using
a single feature type, using a combination of two feature types can improve RRI-Meta’s
performance. These findings indicate that different feature types can contribute to RRI
prediction differently and complement each other. A good synergetic combination of
features can lead to a more accurate RRI prediction.

Table 4. Results of ablation study on feature importance.

Sequence Structure Sequence
Neighbor

Structure
Neighbor AUROC

O X X X 0.84
X O X X 0.80
X X O X 0.87
X X X O 0.84
O O X X 0.86
O X O X 0.88
O X X O 0.87
X O O X 0.88
X O X O 0.85
X X O O 0.88
O O O X 0.88
O O X O 0.87
O X O O 0.89
X O O O 0.88
O O O O 0.90

Note. O indicates the features are included; X means the features are excluded.

3. Discussion

RRIs play an important role in biological functions. Previous research extracted
features from sequence and structure information as inputs for machine learning algorithms
and achieved remarkable RRI prediction results. In this research, we developed RRI-Meta,
which extends the existing feature set, providing a more detailed residue pair description
to the machine learning algorithm, and incorporates a stacked generalization framework
with a protein complex filter to predict RRIs. Four weak classifiers, Decision Tree (DT) [28],
Naïve Bayesian (NB) [29], Artificial Neural Network (ANN) [30], and Random Forest
(RF) [31], were used as base learners at the bottom level of RRI-Meta to generate initial
predictive results. LightGBM [32] was selected as the meta-classifier to arbitrate among the
base learners for the final prediction. RRI-Meta leverages the advantages of base learners.
In this design, RRI-Meta can integrate the predictive strengths of different predictors
and find better discriminating patterns from initial results and primitive features. In
addition, RRI-Meta uses three feature types to characterize residue interactions better and
consequently identify a better boundary between noninteracting and interacting residues
in the feature space. Following previous works [18,19,24], we performed LOOCV on RRI-
Meta and compared it with other current RRI predictors using the same dataset to maintain
consistency and unbiasedness. The results demonstrate that RRI-Meta outperformed the
other comparative methods in terms of AUROC.

First, to analyze the factors contributing to the superiority of RRI-Meta, we conducted
a case study of three protein complexes. In the case study, the analysis of effects of protein
sequence completeness on RRI prediction indicates that a protein sequence with fewer
missing amino acids can provide more sequence-based information of the environment
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in which residue interactions occur. Therefore, prediction tools can benefit from more
precise feature descriptions and produce more accurate results. We tested RRI-Meta on
PDB sequences and UniProtKB sequences in the same 65 protein complexes with missing
residues. The results showed that when extracting features from more complete UniProtKB
sequences, RRI-Meta made more accurate RRI predictions than when extracting features
from PDB sequences. Second, to verify the contribution of a wider variety of features for
prediction performances, we compared the performance of RRI-Meta using the proposed
extended features with that using the less versatile features used by other predictors such
as PAIRpred. We observed that combinations of multiple feature types enable RRI-Meta to
more easily identify the correct boundary between noninteracting and interacting residues,
thereby achieving higher prediction performance. Third, to resolve relevant features in
training data, we equipped RRI-Meta with a protein complex filter removing residue pairs
from complexes that are remotely related to the test complex. We tested the usefulness of
the filter by evaluating the prediction performance of several predictors with and without
the filter and found that by filtering out irrelevant protein complexes from the training
data, the predictors’ performance improved remarkably.

In addition, we conducted an ablation study of feature importance to verify the
synergy of different feature types, i.e., sequence-, structure-, sequence neighbor-, and
structure-neighbor-based features. We use RRI-Meta to evaluate the effects of all combi-
nations of different features on prediction performance. As expected, different types of
features characterized the residue interaction environment differently, and none of the
features seemed to dominate the others. Using different combinations of features improves
RRI-Meta’s performance compared with using a single feature type, indicating the synergy
of these features.

4. Materials and Methods

We designed RRI-Meta based on a stacked generalization framework and developed
a two-level ensemble meta-learner for RRI prediction. A complete system is implemented,
as illustrated in Figure 5. The source code and the data used in the study are available
in the Github repository, https://github.com/mlbioinfolab/rrimeta (accessed date: 13
June 2021).
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Figure 5. System Diagram of RRI-Meta for predicting residue–residue interactions.

