
 International Journal of 

Molecular Sciences

Review

The Multifaceted Role of HSF1 in Pathophysiology: Focus on
Its Interplay with TG2

Luca Occhigrossi 1 , Manuela D’Eletto 1, Nickolai Barlev 2,3 and Federica Rossin 2,*

����������
�������

Citation: Occhigrossi, L.; D’Eletto,

M.; Barlev, N.; Rossin, F. The

Multifaceted Role of HSF1 in

Pathophysiology: Focus on Its

Interplay with TG2. Int. J. Mol. Sci.

2021, 22, 6366. https://doi.org/

10.3390/ijms22126366

Academic Editor: Botond Penke

Received: 27 April 2021

Accepted: 11 June 2021

Published: 14 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biology, University of Rome ‘Tor Vergata’, 00133 Rome, Italy;
luc.occhigrossi@gmail.com (L.O.); manuela.deletto@gmail.com (M.D.)

2 Institute of Cytology, 194064 Saint-Petersburg, Russia; nick.a.barlev@gmail.com
3 Moscow Institute of Physics and Technology (MIPT), 141701 Dolgoprudny, Russia
* Correspondence: federicarossin@gmail.com

Abstract: The cellular environment needs to be strongly regulated and the maintenance of protein
homeostasis is crucial for cell function and survival. HSF1 is the main regulator of the heat shock
response (HSR), the master pathway required to maintain proteostasis, as involved in the expression
of the heat shock proteins (HSPs). HSF1 plays numerous physiological functions; however, the main
role concerns the modulation of HSPs synthesis in response to stress. Alterations in HSF1 function
impact protein homeostasis and are strongly linked to diseases, such as neurodegenerative disorders,
metabolic diseases, and different types of cancers. In this context, type 2 Transglutaminase (TG2),
a ubiquitous enzyme activated during stress condition has been shown to promote HSF1 activation.
HSF1-TG2 axis regulates the HSR and its function is evolutionary conserved and implicated in patho-
logical conditions. In this review, we discuss the role of HSF1 in the maintenance of proteostasis with
regard to the HSF1-TG2 axis and we dissect the stress response pathways implicated in physiological
and pathological conditions.
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1. Introduction

Protein homeostasis (or proteostasis) could be defined as a network of molecular
interactions able to maintain the balance of the whole proteome. The main processes that
affect proteostasis include biosynthesis, folding, assembly/disassembly and degradation
of proteins and they are interconnected with each other, by forming a dynamic system [1].
The key modulators of proteostasis are known as molecular chaperones, a functional
class of proteins able to facilitate polypeptide folding, avoiding the misfolding and thus
an improper aggregation between different proteins [2]. Many cellular signaling regu-
late proteostasis in order to buffer a deleterious accumulation of misfolded proteins and,
among these, the heat shock response (HSR) is known as the king pathway to mediate
chaperone expression [3]. The HSR activation allows the cells to increase the expression of
genes involved in the proteotoxic stress protection and to trigger a signaling to promote
cellular rest [4–6]. In fact, different factors induce stress by affecting the redox state of
the cells that turn out in an increased level of misfolded peptides, which in turn can be
detrimental due to their activity alteration [7]. To fight this stress, cells induce synthesis
of highly conserved proteins, termed Heat Shock Proteins (HSPs), molecular chaperones
that protect cells from harmful stimuli. HSPs, by helping the folding of damaged pro-
teins or driving them to degradation, attempt to avoid their dangerous accumulation.
Instead, in physiological conditions, HSPs are involved in the conformational change of
peptides, helping assembly and disassembly of multiproteic complex [8]. According to their
molecular weight, HSPs are classified in five classes, including the Hsp90, Hsp70, Hsp60,
Hsp40 and “small heat shock proteins”. Members of these classes can be constitutively
expressed or induced by stress and their intracellular distribution depends on the specific

