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Abstract: The new advances in deep learning methods have influenced many aspects of scientific 

research, including the study of the protein system. The prediction of proteins’ 3D structural com-

ponents is now heavily dependent on machine learning techniques that interpret how protein se-

quences and their homology govern the inter-residue contacts and structural organization. Espe-

cially, methods employing deep neural networks have had a significant impact on recent CASP13 

and CASP14 competition. Here, we explore the recent applications of deep learning methods in the 

protein structure prediction area. We also look at the potential opportunities for deep learning meth-

ods to identify unknown protein structures and functions to be discovered and help guide drug–

target interactions. Although significant problems still need to be addressed, we expect these tech-

niques in the near future to play crucial roles in protein structural bioinformatics as well as in drug 

discovery. 

Keywords: structural bioinformatics; deep learning; protein sequence homology; 3D structure of 

proteins; drug discovery 

 

1. Introduction 

Proteins, large and complex polymers with linear amino acid chains, play crucial 

roles in cells responsible for constructing and regulating our body. By revealing the struc-

ture and contacts of biomacromolecules, we gain a better understanding of their function, 

thus facilitating the rational drug discovery process. The recent advances in experimental 

structural biology techniques such as X-ray crystallography, nuclear magnetic resonance 

(NMR), and cryogenic electron microscopy (cryo-EM) have fueled accurate structure de-

termination [1–4]. However, owing to the high cost and time-consuming aspects of exper-

imental determination, there is still a large “structure knowledge gap” between the vast 

amount of protein sequences and a relatively small number of known structures. There-

fore, knowledge-based theoretical techniques to elucidate protein structure are in need. 

After Anfinsen’s dogma stating that the native structure of at least a small globular pro-

tein is determined by the sequence only, various attempts to identify protein structure 

from its sequence have been made, starting with predicting folding states of protein by 

Pauling and Corey in 1951 [5–7]. The significant breakthrough in next-generation se-

quencing (NGS) technology has led to burgeoning sequence information, and a funda-

mental problem in structural bioinformatics is predicting 3D structures using these tre-

mendous sequence data [8]. 

Protein structure prediction has become more powerful and accurate with method 

developments from traditional statistical methods to machine learning (ML) and deep 

learning (DL) methods [9–11]. Artificial neural network, especially deep neural network, 

is a good fit for protein structure prediction with its ability to express a wide variety of 
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functions and its efficiency relying heavily on the amount of quality data. The introduced 

concepts of homology and evolutionary information empowered the process, and the ad-

vent of robust equipment such as graphical processing unit (GPU) expedited it [12–14]. 

Initially, some pieces of protein structures such as helical status or torsional angles are 

targeted for prediction, and then the whole structure is deduced utilizing the predicted 

features known as protein structure annotations (PSAs) [15,16]. In order to catch up with 

recent progress and to know the state-of-the-art method, one can check with Critical As-

sessment of Structure Prediction (CASP), a worldwide community experiment held every 

two years to assess the effectiveness of prediction methods [17–19]. The usage of the arti-

ficial neural network not only saves time and cost, but also strengthens the functional 

analysis of large-scale proteomics studies. ML and DL technologies based on various com-

putational methods enable the detection of protein–protein interaction (PPI) in heteroge-

neous types of proteomics data [20]. Multi-faceted analysis of protein structures can be 

linked to the prediction of drug–target interaction (DTI) [21]. As the application of deep 

learning methods to drug discovery areas is at a nascent stage, various machine and deep 

learning methods need to be considered and tested for better accuracy in analyzing PPIs. 

In this review, we will provide an overview of DL-associated protein structure pre-

diction, related concepts, frequently used DL architectures, and developed methods pre-

dicting various PSAs delineating different levels of details of protein structure. The fur-

ther applications of DTI are of interest and discussed. Finally, current limitations, as well 

as the advantages of DL-based protein structure prediction upon drug discovery field, 

will be highlighted. 

2. Protein Sequence Homology, 3D Structure, and Deep Learning 

2.1. Protein Sequence Homology 

The central dogma of molecular biology states that DNA sequences are transcribed 

into messenger-RNA (mRNA), and then these mRNA sequences are translated into pro-

tein sequences. Searching similar sequences can be used to reveal “homologous” genes or 

proteins by detecting statistically significant similarity, which indicates common ancestry. 

This protein sequence, in structural biology, is assumed to determine the three-dimen-

sional structure and function of a protein. It is based on the fundamental observation that 

similar sequences from the same evolutionary family will typically adopt similar protein 

structures. Moreover, the structures of proteins are highly conservative in evolution com-

pared with their sequences, and the number of unique structural folds is generally 

thought to be limited in nature. Thus, tremendous effort has been put into quarrying the 

relationship between structure and sequence of proteins. As the number of protein se-

quences is exponentially increasing, while the experimentally verified structures are 

growing slowly, we expect homology-based contact map prediction and modeling to be-

come far more popular. 

2.2. 3D Structural Space of Proteins 

A protein structure can be defined as one of four levels: primary, secondary, tertiary, 

or quaternary structures. Primary structure is a linear sequence of amino acids. There are 