4.1. Protein Features

For RRI prediction, features used to describe residue pairs are crucial to the success of
machine learning. RRI-Meta uses both sequence- and structure-based protein features. In
this study, each residue pair, (ri, rj), is represented by a feature vector, <fi1, fi2, . . . , fip, fj1, fj2,
. . . , fjp>, where p is the total number of features for residues ri and rj; fin and fjn are the n-th

https://github.com/mlbioinfolab/rrimeta
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features of ri and rj, respectively. The feature values can be derived from protein sequences
and their PDB files.

4.1.1. Sequence-Based Feature: Physicochemical Property

As the basis for RRI prediction, we characterize each protein based on 12 physicochem-
ical properties of its composite amino acids [33–40]: hydrophilicity, flexibility, accessibility,
turns scale, exposed surface, polarity, antigenic propensity, hydrophobicity, net charge
index of the side chains, polarizability, solvent-accessible surface area, and side-chain vol-
ume. Among these properties, hydrophobicity and polarity are each calculated according
to two different scales. The values of 14 physicochemical property scales of 20 essential
amino acids are listed in Table 5. We translated each amino acid into a vector of 14 numeric
values, corresponding to a physicochemical scale value in Table 5.

4.1.2. Sequence-Based Feature: Sequence Profile

We used PSI-BLAST [41] to extract the position-specific scoring matrix (PSSM) and
position-specific frequency matrix (PSFM) of a protein. In different measures, both PSSM
and PSFM are good indicators of how better conserved and how more frequent a given
amino acid is within the sequence alignment than expected by chance. A high PSSM
or PSFM score suggests that an amino acid could be a critical functional residue that is
probably an active site for RRI. Additionally, we also considered the conservation index
computed by Al2co [42]; it defines the index values from entropy, variance, and alignment
matrix score.

Table 5. Values of the 12 physicochemical property scales of the 20 essential amino acids.

AA H11 * H12 * H2 NCI P11 * P12 * P2 SASA V F A1 E T A2

A 0.62 2.1 −0.5 0.007 8.1 0 0.046 1.181 27.5 −1.27 0.49 15 −0.8 1.064
C 0.29 1.4 −1.0 −0.037 5.5 1.48 0.128 1.461 44.6 −1.09 0.26 5 0.83 1.412
D −0.9 10.0 3.0 −0.024 13.0 40.7 0.105 1.587 40.0 1.42 0.78 50 1.65 0.866
E −0.74 7.8 3.0 0.007 12.3 49.91 0.151 1.862 62.0 1.6 0.84 55 −0.92 0.851
F 1.19 −9.2 −2.5 0.038 5.2 0.35 0.29 2.228 115.5 −2.14 0.42 10 0.18 1.091
G 0.48 5.7 0.0 0.179 9.0 0 0 0.881 0 1.86 0.48 10 −0.55 0.874
H −0.4 2.1 −0.5 −0.011 10.4 3.53 0.23 2.025 79.0 −0.82 0.84 56 0.11 1.105
I 1.38 −8.0 −1.8 0.022 5.2 0.15 0.186 1.81 93.5 −2.89 0.34 13 −1.53 1.152
K −1.5 5.7 3.0 0.018 11.3 49.5 0.219 2.258 100 2.88 0.97 85 −1.06 0.93
L 1.06 −9.2 −1.8 0.052 4.9 0.45 0.186 1.931 93.5 −2.29 0.4 16 −1.01 1.25
M 0.64 −4.2 −1.3 0.003 5.7 1.43 0.221 2.034 94.1 −1.84 0.48 20 −1.48 0.826
N −0.78 7.0 2.0 0.005 11.6 3.38 0.134 1.655 58.7 1.77 0.81 49 3.0 0.776
P 0.12 2.1 0.0 0.240 8.0 0 0.131 1.468 41.9 0.52 0.49 15 −0.8 1.064
Q −0.85 6.0 0.2 0.049 10.5 3.53 0.18 1.932 80.7 1.18 0.84 56 0.11 1.015
R −2.53 4.2 3.0 0.044 10.5 52.0 0.291 2.56 105 2.79 0.95 67 −1.15 0.873
S −0.18 6.5 0.3 0.005 9.2 1.67 0.062 1.298 29.3 3.0 0.65 32 1.34 1.012
T −0.05 5.2 −0.4 0.003 8.6 1.66 0.108 1.525 51.3 1.18 0.7 32 0.27 0.909
V 1.08 −3.7 −1.5 0.057 5.9 0.13 0.14 1.645 71.5 −1.75 0.36 14 −0.83 1.383
W 0.81 −10 −3.4 0.038 5.4 2.1 0.409 2.663 145.5 −3.78 0.51 17 −0.97 0.893
Y 0.26 −1.9 −2.3 117.3 6.2 1.61 0.298 2.368 0.024 −3.3 0.76 41 −0.29 1.161