Int. J. Mol. Sci. 2021, 22, 6366. https://doi.org/10.3390/ijms22126366 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-1674-7091
https://orcid.org/0000-0002-4313-8347
https://doi.org/10.3390/ijms22126366
https://doi.org/10.3390/ijms22126366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22126366
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22126366?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 6366 2 of 18

function, for example, localizing in the cytosol as well as in the nucleus (Hsp27, Hsc70,
Hsp70 and Hsp90), in the endoplasmic reticulum (Grp78 and Grp94) and in the mitochon-
drial space (Grp75, Hsp60, TRAP1) [9–11]. HSPs show a common molecular structure,
with the exception of the small HSPs, containing an ATP binding N- terminal domain
(“Nucleotide Binding Domain, NBD”), a C-terminal domain able to bind the peptide, (“Pep-
tide/Substrate Binding Domain”, PBD/SBD) and an interdomain region that facilitate the
ATPase activity of the chaperones and the recognition of the substrate [12–14]. The bond
of the peptides to the PBD domain occurs thanks to the aminoacidic carboxyterminal
sequence EEDV (Glu-Glu-Asp-Val) of the chaperones regulated both at the intramolecular
level, through hydrolysis and release of the nucleotide in the NBD domain, as well as at
the intermolecular level via the activity of several cofactors [15,16]. Co-chaperones and
nucleotide exchanging factors (NEFs) regulate the substrate affinity and the ATPasic cycle
of the main chaperones. For instance, as Hsp70 interacts with their substrates thanks to
co-chaperones DnaJ (Hsp40), which drives the misfolded or unfolded proteins toward
chaperones and releasing them upon the association of cofactors NEFs [17,18]. Consid-
ering the main role of HSF1 in the regulation of the HSR and the recent studies showing
the interaction with type 2 Transglutaminase (TG2), in the following paragraphs we will
discuss the importance of the HSF1-TG2 axis in the regulation of the HSR and potential
involvements in pathological conditions.

2. HSF1: The Master Regulator of the HSR

The heat shock response is mediated by several transcription factors named “heat
shock factors” (HSFs), which can bind specific DNA sequences, the heat shock elements
(HSEs), located upstream in the promoters of heat shock genes [19,20]. The promoters of
the target genes contain several HSEs sequences, thus allowing a simultaneous binding of
many HSFs. Moreover, the association of an HSF protein with the HSEs occurs in a cooper-
ative manner, where the binding of an HSF protein facilitates that of the next factor [21].
The HSFs contain several functional domains including a DNA-Binding Domain (DBD),
two N-terminal oligomerization domains (“heptad repeat A/B”, HR-A/B), an oligomeriza-
tion domain (HR-C), a C-terminal activation domain (AD) and a regulatory domain [22–24].
In vertebrates, four main transcription factors (HSF1-4) have been identified, but HSF1
shows the most prominent role in the regulation of HSR and HSPs expression [25–27].
The sequencing of the HSF1 gene highlighted the fact that the codifying DBD and HR-A/B
exons were conserved among the orthologous genes, while several mutations were accu-
mulated on the HR-C and AD domains [28]. HSF1 plays numerous physiological functions
during cellular growth and differentiation, it regulates key genes for energy production
and it is involved in the cytoskeletal organization [29,30]. However, the main function of
HSF1 concerns the modulation of HSPs synthesis in response to stress, since HSF1 knock-
out cells do not develop thermo-tolerance making them more sensitive to stress-induced
apoptosis [31,32]. HSF1 activation is mediated by a series of regulatory events. In the
physiological condition, HSF1 is present in the cytoplasm as inactive monomer, because
of the intramolecular binding between HR-C and HR-A/B domains and its association
to Hsp90 and Hsp70 [33–35]. On the contrary, in a stress condition, HSF1 is released by
the inhibitory proteins and subsequently moves into the nucleus binding the HSEs on
the promoters of the target genes [36,37]. The HSF1-mediated transcription activation is
regulated by a series of phosphorylations on different sites: the phosphorylation on serine
230 and 326 stimulates the transcriptional activity of HSF1, while the phosphorylation on
serine 419 and 320, respectively, modulates the nuclear translocation and the DNA binding
capability of the transcription factor [37,38]. In addition to the activating phosphorylation,
inhibitory phosphorylation also takes place on HSF1 and occurs on serine 121, 303, 307
and 363, to repress the HSF1 activity [37,39,40]. Moreover, HSF1 activation requires the
transition from the monomeric to the trimeric form of the transcription factor. Specifically,
two cysteine residues (cys35 and 105), localized in the DBD domain, are essential for the
formation of disulfide bridges in the trimeric HSF1 [41]. Recently, it has been shown that
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HSF1 trimerization is not a spontaneous event that occurs following proteotoxic stimuli,
but it is mediated by the type 2 Transglutaminase (TG2), a ubiquitous enzyme activated
during stress condition [42]. Moreover, a persistent stress leads to an inactivation of HSF1
trough both additional post-translational modifications and a negative feedback mech-
anism by which the transcription factor is bound by the newly synthetized HSPs [43].
In fact, the HSF1 trimers interact with newly produced Hsp70 and Hsp40 and this binding
compromises the transcription factor activity [44].