20 standard amino acids available to form a protein, and each amino acid is connected to 

the next one via peptide bonds. Primary structure is often introduced as a string of letters, 

i.e., ‘AESVL…’, as each standard amino acid has a corresponding single-letter code (and 

three-letter code). This already gives much useful information with respect to protein 

structure in three-dimensional space owing to the distinctive characteristics of each amino 

acid. For example, the different hydrophobicity of each amino acid limits the confor-

mation of the protein, and some unique covalent bonds can be formed only between cer-

tain amino acids such as cysteine. Many ab-initio protein structure predictions start with 

this sequence of amino acids, a primary structure. 
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Secondary structure defines the form of local segments of proteins. It is normally de-

termined by the hydrogen bond patterns of polypeptide backbone or backbone dihedral 

angles (φ,ψ). The two common secondary structures are α-helices and β-strands. An α-

helix is a segment of amino acids where the main chain forms a helix, pointing side-chains 

outward. Two hydrogen bonds per residue stabilize this helix formation. A β-strand is 

rather connected laterally where side chains are pointing out perpendicularly to the plane 

with each successive residue facing the opposite side. This form normally requires a part-

ner β-strand unit for its stability. When used in protein structure prediction, secondary 

structure normally falls into a three-state or a fine-grained eight-state categorization. The 

three-state categorization consists of two regular types of α-helix (H) and β-strand (E), 

and one irregular type of coil region (C). The widely-used eight-state categorization based 

on the Dictionary of Secondary Structure for Proteins (DSSP) program by Sanders further 

dissect helices into three types as 310 helix (G), α-helix (H), and π-helix (I); strands into two 

types as β-strand (E) and β-bridge (B); and coils into three types as β-turn (T), high curva-

ture loop (S), and any other previously undefined type (C) [22]. 

Tertiary and quaternary structures elucidate a three-dimensional arrangement of the 

single and multiple proteins, respectively. They can be represented using the Cartesian 

coordinates of each atom in three-dimensional space. Owing to the aqueous nature of pro-

teins, the main driving force deciding tertiary and quaternary structure is the hydrophobic 

interaction among amino acids and water molecules. Thus, proteins tend to possess a hy-

drophobic core where side chains are buried, avoiding polar water molecules. Such three-

dimensional information is deducible when one has the primary structure, secondary 

structure, and inter-residue CM in hand. 

In contrast to sequences, which are virtually infinite in number, proteins can take on 

a finite number of different shapes to carry out their functions in the cell. One can observe 

stronger structural conservation than sequence conservation; for example, a strong inter-

dependence for polar residues exists at protein core with poor solvent accessibility, but 

no significant correlation is detected when looking at sequences only [23]. This makes it 

feasible to predict protein structure, a more conserved domain, from abundant sequence 

data [24]. Hence, various attempts to unravel the relationship between the structure and 

sequence have been made, including deep learning methodologies and pre-eminent ap-

proximations for underlying mapping functions. 

2.3. Overview of Deep Learning Methods 

Deep learning is a branch of machine learning, utilizing an artificial neural network 

with many layers embedded, which resembles a human nervous system. Working as uni-

versal function approximators, deep neural networks are used to solve various problems: 

classification, clustering, pattern recognition, predictive analysis, regression, and so on 

[25]. With the rapid and tremendous growth of biomedical data sources, deep learning 

can be applied to multi-omics data analysis, disease categorization, and healthcare social 

network analysis. It indicates that high-quality data that are used to train and build deep 

learning models should be appropriately labelled for biomedical data analysis. When 

high-quality datasets are available for deep learning models, reproducible deep learning 

models can be built to analyze newly collected biomedical data of similar structures. 

Artificial neural networks consist of nodes in input, output, and hidden layers where 

each node is connected to nodes in adjacent layers. These connections have distinct 

weights, and the inputs are processed (i.e., multiplication and summation) at each node. 

Then, it undergoes the transformation based on the activation function such as sigmoid 

or rectifier, and the output functions as the input for the next layer. Learning is the process 

of finding optimal weights that make the neural network behave as desired. Two types of 

learning are present; supervised learning handles labeled datasets for classifying or pre-

dicting purposes, while unsupervised learning handles unlabeled datasets for analyzing 

or clustering the given dataset. The amount of required training data to build effective 

deep learning models is dependent on the complexity and the number of features in the 



Int. J. Mol. Sci. 2021, 22, 6032 4 of 19 
 

 

training data. To update and optimize the weights, back-propagation is used to calculate 

the gradient of the loss function that computes the error for each training iteration [26]. 

When too many layers are used, however, the gradients either vanish or explode, making 

the training process inefficient [27]. Certain tricks such as modifications upon activation 

functions (i.e., rectified linear unit (ReLU)) and utilizations of skip connections (i.e., resid-

ual neural network) exist to overcome this issue [28–30]. With these steps as a fundamen-

tal basis, there are miscellaneous architectures for artificial neural networks. With the ex-

panding data availability for protein sequences and structures of closely related homo-

logs, deep learning methods have been presented for protein structure prediction, and a 

few frequently used architectures will be discussed in this section (Figure 1). 

 

Figure 1. Overview of deep learning (DL) architectures frequently used for protein structure prediction. 

The most straightforward and earliest stage example for the deep neural network is 

the feedforward neural network (FFNN), sometimes called multilayer perceptron (MLP). 

A perceptron, a single-layer neural network, can only process first-order information to 

obtain results comparable to those obtained by multiple linear regression. When multiple 

layers are used, the neural networks can extract higher-order features. In FFNN, infor-

mation flows in one direction from the input layer to hidden layers, if any, until it reaches 

the output layer. The network has connections between each node and every other node 

in the next layer. 

Recurrent neural network (RNN) contains loops where the output of the layer be-

comes an input. This looping generates state neurons that enable the network to possess 

memory about the previous state. Obtaining a future memory is favorable for prediction 

and is feasible with RNN by introducing a delay, but the prediction rates drop if the delay 

is too large. To overcome this issue, a bidirectional recurrent neural network (BRNN) has 

been developed, splitting the state neurons into positive and negative time directions 

[31,32]. 2D-BRNN, a two-dimensional application of BRNN, has been widely used to cor-

rectly predict the residue contact map (CM), normally using four-state vectors handling 

four cardinal corners of the map [33]. Long-short term memory (LSTM) is a variant of unit 

cell used in RNN, designed to resolve vanishing gradient problems by introducing gate 
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functions into the unit cell [34]. This error gating allows LSTM to learn long-term depend-

encies between data points. With their ability to permit sequence as inputs and outputs, 

RNNs are known for excellent performance upon any sequence-based problems, suitable 

for protein structure prediction with protein sequence as input. 