H11 and H12: hydrophobicity; H2: hydrophilicity; NCI: net charge index of side chains; P11 and P12: polarity; P2: polarizability;
SASA: solvent-accessible surface area; V: volume of side chains; F: flexibility; A1: accessibility; E: exposed; T: turns; A2: antigenic.
* Hydrophobicity (H11 and H12) and polarity (P11 and P12) were calculated using two methods.

4.1.3. Structure-Based Feature: Polypeptide Geometric Property

We used PSAIA to compute solvent-accessible surface score (ASA), relative ASA
(RASA), depth index (DPX), and protrusion index (CX) from protein structure files. Both
ASA and RASA are influential in protein folding and can affect interacting surfaces. DPX
measures the distance between an atom and the closest solvent-accessible atoms in a
protein. CX measures the convexity of each nonhydrogen atom in a protein. Similar to
ASA and RASA, DPX and CX are potential factors of residue interactions.
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4.1.4. Structure-Based Feature: Secondary Structure

Secondary structures are important for residue contact because they demonstrate
different contact energies [42,43]. We used the Dictionary of Protein Secondary Structure
(DSSP) to determine the secondary structure and presented it using a one-hot encoding
scheme for simplicity.

4.1.5. Structure-Based Feature: Half-Sphere Exposure

Half-sphere exposure (HSE) is an alternative measure of protein solvent exposure
that shows the convexity of a residue in a protein. We used the BioPython package [44] to
calculate the HSE of each residue in PDB files.

4.1.6. Neighbor-Based Feature: Sequence and Structure

We define the neighbors of a residue based on two aspects: sequence and structure.
Sequence neighbors of a residue are the nearest N residues in the sequence. Figure 6 shows
an example of the sequence neighbors of amino acid AAi. A residue and its neighbors
can be presented as a window of length N + 1 centered at that residue. Given a window-
based neighborhood, for each residue in a protein, we generate its neighbor-based features
from its neighbors’ primitive feature values such as physicochemical properties, ASA, and
DPX. By contrast, the structure neighbors of a residue are the closest residues in their 3D
structures. Figure 7 illustrates the structure neighbors of a given residue AAi in the 3D
space. The distance between two residues is defined as the Euclidean distance between
their Cα atoms. To generate structure neighbor-based features for a residue, we only
consider its nearest 10 structural neighbors, and their distances from the residue must
be less than 10 angstroms (Å). Similar to sequence neighbor-based features, we construct
neighbor-based features from these structural neighbors’ feature values. Notably, neighbor-
based features can be defined differently depending on neighbors’ feature values. We
currently define neighbor-based features as the minimum, maximum, mean, and sum of
feature values in a neighborhood.
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4.2. Complex Filtering

The structure of a protein determines its function in biological processes [45]. Two
polypeptide chains with the same sequence in the same protein complex can interact with
different polypeptide chains on different residue pairs. For example, in Figure 8, the A
and B chains of 1A2K have the same sequence configuration, but they interact with the C
chain differently because the A chain and the B chain do not fold in exactly the same style
in the 3D space. Protein structures shape the residue interaction environment; therefore,
a residue interface in a protein complex is expected to be more similar to that in another
complex with similar structures rather than random. Based on this conjecture, we prepare
the training complexes for RRI-Meta by removing the sufficiently different complexes
between the test complex and the training dataset. For each training complex Ti in the
training dataset, we calculate its similarity to a test complex S by applying PDBeFold [46].
We remove training complexes with similarity scores less than 0.05 and train RRI-Meta on
the remaining complexes in the training dataset.
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interact with the red balls.