2.1. TG2-Dependent Activation of HSF1

“Tissue” or type 2 Transglutaminase (TG2) is a peculiar multifunctional enzyme
able to catalyze Ca2+-dependent post-translational modifications of proteins, by estab-
lishing covalent bonds between the peptide-bound glutamine residues and either lysine
residues or mono- and poly-amines. In addition, it may also act as a G protein in a trans-
membrane signaling, and, depending on the interacting partner, as a kinase or a protein
disulfide isomerase (PDI). Finally, TG2 can serve as a cell surface adhesion mediator [45,46].
Many studies have shown that TG2 has a role in the major pathways involved in pro-
teostasis maintenance. In fact, it has been recently demonstrated that TG2 is involved
in autophagosome maturation and in the post-translational modification of high molec-
ular weight aggregates, which are then conveyed by cargo proteins to the autophagic
machinery for degradation [47–49]. It has also been shown that TG2 regulates protein
homeostasis through exosomes biogenesis by controlling the selectivity of their cargo.
Indeed, TG2 influences the recruitment in the exosomes of various proteins involved in
proteostasis [50]. Finally, a proteomic analysis of TG2 interactome revealed that the enzyme
interacts with various protein categories of which the most represented is a well-defined
group of chaperones such as Hsp70 [51]. Our previous study demonstrated that TG2 plays
a key upstream role in the regulation of proteostasis by controlling the HSF1/Hsp70 axis.
Specifically, TG2, through its PDI activity, catalyzes the trimerization of HSF1, promoting
the formation of three intermolecular S-S bonds between two cysteine residues (Cys36 and
Cys103), which are essential for HSF1 trimerization and DNA binding (Figure 1) [40,41].
In fact, the absence/inhibition of TG2 impairs translocation of the HSF1 trimeric complex
in the nucleus and in turn, the Hsp70 expression [41].

2.2. TG2 and HSF1 Axis in the Regulation of the HSR

Many mechanisms regulate the HSF1 activation upon stress conditions. In fact, several
stimuli as proteotoxic stress, pathogens and toxins lead to the activation of an inert pool of
HSF molecules, in order to stimulate the transcription of stress-responsive genes, which ini-
tiates the HSR. HSF protein family consist of different paralogs; however, HSF1 is the main
transcription factor involved in the activation of HSR. McMillan et al., first showed that
HSF1 deletion impairs HSR responsiveness to acute stress, due to a deficiency in the HSPs
expression [52]. Therefore, it is a common knowledge that HSF1 is the king regulator of
HSPs expression and the major mediator of their induction in cancer.

As mentioned above, our recently published results suggest that TG2, by promoting
HSF1 activation, is a key regulator of the HSR and its function is evolutionary conserved.
Indeed, mice lacking TG2 display a markedly impaired response to the HS due to the
absence of TG2-dependent HSF1 trimerization. This notion has also been confirmed
in human models, where the TG2 inhibition affects HSF1 activation [41]. Interestingly,
also in low vertebrates such as Danio renio TG2 is essential for a correct induction of
the HSR. Specifically, transient knockdown of TG2 in the presence of heat shock (HS),
by incubation of larvae at 37 ◦C, partially but significantly impaired the Hsp70 expression.
Accordingly, RNA-seq analysis in wild-type and TG2 knockout mouse models confirmed
that the absence of TG2 drastically alters the cellular response to HS. Indeed, in KO cells
the number of upregulated or downregulated genes, after HS induction, was significantly
lower compared with the WT cells [53]. Interestingly, Gene Set Enrichment Analysis,
using both “cellular response to heath stress” and “regulation of HSF1 mediated heat shock
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response”, reveals many genes downregulated in cells lacking TG2, thus confirming that
the enzyme is necessary for a proper response to the HS. Specifically, the expression of many
HSPs such as HspA1A, BAG3, DnaJ and many others is impaired in the absence of TG2.
In fact, among these impaired genes, HSF1 is also downregulated (Figure 2). These data
confirm the previous study indicating that TG2 is necessary for a proper activation of
the HS response thus highlighting a specific role for the enzyme in the regulation of
HSF1-dependent gene expression.