Convolutional neural network (CNN) often encompasses three types of layers: con-

volutional, pooling, and fully connected layers [35,36]. CNN generally takes input such as 

a 2D image, and the convolutional layers apply various kernels to convolve it where each 

kernel acts like a perceptron, generating feature maps. Then, a pooling layer follows to 

perform dimension reduction upon the network parameters and feature maps. The results 

are forwarded into the fully connected layers, mapping 2D feature maps into a 1D vector 

for further feature representations. The main benefit of applying the convolution scheme 

is the massive parallelism, yielding a great amount of computational efficiency. Convolu-

tional schemes are widely used for CM prediction, a 2D-PSA [37]. 

Graph deep learning models enjoy attention from numerous application domains 

thanks to their structural consistency to the native graph-structured data. Graph convolu-

tional network (GCN), a generalization of the convolutional operator upon non-Euclidian 

structured data, contains several spectral or spatial convolutional layers [38]. Its unique 

featurization strategies at the input level with elaborated architectures suit complicated 

problems such as PPI or DTI. 

To improve our fundamental understanding of biological phenomena, protein struc-

tures and their contacts shed light on their mechanism of action, possibly assisting with 

drug design. Based on the co-evolution analysis and deep learning methods, protein struc-

ture prediction methods have made significant progress in recent years by using multiple 

sequence alignments (MSAs) of the target protein and its homolog. A combination of the 

architectures mentioned above is widely used in this type of protein structure prediction 

methods. One famous example would be a combination of bidirectional RNN and CNN 

(BRNN–CNN) [39]. In this scheme, a convolutional kernel maps a window of BRNN 

memories into a local state. There exist variations such as bidirectional LSTM followed by 

CNN (BLSTM–CNN) [40]. Unlimited hybrid topologies are available, but one needs to 

design the architecture carefully, considering training difficulty, computational complex-

ity, and memory requirement in order to obtain the best accuracy. 

3. Prediction of 1D and 2D Protein Structural Annotations 

Proteins and their functions are distinguished by their structures in numerous as-

pects, but the rate of discovering protein structures has been much slower than the rate of 

sequence identifications owing to the cost and complexity. Therefore, protein structure 

predictor has become one of the most efficient and high-throughput tools in Bioinformat-

ics to handle flooding known sequence data with developing methodologies such as sta-

tistical, ML, and DL methods. The feature used in the predicting process is known as PSA; 

it contains simplified information to ease the computing process and is used as an inter-

mediate step to estimate the full protein structure. One dimensional- (1D-) and two-di-

mensional- (2D-) PSAs have enjoyed a great amount of attention, where secondary struc-

ture, solvent accessibility, or intrinsic disorder is mainly described as 1D-PSA, and CM or 

the detailed version of CM (multi-class CM or distance map) is expressed with 2D-PSA. 

Several DL applications have been developed for 1D- and 2D-PSA predictions, becoming 

more accurate owing to expanding of the availability of sequence and structure data. 

3.1. 1D Prediction 

The most fruitful feature among 1D-PSAs is the secondary structure, the very first 

step for the full protein structure prediction from the sequence. Two main classifications 

are available: three-state categorization into α-helix, β-strand, and coil region, or eight 

fine-grained categorizations, which further segregate the previous three states (vide su-

pra). The earlier stage methods have used sequence data solely as input sources, but later, 

evolutionary information and physicochemical properties were involved in enhancing the 
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prediction accuracy [41]. The accuracy can be easily expressed by three-state percentage 

accuracy (Q3 score) or eight-state percentage accuracy (Q8 score), which is defined as the 

percentage of correctly predicted secondary structure residues. 

One of the earliest servers available for secondary structure prediction would be 

JPred developed by Cuff et al. [42]. The server adopts six different secondary structure 

prediction algorithms: DSC using linear discrimination, PHD using jury decision neural 

networks, NNSSP using nearest neighbors, PREDATOR using hydrogen bonding propen-

sities, ZPRED using conservation number weighted prediction, and MULTIPRED using 

consensus single sequence method combination [43]. Another secondary structure predic-

tion server, PSIPRED, became available, where the method conjugates two FFNNs, train-

ing neural networks upon evolutionary conservation information derived from PSI-

BLAST [44,45]. Another attempt called SSpro showed an enhanced algorithm application, 

using BRNN–CNN [46]. The method utilizes a mixture of estimators that leverages evo-

lutionary information, indicated in multiple alignments, both at input and output levels 

of BRNN. Porter, Porter+, and PaleAle among the Distill series are also based on ensem-

bles of BRNN–CNN, each used to predict different 1D-PSAs (Porter for secondary struc-

ture prediction, Porter+ for local motif prediction, and PaleAle for residue solvent acces-

sibility prediction) [47]. In the following Distill methods, the sequence is processed by the 

first BRNN–CNN stage and then pulled into a set of averages, which are processed by the 

second BRNN–CNN stage. Porter achieved better performance using both PSI-BLAST 

and HHBlits for harnessing evolutionary information [48,49]. Likewise, Porter+ considers 

local structural motifs for predicting torsional angles [50]. PaleAle, dealing with relative 

solvent accessibility (RSA), is structured with double BRNN–CNN stacks in the most re-

cent version of 5.0, surpassing benchmarks from other methods for RSA prediction [51]. 

NetSurfP-2.0, concatenating CNNs and BRNNs, was developed in 2019. This method pre-

dicts secondary structures, solvent accessibility, torsion angles, and intrinsic disorder, all 

at once [52]. 