4.3. Ensemble Learning by Stacked Generalization

Unlike other iterative ensemble learning approaches based on bagging or boosting,
stacked generalization [47] works as layered processes to reduce learner bias. In stacked
generalization, each of a set of base learners is trained from a dataset, and the predictions of
these base learners become the meta features. A successive layer of meta learners receives
the meta features as the input to train the meta models in parallel, passing their output
to the subsequent layer. A single classifier at the top level makes the final prediction.
Stacked generalization is considered a form of meta learning because the transformations
of the training data for the successive layers contain the information of the predictions
of the preceding learners, which is a form of meta knowledge. Figure 9 shows a generic
hierarchical architecture of stacked generalization.

This study adopted the stacked generalization strategy to develop a two-level stacking
architecture for RRI prediction, as presented in Figure 10. The bottom level comprises
four base classifiers: Decision Tree (DT) [28], Naïve Bayesian (NB) [29], Artificial Neural
Network (ANN) [30], and Random Forest (RF) [31]. At the top level, we use LightGBM [32]
as a meta-classifier that arbitrates among the base classifiers (bottom level), making the final
prediction. The predictions of the base classifiers provide the meta-data for training the top
level LightGBM. To classify RRI for a new complex, we first feed the feature vector derived
from proteins to each trained base classifier, which generates a prediction. Subsequently,
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the predictions of the four classifiers are input to the trained LightGBM, which makes the
final RRI prediction for the new complex.
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4.4. Dataset

To conduct consistent and unbiased experiments, we followed previous works [19,24]
and used the same docking benchmark 5.0 dataset (DBD 5.0) for performance evaluation.
DBD 5.0 comprises 224 distinct bound protein complexes and their unbound ligands and
receptors, with 3D structures identified via X-ray crystallography.

4.5. Definition of Residue Interactions

This study adopted the most commonly used definition of interacting residue
pairs [18,19,24]. Two residues are considered to interact if at least one of the distances
between their heavy atom pairs is less than or equal to 6.0 Å. Based on this definition,
20,777 interacting and 14,945,106 noninteracting residue pairs are found in DBD 5.0. Each
protein complex contains 93 interacting and 67,917 noninteracting residue pairs on average.

5. Conclusions

Understanding how the proteins interact by identifying binding interfaces between
them provides insights into protein functions. The increasing availability of various protein
data has encouraged the development of different computational methods to escalate the
study of protein residue interactions. As a result, several machine learning approaches have
been proposed for interface prediction, adopting different design philosophies, including
learning strategies, predictive models, and data representations.

We introduce RRI-Meta, a new approach for RRI prediction. It employs a hybrid
feature representation that combines protein sequence properties, protein structure infor-
mation, and neighbor-based attributes. In addition to considering a broader variety of
protein features to distinguish between noninteracting and interacting residues, unlike
current prediction methods, RRI-Meta uses an ensemble meta-learning architecture to
benefit from multiple predictive models. The performance of RRI-Meta was extensively
compared with those of four state-of-the-art RRI predictors on a benchmark dataset. The
experimental results demonstrated a favorable performance over the others.

Additionally, we conducted a case study to analyze three important factors, missing
amino acids, feature set, and training complexes. These factors can affect the performance
of any RRI predictor. From the case study, we obtained the following findings. First, a
more complete protein sequence warrants more accurate sequence-based features and
consequently improves prediction performance. Second, richer feature representations
characterize residue interaction environments more thoroughly and thus provide a clearer
class boundary for predictors to distinguish between interactions and noninteractions. Last,
irrelevant or remotely related protein complexes can mislead the learning of RRI predictors.
A proper training dataset is crucial to the success of RRI predictors.

Overall, the results of the comparative experiments and the case study verify the
feasibility and superiority of the proposed ensemble meta-learning architecture, RRI-Meta,
in RRI prediction. As a wider variety of machine learning algorithms becomes available for
being base learners or meta learners, the performance of RRI-Meta can be further improved.
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