Figure 1. The Heat Shock Response. A proteotoxic stress leads to an increase in misfolded proteins that are bound by HSPs
to mediate proteins folding or their degradation. Activated HSF1 moves into the nucleus where it is trimerized by TG2.
HSF1 trimers bind HSE sequences stimulating HSPs expression in order to reduce the misfolded peptides accumulation.
The new synthetized chaperones interact with monomeric HSF1 to attenuate the heat shock response.

In this regard, a number of papers highlighted TG2 as a potential regulator of gene
expression. Even though TG2 was initially considered a cytosolic protein, it’s now clear that
under specific physiological conditions TG2 translocates into the nucleus where it interacts
and modifies several proteins [41,54–56]. Accordingly, the primary sequence of TG2
contains two putative nuclear localization signals (NLS) and the binding to an importin-
α3/Qip-1 family protein may occur to facilitate its transport into the nucleus [57]. Nuclear
TG2 is able to modify HSF1, but post-translational modifications and interactions with
other transcription factors (e.g., E2F1, Sp1) and histones have been also reported [54–56].

Kojima’s group demonstrated that TG2 is responsible for the cross-linking mediated
inactivation of the transcription factor Sp1, resulting in the reduced expression of growth
factor receptors such as c-Met and consequent hepatocyte apoptosis [56]. Interestingly,
it has been reported that HSF1 and Sp1 cooperate for the transcription of some genes
including the heat shock protein HspA1B [58,59], thereby corroborating the notion that
TG2 could be part of functional nuclear complexes regulating gene expression.
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Figure 2. TG2-dependent regulation of HS. Heat map representing the expression of genes associated
with the HS response in WT and TG2 knock out cells (TG2−/−) after HS induction. Higher expression
is red, while lower expression is shown as blue.

The peculiar biochemistry of TG2, as well as its capacity to interact with the main
proteins involved in the regulation of proteostasis imply that TG2, besides its function in
the activation of HSF1, directly regulates the HSPs. Indeed, about 40% of TG2 interacting
proteins are related to the chaperone protein family [51] and several studies revealed TG2
interactions with many HSPs such as Hsp70, Hsp27, Hsp90 as well as co-chaperones from
the DnaJ and the BAG families [60–63]. Through these interactions, TG2 is able to modulate
cellular processes involved in different pathologies. Accordingly, of particular interest is
the interaction of TG2 with BAG3 a member of the BAGs family, a group of anti-apoptotic
proteins, sharing the BAG domain, that binds and regulates the activity of various HSPs.
BAG3 is a co-chaperone involved in the clearance of protein aggregates through the protea-
some and/or autophagy and has been reported to form a multichaperone complex with
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HspB8 and Hsp70. This complex is implicated in the Huntington’s Disease since triggers
the selective degradation of mutated huntingtin through a lysosomal degradation process
called BAG3-mediated selective macroautophagy [64]. However, it has been reported that
when cellular proteostasis is impaired, the clearance of pathological huntingtin could occur
via exosomes and is mediated by TG2 interaction with BAG3 [50]. TG2 interaction with
HSPs has been proved to occur also in neuronal cell death where the interaction with
Hsp20 and Hsp27 plays a protective role against cytotoxic insult [60].