Taking other 1D-PSAs into account along with secondary structure and considering 

physicochemical properties, as well as evolutionary information, helped to enhance the 

overall accuracy. DESTRUCT, proposed by Wood and Hirst, iteratively used cascade-cor-

relation neural networks upon both secondary structure and torsional angles [53]. The 

iteration is composed of the first FFNN trained to predict the secondary structure and φ 

dihedral, and filtering FFNN intervening successively to transform the predictions into 

new values. Hirst group upgraded DESTRUCT into DISSPred that relied on support vec-

tor machine (SVM) and obtained better performance [54]. SPINE-X by Faraggi et al. in 

2012, later replaced by SPOT-1D from the same group, enhanced the accuracy by incor-

porating physicochemical properties such as hydrophobicity, polarizability, and isoelec-

tric point, among others. This method could also be used for residue solvent accessibility 

and torsion angle predictions [55,56]. SPIDER2 launched anticipated multiple 1D-PSAs—

secondary structure, solvent accessible surface area (SASA), and torsion angles—all at 

once with three iterations of deep neural networks [57]. Its successor, SPIDER3, improved 

the performance overall, and now the method predicts four PSAs at once, including con-

tact number with four iterations for the prediction [58]. ProteinUnet, published in 2020, 

yields similar accuracy for secondary structure prediction as SPIDER3-single, but uses 

half parameters with an 11-fold faster training time [59,60]. Most servers and methods 

discussed now have over 84% Q3 score in their latest versions with deeper neural networks 

and better algorithms. Considering the explosive advancement in reliability for Q3 score 

with DL methods, it might not take too long until the theoretical limit of 88–90% is at-

tained. 

One special kind of 1D-PSA targets disordered regions of proteins. Many proteins 

contain intrinsically disordered regions (IDRs) that are highly flexible. Having multiple 

structures available, IDRs are involved in assembling, signaling, and many genetic dis-

eases [61]. Therefore, this PSA is of particular interest in addition to being a component of 

full protein structure prediction. IDRs have been predicted using statistical potentials, 
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SVM, or artificial neural networks. IUPred employs a statistical pairwise potential ex-

pressed as a 20 × 20 matrix that expresses the general preferences of each amino acid pair 

in contact [62]. The pairwise energy profile is calculated, and disorder probability is esti-

mated accordingly. DISOPRED3 method is formulated on SVM, a supervised machine 

learning model, to discriminate between ordered and disordered regions [63]. 

DISOPRED3 is trained on PSI-BLAST profile because it outperforms the models trained 

on single sequences, showing the improvements predicated on evolutionary information. 

SPOT-Disorder2 offers per-residue disorder prediction based on a deep neural network 

utilizing LSTM cells [64]. Higher accuracy was obtained by upgrading its architecture 

from a single LSTM topology used in the previous version, SPOT-Disorder, to an ensem-

ble set of hybrid models consisting of residual CNNs with inception paths followed by 

LSTM layers [65]. 

3.2. 2D Prediction 

With the information gained from 1D-PSAs in hand, one might need 2D-PSAs to fully 

construct the three-dimensional protein structure. Recent endeavors for 2D-PSAs are fo-

cused on CM and multi-class CM, both expressing the closeness between residue pairs in 

a protein. CM takes a binary 2D matrix structure of N × N, where N is the length of the 

protein sequence, assessing each residue pair as 1 (presence) or 0 (absence) for matrix el-

ements based on the user-defined threshold Euclidean distance (a typical value is ~8 Å 

between Cα atoms). Multi-class CM is expressed in a 2D matrix, but the matrix elements 

are quantized in detail, categorized into more than two states. The importance of this CM 

for protein structure prediction is directly shown in estimations; an early study estimated 

that one could assemble a structure model within 5 Å RMSD from the native structure if 

N/4 long-range protein contacts are known, and another study estimated that one contact 

per twelve residues allows for robust and accurate protein fold modeling [66,67]. 

The CM itself definitely provides useful information on the given protein’s spatial 

organization, but one should note that CMs often contain transitive noise coming from 

“indirect” correlations between residues. Methods for direct correlation analysis are used 

to remove this noise such as mutual information (MI), direct coupling analysis (DCA), and 

protein sparse inverse covariance estimation (PSICOV) [68–70]. DCA infers direct co- 

“evolutionary couplings” among residue pairs in an MSA table to uncover native intra-

domain and inter-domain residue–residue contacts in protein families [71,72]. 

Many groups have developed CM predictors utilizing multi-stage deep neural net-

works. The previously introduced Distill server also provides the CM predictor named 

XX-Stout [47]. The developers included contact density profile as an intermediate step 

using another Distill module named BrownAle [73]. Calculating this contact density pro-

file, principal eigenvector significantly increased the performance overall. DNCON by 

Eickholt and Cheng took advantage of surging GPU developments for training largely 

boosted ensembles of residue–residue contact predictors [74]. MetaPSICOV is another CM 

predictor known for the first method utilizing co-evolution signals from 1D-PSAs ex-

tracted with three different algorithms [75]. Then, a two-layer neural network was used 

to deduce CM. Its successive versions, named MetaPSICOV2 and DeepMetaPSICOV, exist 

where deeper network architecture and ReLU units are employed. RaptorX-Contact from 

RaptorX series utilized co-evolution signals to improve the accuracy [76]. RaptorX-Con-

tact predicts local structure properties, contact and distance matrix, inter-residue orienta-

tion, and tertiary structure of a protein using an ultra-deep convolutional residual neural 

network from primary sequence or a multiple sequence alignment. DNCON2 is imple-

mented with six CNNs and applied co-evolution signal from 1D PSAs. This method pre-

dicts CM with various distance thresholds of 6, 7.5, 8, 8.5, and 10 Å, and then refines them 

to leave with only 8 Å CM with an improved prediction rate [77]. TripletRes starts with 

the collection of MSAs through whole-genome and metagenome sequence databases and 

then constructs three complimentary co-evolutionary feature matrices (covariance matrix, 

precision matrix, and pseudolikelihood maximization) to create contact-map models 
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through deep residual convolutional neural network training [78]. DeepContact is also a 

CNN-based approach that discovers co-evolutionary motifs and leverages these patterns 

to enable accurate inference of contact probabilities [79]. The authors argue that the pro-

gram is useful, particularly when few related sequences are available. DeepCov uses fully 

convolutional neural networks operating on amino-acid pair frequency or covariance data 

derived directly from sequence alignments, without using global statistical methods such 

as sparse inverse covariance or pseudolikelihood estimation [80]. In contrast to other soft-

ware programs that require third-party programs, Pconsc4 is a hassle-free contact predic-

tion tool that does not use any external programs [81]. 

Recently, in 2019, DeepCDPred was developed, which includes a multi-class CM pre-

dictor exploiting distance constraint terms [82]. The authors used four FFNN-based mod-

els to distinguish four classes of contact ranges: 0–8, 8–13, 13–18, and 18–23 Å. AlphaFold 

from the same year generates the most fine-grained multi-class CM, 64 equal bins disto-

gram (distance histogram) along 2–22 Å, becoming state-of-the-art for the field [83]. An 

architecture of deep 2D dilated convolutional residual network with 220 residual blocks 

was employed for the distance map prediction in AlphaFold (note that it will be discussed 

in more detail in the next section). These 2D-PSA developments have benefitted from the 

growth of affiliated fields, including algorithmic development and advancement of tech-

nologies, which is immediately beneficial for precise 3D structure prediction. The predic-

tion methods for protein structure annotations are summarized in Table 1. 

Table 1. List of methods for protein structure predictions. The entries consist of the most recent versions of the series. 

Method/Server Target a 
Topology 

(Incl. Earlier Steps) 

Evolutionary  

Information 

(Incl. Earlier Steps) 

Site  

JPred 1D—SS, SA FFNN PSI-BLAST 
http://www.comp-

bio.dundee.ac.uk/jpred/ 
 

SSpro 1D—SS, SA(ACCpro) BRNN–CNN PSI-BLAST 
http://scratch.prote-

omics.ics.uci.edu/ 
 

DISSPred 1D—SS, TA SVM PSI-BLAST 
https://comp.chem.not-

tingham.ac.uk/disspred/ 
 

SPIDER3 1D—SS, SA, TA, CN BLSTM 

PSI-BLAST 

HHblits 

None(SPIDER3-single) 

https://sparks-

lab.org/server/spider3/ 
 

ProteinUnet 1D—SS, SA, TA, CN CNN None 
https://codeocean.com/ca

psule/2521196/tree/v1 
 

NetSurfP-2.0 1D—SS, SA, TA, DR BLSTM HHBlits 

https://ser-

vices.healthtech.dtu.dk/s

ervice.php?NetSurfP-2.0 

 

IUPred 1D—DR Regression None https://iupred2a.elte.hu/  

PSIPRED 

1D—SS(PSIPRED), 

DR(DISOPRED3)  

2D—CM(MetaPSICOV2)  

3D—TS(DMPfold) 

FFNN 

PSI-BLAST 

HHblits 

jackHMMer 

http://bio-

inf.cs.ucl.ac.uk/psipred/ 
 

SPOT 

1D—SS, SA, TA, CN(SPOT-

1D), DR(SPOT-Disorder)  

2D—CM(SPOT-Contact)  

3D—TS(SPOT-fold) 

Residual CNN BLSTM 

2D-BLSTM 

PSI-BLAST 

HHblits 

https://sparks-

lab.org/service/ 
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Method/Server Target a 
Topology 

(Incl. Earlier Steps) 

Evolutionary  

Information 

(Incl. Earlier Steps) 

Site  

Distill(Brewery) 

1D—SS(Porter), LM(Porter+), 

SA(PaleAle), CN(BrownAle) 

2D—CM(XX-Stout) 

3D—TS(3Distill) 

BRNN–CNN 

2D-BRNN 

PSI-BLAST 

HHblits 

http://distillf.ucd.ie/dis-

till/ 
 

RaptorX 

1D—SS, SA, DR(RaptorX-

Property) 

2D—CM(RaptorX-Contact) 

3D—TS(RaptorX) 

CNF 

Residual CNN 

 

PSI-BLAST 

HHblits 

http://raptorx.uchi-

cago.edu/ 
 

MULTICOM 
2D—CM(DNCON2) 

3D—TS 
CNN 

PSI-BLAST 

HHblits 

jackHMMer 

http://sysbio.rnet.mis-

souri.edu/dncon2/ 
 

TripletRes 2D—CM Residual CNN 
HHblits 

jackHMMer 

https://zhanglab.dcmb.m

ed.umich.edu/TripletRes/ 
 

DeepContact 2D—CM Residual CNN 
HHblits 

jackHMMer 

https://github.com/large-

lymfs/deepcontact 
 

DeepCov 2D—CM CNN HHblits 
https://github.com/psi-

pred/DeepCov 
 

Pconsc4 2D—CM CNN HHblits 
https://github.com/Elofss

onLab/PconsC4 
 

DeepCDPred 2D—MCM FFNN HHblits 
https://github.com/Peter-

JamesWinn/DeepCDpred 
 

Alphafold2 
2D—MCM 

3D—TS 
Residual CNN 

PSI-BLAST 

HHblits 

Alphafold: 

https://github.com/deep-

mind/deepmind-re-

search/tree/master/al-

phafold_casp13 

 

Rosetta Suite 
2D—MCM(trRosetta) 

3D—TS 
Residual CNN 

PSI-BLAST 

HHblits 

https://www.rosetta-

commons.org/ 
 

EVfold 3D—TS FFNN  
HHblits 

jackHMMer 

https://v1.evcou-

plings.org/complex 
 

DESTINI 3D—TS Residual CNN 

 

HHblits 

PSI-BLAST 

https://sites.gatech.edu/cs

sb/destini/ 
 

ThreaderAI 3D—TS Residual CNN HHblits 
https://github.com/ShenL

ab/ThreaderAI 
 

NEST 3D—TS FFNN PSI-BLAST 
http://honig.c2b2.colum-

bia.edu/nest 
 

C-I-TASSER 3D—TS Residual CNN PSI-BLAST 

https://zhanglab.dcmb.m

ed.umich.edu/C-I-

TASSER/ 

 

a The following abbreviations are used for targets: secondary structure (SS), solvent accessibility (SA), torsional angle (TA), 

contact number/density (CN), disordered region (DR), contact map (CM), multi-state contact map (MCM), and tertiary 

structure (TS). 
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4. Prediction of Protein 3D Structures 