3. HSF1 in Diseases
3.1. Cystic Fibrosis

Cystic Fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene
encoding for the cystic fibrosis transmembrane conductance regulator (CFTR), a 1480 aa
cAMP- regulated Cl- channel expressed at the apical membrane of epithelial cells in the
airways and in other tissues [65,66]. Currently, about two thousand mutations of the CFTR
have been identified, where the most common is the deletion of phenylalanine 508 residue
(F508del), turning out in a defective protein folding, that leads to CFTR degradation [67,68].
CF pathogenesis is characterized by imbalance of proteostasis due to an increase in HSF1
trimers and consequently Hsp70 expression, which in turn is involved in F508del CFTR
degradation by the proteasome [69]. In this regard, new therapeutic approaches, known as
“potentiators” and “correctors”, aim to augment or repair function of the CFTR protein.
In particular, the correctors are molecules able to stabilize CFTR, facilitating its folding,
minimizing the proteasomal degradation and consequently increasing its stability at the
cell membrane [70]. Many sources of evidence suggest a pathogenic role of TG2 in CF
since the presence of the mutation F508del in the CFTR induces persistent activation
of the enzyme [71,72]. Interestingly, the ablation of TG2 in F508del mice significantly
ameliorates the typical CF symptoms improving their survival. In fact, it has been shown
that the improvements, observed in the absence of TG2, were paralleled by a reduction
in Hsp70 levels indicating that the enzyme regulates the Hsp70 expression also in CF
pathogenesis [41]. Recently, it has been demonstrated that the administration of cysteamine,
a known inhibitor of TG2, promotes a general amelioration of the disease in CF patients
by reducing inflammation and restoring the CFTR function [73,74]. Indeed, the treatment
with cysteamine, interfering with the PDI activity of TG2, influences HSF1 trimerization,
reducing the amount of the active trimerized form. Moreover, the inhibition of TG2 by
cysteamine, leads to a reduction in Hsp70 protein levels as well as in Hsp40 expression, a co-
chaperone of Hsp70 required for CFTR F508del degradation. This evidence suggests that
TG2, by regulating the HSF1-Hsp70 pathway, could promote F508del CFTR degradation
triggering CF pathogenesis. According to this, it is very likely that TG2 inhibition by
cysteamine restores CFTR function by affecting the HSF1 trimerization and consequently
Hsp70 induction [41].

3.2. Neurodegenerative Diseases

Protein aggregation is associated with the onset and pathogenesis of diverse neu-
rodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (SLA), dementia with Lewy bodies (LB), and Huntington’s
disease (HD) [75]. Accumulating data have supported a potential involvement of TG2 in
neurodegenerative diseases [76]. In fact, neurovegetative disorders are characterized by an
alteration of proteostasis, in which TG2 plays a key role [42]. Most importantly, numerous
studies showed that dysregulation of TG2 may contribute to the pathogenesis of many
neurodegenerative disorders, including HD, AD, PD and ALS as well as nervous system
injuries [77]. However, the precise mechanism underlying TG2’s role in these disorders
remains unclear. In fact, endogenous misfolded proteins can undergo to aggregation, losing
their normal function, and can form large insoluble aggregates that are deposited on the
tissues, such as the brain and heart, causing organ damage [78]. Since these disorders are
characterized by a failure of proteostasis, chaperones play a key role in the pathogenesis of



Int. J. Mol. Sci. 2021, 22, 6366 7 of 18

neurodegenerative diseases [79]. Indeed, HSPs partially stabilize the unfolded proteins,
dissociate the protein aggregates and drive the misfolded proteins to degradation, making
HSF1 the main target factor that needs to be regulated in the neurodegenerative diseases
(Figure 3) [80].

Figure 3. HSF1 action in physiological condition and in neurodegenerative diseases. Left panel. During a period of
proteotoxic stress, HSF1 trimers bind HSE sequences promoting HSPs expression (1). Misfolded proteins are bound by
HSPs (2) driving them toward proteasomal degradation (3) or facilitating their folding (4). Right panel. In neurodegenerative
diseases several E3 ligases interact with HSF1 (2) promoting its ubiquitination and degradation (3). The reduction in HSPs
expression leads to an accumulation of misfolded proteins (4) turning out in the formation of toxic aggregate (5).

It has been shown that the pathological α-synuclein, the common marker of PD and
LB, can induce an aberrant degradation of the HSF1 protein, via activation of Nedd4-1,
an intracellular E3 ligase, leading to a decrease in the chaperone protein expression [81].
Similarly, in the HD, mutated huntingtin protein (Htt) is able to increase the interaction
between HSF1 and Fbxw7, a Skp1-Cull-F box ubiquitin ligase protein complex, through
HSF1 phosphorylation on Ser303 and Ser307. This interaction triggers HSF1 degrada-
tion [82]. Finally, the expression of HSF1 protein is reduced during AD accompanied with a
significant decrease in the expression of the heat shock chaperones including Hsp60, Hsp70
and Hsp90 [83]. Contrary, HSF1 overexpression in the cerebellum has been shown to rescue
HSPs expression and mitigate the loss of Purkinje cells [83–86]. Moreover, overexpression
of HSPs has been reported to reduce the number and size of accumulated aggregates and
ameliorate the phenotypes in neuronal cells [87]. In addition to endogenous chaperones,
a novel class of low molecular weight compounds termed “chemical chaperones” has been
shown recently [88]. These molecules contain a hydrophobic core that interacts with non-
polar exposed regions of proteins, interfering with hydrophobic packing and disrupting
intermolecular hydrogen bonds. Acting similar to “proteostasis-keepers”, these chemi-
cal chaperones confer anti-aggregation activity to proteins prone to associate with each
other [89]. Taken together, this evidence suggests that both TG2 activity and HSF1 function
are essential in many neurodegenerative disorders, thus supporting the close relationship
between these two proteins.



Int. J. Mol. Sci. 2021, 22, 6366 8 of 18

3.3. Cancer

HSF1 involvement in cancer is a highly discussed topic in the recent years and it
is becoming clear that HSF1 supports tumor cell proliferation, survival, invasion and
metastasis in a wide range of cancers. Notably, HSF1 activity correlates with a higher
rate of survival in several cancer types: breast [90], lung [91], prostate [92], colon [93],
myeloma [94], pancreas [95] and hepatocellular carcinoma [96].

Functions of HSF1 in tumorigenesis involve the regulation of multiple processes
including maintenance of homeostasis, inhibition of apoptosis, control of DNA repair,
promotion of tumor invasion and regulation of tumor microenvironment (Figure 4).

Figure 4. HSF1 multiple roles in cancer development. (Homeostasis) Mutated proteins accumulate in tumor leading to an
increase in the HSPs production mediated by HSF1. (DNA repair) HSF1 regulates DNA repair in cancer cells by forming a
ternary complex with PARP13 and PARP1 thus favoring PARP1 redistribution to DNA lesions. (Survival) HSF1 promotes
cancer cell survival either by inducing the expression of genes encoding pro-survival proteins or repressing genes encoding
pro-apoptotic factors. (Microenvironment) HSF1 modulates tumor microenvironment as it is activated in CAFs where
regulates signaling pathways involved in ECM remodeling and cancer progression. (Invasion) HSF1 promote EMT either
inducing the expression of N-cadherin and mesenchymal markers or downregulating the expression of E-cadherin and
epithelial markers.

Tumors are characterized by the accumulation of mutated and overexpressed proteins
that requests an increase in the protein quality control. This increase demand in folding
activity induces the HSR, leading to the HSF1-dependent transcription of the molecular
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chaperones, known to increase cell survival both through direct chaperoning of misfolded
proteins as well as inhibition of programmed cell death [97].

Indeed, HSF1 promotes cell survival by inducing the expression of genes encoding
pro-survival proteins such as BAG3, Hsp27, Hsp70 and Bcl-2 [98–100]. Otherwise, the tran-
scriptional program of HSF1 in cancer, beyond the expression of HSP genes, also involves
the repression of genes encoding pro-apoptotic proteins such as XAF1, SMAC, BCL10 and
BAX [101–104]. Accordingly, several studies report that HSF1 knockdown or its inhibition
promote a higher rate of apoptosis in different tumor types [105,106].

Genomic instability is one of the most important factors that lead to cancer develop-
ment and alterations in the DNA repair pathways facilitate the accumulation of genomic
alterations contributing to the survival of cancer cells. However, tumors depend on residual
DNA repair functions to repair the damage induced by enhanced replication and genotoxic
stress [107]. In this regard, it has recently been found that in breast cancer models HSF1
recruits PARP1 through the damage regulator PARP13, thus forming a ternary complex.
In response to DNA damage, this complex induces PARP1 activation, dissociation from
HSF1–PARP13 and redistribution to DNA lesions promoting the accumulation of DNA
repair factors including RAD51 and 53BP1 [108]. In this context, it has also been reported
that under genotoxic stress, such as exposure to ionizing radiation, HSF1 deficiency com-
promises the cell’s ability to arrest cell cycle progression and impairs DNA damage repair
by reducing the levels of RAD51 and 53BP1 [109].

Several studies indicate that HSF1 can drive migration and invasion facilitating the
malignant transformation and progression of cancer; however, the detailed mechanisms of
its pro-metastatic activity are not fully understood. In cancer cells, HSF1 seems to promote
epithelial–mesenchymal transition (EMT) either inducing the expression of N-cadherin
and mesenchymal markers or downregulating the expression of E-cadherin and epithelial
markers [110,111]. HSF1 ability to promote migration and invasion was demonstrated
in hepatocellular carcinoma [112], melanoma [113,114], breast [99], ovarian [110] and
pancreatic [115] cancers. In agreement with the notion that HSF1 is involved in EMT,
the former was shown to confer drug resistance to cancer cells [116]. In breast cancer,
Akt mediates the phosphorylation of HSF1, which stimulates the expression of Slug and
triggers the EMT [117]. However, not only HSF1 expression promotes EMT, but it also
appears that HSF1 is required for TGF-β-dependent signaling in EMT [108,109]. Indeed,
in breast cancer cells, TGF-β induces the activation of HSF1-Akt-CyclinD1 pathway through
the FAM3C protein, promoting tumor proliferation and migration [118].