One of the main goals of structural bioinformatics is to unravel the relationship be-

tween the individual amino acids that make up a protein and the corresponding 3D struc-

tures, i.e., to distinguish the relationship between genotype and phenotype. A breakdown 

in this relationship may allow us to clarify the role of certain proteins, such as the binding 

to specific targets or catalyzing novel chemical reactions, providing insights into biologi-

cal advances and drug discovery. Several experimental techniques for structure determi-

nation exist and have been continuously developing. Decades of theoretical work has at-

tempted to predict protein structures from their amino acid sequences and, in some way, 

1D- and 2D-PSA predictions are also the efforts to excel this 3D structure prediction. Sig-

nificant progress has been achieved on this problem thanks to the rapidly growing num-

ber of available sequences and the application of global statistical methods. Deep learning 

has become the dominant technology to predict protein structures based on contact or 

evolutionary maps. 

4.1. Critical Assessment of Protein Structure Prediction (CASP) 

CASP (https://predictioncenter.org/index.cgi) is a biannual competition with global 

collaborative efforts designed to evaluate the state-of-the-art techniques in protein struc-

ture prediction. The algorithm for tertiary structure prediction can be subdivided into the 

following: homology modeling, which utilizes a known structure with a similar sequence 

as a template (template-based modeling, TBM); fold recognition, which is also called pro-

tein threading (templates required); and de novo structure prediction, which is template-

free modeling. Recent advances in DL-related techniques have been increasing the accu-

racy of contact distance prediction and residue–residue co-evolutionary analysis and, fi-

nally, in the past several years, significant progress has been made in template-free protein 

structure prediction as well as template-based modeling [11,19]. 

4.2. 3D Structure Prediction Based on Contact Maps 

Genomic sequences, the valuable resource of evolutionary information, can be effi-

ciently mined to detect correlations or covariations between residues in proteins (so-called 

“evolutionary couplings”). Analyzing this covariation may help identify directly contact-

ing residues in 3D conformations, functional residues in substrate binding, or residues 

involved in protein–protein interactions. As discussed in the earlier section, CM is a bi-

dimensional matrix coding the absence/presence or the probability of contact between res-

idue pairs in a given protein. The values near the main diagonal in a CM are trivial because 

these are the ones from adjacent amino acid pairs (note that adjacent residues should al-

ways have high contact probability). The most relevant information in a CM is located far 

from the main diagonal. Analyzing elements far from the main diagonal may give useful 

information about structural properties and spatial details of the protein backbone. Hence, 

these contacts or multi-class contact maps can provide information concerning the spatial 

organization of the protein and can be used to improve the quality of the predicted tertiary 

structure. In the case of a typical globular protein, nearly 90% of all residue pairs are ex-

pected to be non-contacting, so that only a small portion of inter-amino acid distances 

should be accurately employed as constraints to direct structure determination. Advanced 

deep learning techniques have shown promise in predicting accurate residue–residue 

contacts. In order to increase the accuracy of CM, one may need to consider several key 

factors such as deep learning techniques, reliable MSA, distance distribution prediction, 

and domain-based contact integration. 

AlphaFold (Google DeepMind), the latest hot trend in this field, was first released at 

CASP13 (2018) and has evolved to AlphaFold2 at CASP14 (2020) [83,84]. DL with an at-

tention algorithm trained the neural networks on ~170,000 known protein structures [85]. 

First, co-evolutionary analysis is used to match amino acid sequence covariations with 
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physical contact on a protein’s 3D structure and is further examined using neural net-

works to examine the patterns of co-evolutionary interactions and convert them into CMs. 

Based upon evolutionarily related protein sequences and amino acid residue pairs, the 

model iteratively generates a structure by passing information back and forth between 

both representations. In AlphaFold1, the distance map is generated by the information 

from multiple sequence alignment and is used to produce a guide potential. A simple 

gradient descent technique is employed to directly fold the protein into a structure com-

patible with the predicted distances. Then, the Rosetta energy function is used to refine 

the final folded structure. The detailed process of AlphaFold2 is not published yet, but it 

seems that the guide potential process is replaced with a system entirely based on pattern 

recognition, and the energy refinement based on AMBER forcefield is applied as a final 

refinement step. The model achieved outstanding results with a median global distance 

test (GDT) score around or above 90 overall across all targets. The program was able to 

reliably predict the structures of membrane proteins that have been exceedingly difficult 

to solve until now. 

Although the AlphaFold series were more prominent than other competitors during 

the two CASP experiments, various other prediction programs were developed based on 

deep learning and showed significant progress. For example, RaptorX [76] is a server for 

protein structure and function prediction powered by DL. It predicts protein secondary 

and tertiary structures, solvent accessibility, disordered regions, functional annotation, 

and possible binding sites. It also provides inter-residue/inter-atom distance and orienta-

tion probability distribution that may be used by other folding algorithms to rebuild pro-

tein 3D models (Figure 2). In the program, the quality of MSA profiles is assessed by a 

profile-entropy scoring method considering the available non-redundant homologs. 

Then, conditional random fields are used to integrate a variety of biological signals in a 

nonlinear threading score function. Rosetta suite uses the algorithm for de novo structure 

prediction, also used in dealing with protein folding in divergent domains of homology 

models. Initial protein folding of short segments is selected from the protein structure 

database, whereas longer segments are constructed from three- and nine-residue frag-

ments selected from the database and then assembled using the Rosetta algorithm [86]. 