On the other hand, Lindquist’s group found that TGF-β is a target gene of HSF1
in the tumor stroma, playing a key role in the transcriptional re-programming of tumor
microenvironment [119]. Recently, increasing evidence highlighted a role for HSF1 in
the modulation of tumor microenvironment and specifically of cancer-associated fibrob-
lasts (CAFs) in many human tumors such as melanoma, lung, colon, breast, and prostate
carcinomas. Indeed, HSF1 is activated in CAFs where regulates at least two central sig-
naling pathways, TGF-β and SDF1, with a transcriptional program completely different
from the one used in the adjacent cancer cells [119]. In this regard, it has been recently
demonstrated that in colon cancer, stromal HSF1 drives the transcription of genes encoding
matrix proteins (FN1, LAMA1), matrix enzymes (MMP7, MMP9), and matrix chaperones
(SERPINH1/Hsp47), inducing ECM remodeling and leading to cancer progression [93].
Another effector of HSF1, that modulates the pro-tumorigenic behavior of CAFs, is the
recently found Dickkopf-3 protein (DKK3). DKK3 is an HSF1 target gene that promotes
aggressive behaviors of CAFs in breast, colorectal and ovarian cancers. It exerts this effect
by potentiating YAP/TAZ activity via canonical Wnt signaling [120].

TG2-HSF1 Axis in Cancer

TG2 is involved in various mechanisms that contribute to the onset and proliferation of
the tumor such as inflammation, cell proliferation, death processes, angiogenesis, metastasis
and chemo resistance [121].
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The close relationship between inflammation and TG2 has been variously demon-
strated in several physiological and pathological conditions, including cancer [122–126].
In particular, the TGM2 gene is regulated by the factor NF-κB [127], which if activated
induces the expression of TNFα, IL-1, and IL-6, cytokines known to be potent inducers of
TG2 expression [128]. The association between TG2, inflammation and cell survival is also
highlighted by the correlation with TGF-β. Interestingly, similar to HSF1, TG2 is required
for the activation of TGF-β [129] and this cytokine is necessary for TG2 expression and
activity [130–132].

TG2 is also involved in the tumor proliferation phase as it alters the mechanisms of
cell death and survival [133]. The enzyme has been extensively demonstrated to have a
pro-apoptotic role based on its calcium-dependent crosslinking activity that is required for
the formation of apoptotic bodies through post-translational modifications of pro-apoptotic
proteins [134,135]. However, in tumor context, anti-apoptotic activities of TG2 have been
established through mechanisms dependent on cellular localization and on the activation
of specific pathways [122], such as NF-κB [136] or retinoblastoma [137].

TG2 is also involved in advanced tumor stages related to increased aggression, such as
metastasis or drug resistance processes. Evidence has in fact shown that in the most
advanced stages of the tumor there is an over-expression of TG2. In renal cell carcinoma,
TG2 is higher in metastatic than in non-metastatic patients [138], a correlation confirmed
also in ovarian cancer [139], breast cancer [140] and in the pancreas [141]. Specifically,
TG2 supports the adhesion of cancer cells to the extracellular matrix (ECM) through the
interaction with both fibronectin and integrins [142]. Furthermore, post-translational
modification of ECM proteins by TG2 seems to be a key step for the progression of tumor
cells to metastasis, conferring resistance to metalloproteinases and promoting cell–matrix
interactions [143,144].

The evidence supports a role for TG2 in the angiogenesisi processes since the enzyme
is highly expressed in endothelial cells with positive effects on blood vessel formation.
In particular, it has been demonstrated that inhibition of TG2 expression and transamidase
activity causes an arrest in angiogenesis mediated by VEGF [145].

All these notions highlight a role for TG2 in the carcinogenesis processes. Thus,
considering the interplay between TG2 and HSF1 and their tumorigenic effect, a deep
understanding of this axis in the complex and dynamic interplay between the tumor and
its surrounding microenvironment could be of great importance to design new therapeutic
approaches for cancer therapy.