SPOT-fold is a fragment-free ab initio protein structure prediction tool guided by pre-

dicted backbone structure and CM from SPOT-Contact, as well as by predicted dihedral 

angles from SPIDER3 [37,60,87]. DMPfold uses deep learning to predict inter-atomic dis-

tance bounds, the main chain hydrogen bond network, and torsion angles, which it uses 

to build models in an iterative fashion [88]. MULTICOM is a protein structure modeling 

server empowered by DL and contact distance prediction [89]. EVfold disentangles direct 

and indirect residue–residue correlations in large multiple sequence alignments and de-

rives direct residue–residue evolutionary couplings [90]. They provide several modules 

such as EVcomplex to predict protein–protein interaction complex structure with evolu-

tionary coupling analysis. 
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Figure 2. Contact map of the exemplary small protein Crambin (UniProt id: P01542). (left) Part of 

the multiple sequence alignment of the homologous proteins of Crambin. (middle, lower half) Con-

tact map and the corresponding 3D model predicted by RaptorX. A contact is defined by Cβ-Cβ 

distance ≤ 8 Å. Darker color indicates a higher probability. (middle, upper half) Distance map based 

on the 3D experimental structure of the protein. The map was visualized using the VMD plugin. 

The Cα–Cα distance for each pair is plotted and colored black at 0.0 Å distance, to a linear gray-

scale between 0.0 and 10.0 Å, and white when equal to or greater than 10.0 Å. (right) X-ray crystal 

structure of Crambin (PDB id: 4fc1) overlaid with the contact (Cα-Cα, cutoff distance 8 Å) marked 

in gray dashed lines. 

4.3. In Combination with Template-Based Modeling 

One of the popular and successful approaches to protein structure prediction is ho-

mology modeling, which relies on two principles: (i) the amino acid sequence determines 

the protein’s typical fold or 3D structure, and (ii) the 3D structure is somehow preserved 

with regards to the primary sequences. Using known structures of homologous proteins 

that have a certain degree of sequence similarity, it is a quite convenient and effective way 

to build an initial model. However, the problems in the weak sequence–structure similar-

ities, aligning sequences with structures, modeling of rigid body shifts, and accurate con-

formations of loops and side chains, as well as detecting errors in a model, are still recog-

nized to date. The combination with DL-based approaches recently appears to outperform 

conventional methods, accomplishing a significant improvement in model accuracy. The 

CASP13 and 14 results demonstrate that the complex mapping between amino acid se-

quence and 3D protein structure can be effectively learned using a neural network and 

generalized to previously inaccessible cases. 

The homology modeling is generally performed by the following steps: (i) identify 

and select the eligible templates, i.e., other homologous proteins with known 3D struc-

tures (related programs: BLAST, PSI-BLAST, HH-suite (HHsearch, HHblits, and 

HHPred), and JackHMMer, among others); (ii) multiple sequence alignment (related pro-

grams: CLUSTAL Omega, MUSCLE, and so on) [91,92]; (iii) 3D model building (related 

programs: SWISS-MODEL, MODELLER, I-TASSER, and so on) [93–95]; (iv) modeling of 

loops that are variable and not conserved region; (v) side-chain modeling based on rota-

mer library, a scoring function, and a scanning method (related programs: OPUS-Rota2, 

FASPR, SCWRL) [96–98]; vi) model optimization increasing the quality of the final model 

(generally energy minimization, molecular dynamics, or Monte Carlo simulations); and 

vii) model evaluation and validation. 
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DL-based methods can be employed to improve the accuracy in each step. For exam-

ple, DLPAlign is an example of a DL approach combined with sequence alignment [99]. 

It is a novel and straightforward approach to improve the accuracy of the progressive 

MSA method by training a decision-making model based on convolutional neural net-

works. DESTINI (deep structural inference for proteins) is a novel computational ap-

proach that combines a deep-learning algorithm for protein residue/residue contact pre-

diction with template-based structural modeling [100]. ThreaderAI first applies DL to pre-

dict residue–residue aligning probability matrix by integrating sequence profile, pre-

dicted sequential structural features, and predicted residue–residue contacts, and then 

utilizes dynamic programming to template-query alignment according to the probability 

matrix [101]. C-I-TASSER (contact-guided iterative threading assembly refinement) is an 

extended method from the original I-TASSER for high-accuracy protein structure and 

function predictions [102]. It generates inter-residue CMs using multiple deep neural-net-

work predictors (such as NeBcon, ResPRE, and TripletRes) and identifies reliable struc-

tural templates from the PDB database by multiple threading approach (LOMETS) 

[78,103–105]. Then, the full-length atomic models are assembled by contact-map-guided 

replica-exchange Monte Carlo simulations. In the large-scale benchmark tests, C-I-

TASSER generated significantly more accurate models than I-TASSER, particularly for se-

quences with no homologs in the public database. 

DL methodologies are leading successes in co-operative fields, namely model quality 

assessment (QA), which is a succeeding step for protein structure prediction. For both 

template-based and template-free methods, QA is followed by structure predictions to 

measure the divergence from the natively folded protein structures. Since CASP7(2006), 

QA has been categorized for competition to develop methods for assessing the quality 

and correctness of protein structure models [106]. Earlier statistical methods including 

PROCHECK and WhatCheck focused on the stereochemistry of a protein structure such 

as backbone dihedral angles or non-bonded distances between residues [107,108]. The 

predicted models could also be evaluated using residue–residue interaction energies 

where peaks in the energy profile would mean erroneous prediction of the region. Later, 

DL-based methods for QA were developed and highlighted. AngularQA by Cao group 

utilized sequence properties like secondary structures in addition to angles upon QA 

problem, becoming the first attempt utilizing LSTM cells for QA problems [109]. 

GraphQA tackled QA problems with GCNs for desirable properties such as representa-

tion learning, geometric invariance, explicit modeling of 3D structure, and so on [110]. 

5. Prediction of Drug–Target Interactions (DTIs) 

The identification of the physical interactions between new drug candidate molecules 

and their biomolecular targets is an essential part of designing new drugs. A computa-

tional approach with the ability to predict novel drug–target interactions (DTIs) can be 

utilized in lieu of costly and time-consuming procedures with conventional screening 

methods. A number of machine learning and deep learning approaches based on ligand-

based and target-based approaches have been employed to predict binding affinities to 

save time and money in drug discovery efforts. In addition, the large chemical and ge-

nomic spaces present greater challenges as multiple drugs can be associated with multiple 

targets. In the perspective of medicinal chemistry, neural networks have been used in 

compound classification, QSAR studies, and the identification of drug targets and drug 

molecule’s binding modes. A variety of machine learning techniques are being used to 

take advantage of the large volume of complex high-dimensional information to predict 

interaction patterns. Here, we discuss the recent advances in DL-based DTI prediction, 

especially the cases relying on their 3D structural aspects. 

A deep-learning approach has been applied to lead optimization in combination with 

traditional in silico drug discovery approaches. Wallach et al. [111] (AtomNet from Atom-

wise company, the first major application of DL into DTI prediction) used convolutional 

neural networks (CNNs) to predict the molecular bioactivity of small molecules. Based on 
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the available complex structures of target proteins and small molecules, the binding sites 

are voxelized into a cube of ~20 Å. The binding site’s environment is encoded into the 

fixed form of the feature vectors, and then 3D CNNs are applied to the voxel volumes. 

Then, a binary classification model is generated to classify the input ligand as either active 

or inactive. More recently, Jiménez et al. [112] published another 3D-CNN-based predic-

tor, KDEEP, using rule-based, eight pharmacophore-like descriptors obtained from the 

ligand–target binding site. This 3D-CNN-based scoring function achieved good perfor-

mance in predicting protein–ligand absolute binding affinities on several diverse data 

sets. DEEPScreen [113] is a large-scale DTI prediction system using deep convolutional 

neural networks. The main advantage of this program is that it has readily employed 

available 2D structural representations of compounds at the input level. DEEPScreen 

learns complex features inherently from the 2D representations, producing fast and accu-

rate predictions. 

The accuracy of traditional docking modules and scoring functions can be also im-

proved in combination with DL approaches. Morrone et al. [114] combines the docking 

pose rank analysis with DL, which highly improves the binding mode prediction accuracy 

over a baseline docking programs. Jiménez-Luna et al. [115] also successfully applied DL 

toward the rational molecular docking process. Similarly, deep docking [116] is developed 

as a deep learning platform for augmentation of structure-based drug discovery. In addi-

tion, the DL-based scoring function systems, such as ΔvinaXGB [117] of DeltaVina, 

CNNScore [118], and SIEVE-Score [119], are consistently reported to outperform the clas-

sical scoring methods. 

6. Conclusions and Outlook 

There have been significant advances in predicting protein CMs from the MSA of 

homologous proteins by analyzing the signals associated with co-evolution. Combining 

suitable DL methods has become a powerful framework to disentangle the underlying 

relationships between sequences and structural elements, leading to better drug design 

based on the target structures. This review covered the current trends in the protein struc-

ture prediction field, especially state-of-the-art techniques combined with deep learning 

architecture for contact map prediction. DL has just started to be applied to the biomolec-

ular structure, but showed a successful strategy in the prediction field. It is fascinating 

and encouraging that the current DL-based techniques provide a significant advance; 

however, it does not mean that they ultimately “solved” the protein folding problem. Pro-

tein folding is guided and accelerated by local interactions that are rapidly formed, driv-

ing the further large-scale folding or assembly. In the folding process, some proteins need 

helpers like chaperones or neighboring domains. The current prediction methods do not 

say about this process, and we still do not have a solution to the problem of protein folding 

mechanism or pathway. Moreover, some proteins have floppy, ‘intrinsically disordered’ 

parts in their structures rather than well-defined forms. These disordered parts can act as 

a functional unit. DL-based approaches also showed high performance on the prediction 

of these regions, but they do not interpret the functional mechanism of these floppy re-

gions. Thus, we need to develop DL approaches that will be able to address some of these 

caveats as well. 

It is evident that the drug discovery research will continue to make progress with the 

learning-based approaches to explore the structures of biomacromolecules and the vast 

chemical space modulating these targets. In some cases, owing to the inherent limitations 

of data-driven research, it may be difficult to construct reliable models because of the lack 

of high-quality data sets. However, we believe this limitation could be overcome by in-

corporating expert domain knowledge and continuously growing high-quality data sets. 

We also expect that homology-based contact map prediction and modeling becomes more 

prominent to improve accuracy at a large-scale prediction problem. 
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Glossary:  

Sequence homology: the biological resemblance between DNA, RNA, or protein 

squences, determined by their shared ancestry during the evolution 

of life. 

Protein co-evolution: a statistical model that the energetic interactions between 

amino acids that contribute to protein structure and function can be 

inferred from correlations between amino acids at pairs of positions 

in a large selection of homologous sequences across a protein family. 

Drug target interaction (DTI): the binding of a drug to a target location that results 

in a change in its behavior/function.  

Deep learning: a class of machine learning approach that uses artificial neural net-

works (ANNs) with many layers of nonlinear processing units for 

learning data representation. 

Contact map: a bidimensional matrix coding the absence/presence or the probabil-

ity of contact between residue pairs in a given protein.  

Direct coupling analysis (DCA): statistical inference framework used to infer di-

rect co-evolutionary couplings among residue pairs in multiple se-

quence alignment. 

Global Distance Test (GDT) score: ranges from 0 to 100; the percentage of amino 

acid residues (beads in the protein chain) within a threshold distance 

from the correct position; a score of ~90 GDT is informally consid-

ered to be competitive with the results obtained from experimental 

methods. 

Attention algorithm: developed to mimic the way a person might assemble a jig-

saw puzzle; first connecting pieces in small clumps—in this case, 

clusters of amino acids—and then searching for ways to join the 

clumps in a larger whole. 
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