4. HSF1: A Regulator of Development

HSF1 is a highly versatile transcription factor that is involved in many physiological
processes, including development, where plays a vital role. Initial observations of HSF1
importance in the developmental processes came from deletion experiments of Hsf gene
in Drosophila melanogaster. Indeed, flies that are defective for HSF1 arrest the develop-
ment at the L2-L3 larval stages [146]. Interestingly, genome-wide gene expression studies
showed that this effect was not caused by changes in the expression of the HSPs, rather
by other HSF1-dependent gene expression patterns [147,148]. The same evidence was
found in C. elegans models, where deletion of HSF1 ok600 allele leads to premature arrest
of development at the larva stage [149]. About vertebrates, mice lacking HSF1 possess
multiple defects such as chorioallantoic placenta, prenatal lethality, growth retardation,
female infertility and absence of the HSR; however, they can survive to adult age [147].

Female sterility caused by HSF1 deficit was found both in Drosophila and mice [146,150,151].
Indeed, it is becoming clear that HSF1 is essential for oocyte meiosis and, when absent,
these cells arrest the meiotic maturation at phase I or II [150,152]. Recently, it has been
shown that HSF1 is abundantly expressed in maturing oocytes and its ablation leads to
the downregulation of Hsp90. Similarly, Hsp90 inhibitors cause the same phenotype, i.e.,
the HSF1 deficit [150]. Moreover, oocytes lacking HSF1 present dysfunctional mitochondria
and are more sensitive to oxidative stress, showing a reduced rate of survival [153].
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HSF1 is a key regulator in the brain development maintaining central nervous system
(CNS) proteostasis. Indeed, the absence of HSF1 results in brain morphological alterations
with lateral ventricles markedly enlarged, white matter reduced and areas of neurode-
generation [154]. Moreover, brains from HSF1knockout mice exhibit higher levels of
ubiquitinated proteins, increased levels of protein oxidation, and sensitivity to oxidative
stress, indicating that HSF1 is essential for the maintenance of CNS homeostasis [155].
Another study showed that HSF1 knockout mice present aberrant affective behavior,
with depression-like and aggressive features [156]. The analysis of the molecular mecha-
nism revealed that HSF1 directly controls the expression of the polysialyltransferases in the
hippocampus, thus modulating PSA-NCAM (polysialylated-neural cell adhesion molecule)
levels, known to participate in the remodeling of neuronal circuits [156]. Other genes such
as Syt1, Vamp2, Dp71 and LIF1, all involved in neuronal development, have been identified
as target of HSF1 further strengthening the evidence for a protective function of HSF1 in
brain development [157–160].

Interestingly, it has recently been demonstrated that HSF1 promotes the activation of
the Wnt/β-catenin signaling, a key pathway required for embryonal development [161,162].
Our lately published work suggests that TG2, by regulating HSF1, controls the Wnt signal-
ing and this axis is essential for the correct embryonal development of lower vertebrates [53].
Indeed, TG2 ablation in zebrafish determines a severe developmental impairment starting
from gastrulation stage with around 40% of morphants died. Of note, TG2 knockdown
represses not only the HSR but also the Wnt pathway leading to progressive alterations in
morphology and body shape, thus highlighting the role of the TG2-HSF1-Wnt axis in the
developmental processes.

5. Conclusions

The HSF1 protein regulates the heat shock response pathway by acting as the major
transcription factor for the heat shock proteins. HSF1 is regulated at multiple levels by
different signals and proteins, which modulate its activity and function under normal
and stress conditions. In this regard, TG2 has now emerged as a key regulator of HSF1
activation, since it is required for HSF1 trimerization and for a proper HSR induction.
In recent years, it has become clear that HSF1 not only activates the classical HSP genes
during stress, but it also stimulates different transcription programs involved in many
physiological and pathological processes. Currently, HSF1 is recognized as a major player
in several diseases including cancer and neurodegenerative disorders. Of note, TG2 has
also been implicated in these pathologies making the HSF1-TG2 axis an attractive topic
to be further exploited from the therapeutic point of view. Indeed, aberrant TG2 activity
is found in some neurodegenerative diseases, such as AD, PD and HD [163]. Moreover,
this enzyme is involved in the insurgence and progression of several tumors including
breast, prostate, renal, pancreatic and liver cancers [138,164–167]. In this context, additional
studies to evaluate HSF1-TG2 interplay would critically contribute to improve the current
knowledge on the processes regulated by HSF1 in diseases.
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