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Abstract: Dietary changes are known to alter the composition of the gut microbiome. However,
it is less understood how repeatable and reversible these changes are and how diet switches affect
the microbiota in the various segments of the gastrointestinal tract. Here, a treatment group of
conventionally raised laboratory mice is subjected to two periods of western diet (WD) interrupted
by a period of standard diet (SD) of the same duration. Beta-diversity analyses show that diet-induced
microbiota changes are largely reversible (q = 0.1501; PERMANOVA, weighted-UniFrac comparison of
the treatment-SD group to the control-SD group) and repeatable (q = 0.032; PERMANOVA, weighted-
UniFrac comparison of both WD treatments). Furthermore, we report that diet switches alter the
gut microbiota composition along the length of the intestinal tract in a segment-specific manner,
leading to gut segment-specific Firmicutes/Bacteroidota ratios. We identified prevalent and distinct
Amplicon Sequencing Variants (ASVs), particularly in genera of the recently described Muribaculaceae,
along the gut as well as ASVs that are differentially abundant between segments of treatment and
control groups. Overall, this study provides insights into the reversibility of diet-induced microbiota
changes and highlights the importance of expanding sampling efforts beyond the collections of fecal
samples to characterize diet-dependent and segment-specific microbiome differences.

Keywords: gastrointestinal tract; western diet; standard chow; 16S rRNA gene amplicon sequencing;
dietary changes; predictive metagenomic profiling; Muribaculaceae

1. Introduction

Mice are popular model organisms for gut microbiome research partially due to the
anatomical similarities between their gastrointestinal tracts (GIT) and that of humans [1].
Both conventionally raised mice and germ-free mice have enabled unprecedented insights
into host-microbe interactions, including demonstrated causality between microorganisms
and specific host phenotypes and/or metabolic markers [2,3]. However, while conven-
tionally raised mice have been extensively studied, most studies only examined the fecal
microbiota, which may not be representative of the entire GIT. Studies have shown a high
similarity between fecal and colonic microbiotas [4,5] and a greater dissimilarity between
the microbiota of the lower intestinal and upper intestinal tract [5]. Given the disparate
functions between segments of the GIT [6], microbes may adapt differently to changing
conditions in the host. Indeed, segment specific bacterial phylotypes have been identified
in healthy C57BL/6 mice [5], but it is not well established how dietary changes, such as
repetitive exposure to high sucrose/high-fat substrates typical of a western diet (WD),
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may affect the microbiota in the different segments of the GIT. This is specifically true for
some of the dominant taxa, which are not well described yet or for which isolates have
only recently been obtained, e.g., members of the Muribaculaceae (formerly also known as
S24-7 family). This family has a high prevalence in the intestinal tract of rodents, where
they often constitute the major component of the gut Bacteroidota [7]. Whilst their exact
function in the gut is still unclear, determining the spatial distribution along the gut would
provide insight into their adaptability within the murine gut. Hence, where possible,
it appears to be warranted and needed to examine the microbiota of the entire GIT to
improve our understanding of the complex, gut-segment-dependent, associations and
interactions between microbes and their hosts.

Diet switches have been shown to strongly and rapidly affect the composition of the
fecal microbiome [8]. However, reversibility and repeatability of diet-induced changes in
the gut microbiota remain to be elucidated in greater detail. Previous studies suggested that
the duration of the dietary treatment, and potentially the type of experimental diet, impact
the reversibility of the induced change [9–11]. Diets such as WD can drastically alter the gut
microbiota/microbiome into configurations often associated with undesirable phenotypes
such as adiposity [12], increased susceptibility to diseases [10], reduced gut length and
mass [13,14]. The ability to translate these findings directly to the human gut may be
limited, but they may provide leads for future research when microbiota sampling along
the entire human gut becomes technically more feasible. Reversing WD-induced changes to
the gut microbiota composition via a second dietary switch using a low-fat plant-based diet
has been shown to ameliorate some of those undesirable phenotypes [10,15,16]. However,
it is often not apparent if a reversal after a second diet switch is complete and/or if a third
diet change, using the same diet as in the first diet switch, would alter the microbiota into
the same composition as after the first diet switch.

This study aims to understand the reversibility and reproducibility of murine gut
microbiota impacted by periods of WD interceded by standard diet (SD) and to study the
spatial heterogeneity along with the GIT of WD-fed mice.

2. Results
2.1. Effects of a Western Diet on Animal Weight and Gastrointestinal Tract Length

All mice were weighed weekly to monitor bodyweight differences in response to the
alternating diet regimen (Figure 1). Overall, the weight of the treatment mice (n = 12)
exposed to two WD dietary regimens and one SD regimen was significantly different from
that of the control group (n = 12) across 15 timepoints taken at weekly intervals (q = 4.63 ×
10−8, N = 360; Kruskal–Wallis test; Figure 1B). The linear comparison showed that at the
end of each WD regimen (day 27 and 83), the treatment mice weighed significantly more
than SD-fed mice (q-values < 0.001; Wilcoxon rank sum test). Interestingly, the feeding of
SD to treatment mice between the two WD periods led to weight loss in the treatment group
animals, thus that their bodyweight at the end of the SD period was indistinguishable to
that of the animals in the control group. The control mice also gradually gained weight
over 84 days.

To study the outcome of the dietary regimens on gut length, the postmortem length
of GIT was compared between treatment and control groups (Table S1A for endpoint
gut length and bodyweight). Comparison of the individual segment lengths revealed a
significantly shorter GIT in the treatment group than in the control group (q-values < 0.05;
Table S1B for Wilcoxon rank sum test). The same trend was observed after normalization
of segment length to body weight (q-values < 0.05; Table S1C for Wilcoxon rank sum test).
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Figure 1. Experimental treatment and bodyweight over time. (A) Experimental timeline showing 
dietary regimens and timepoints for body weight measurements. (B) Boxplot depicts the weight of 
mice over time. Wilcoxon rank sum test was carried out to compare the weight between WD- and 
SD-mice (n = 12 mice per group). Asterisks represent significant difference where (*) denotes q < 
0.05, (**) denotes q < 0.01 and (***) denotes q < 0.001. Dotted lines indicate a switch in diet for the 
treatment group. 
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particularly interested in determining how repeatable and reversible diet-induced 
changes of the fecal microbiome were. At the end of both WD regimens (day 27 and 83), 
there was, as expected, a significant separation between treatment and control groups (q-
values < 0.001; Tables S2A for permutational multivariate analysis of variance (PER-
MANOVA) test; Figure 2A). However, the fecal microbiome configurations in the treat-
ment group on days 27 and 83 were so similar that no significant difference was detectable 
(q = 0.0905; PERMANOVA), indicating high repeatability of the diet-induced change. In 
contrast, fecal microbiota between the same timepoints differed significantly in the control 
group (q = 0.032; PERMANOVA) (Table S2A). We also observed that the diet-induced 
change was highly reversible as weighted-UniFrac distances between treatment and con-
trol groups on day 55 did not significantly differ (q = 0.1501; PERMANOVA, Figure 2A). 
It is noteworthy that Bray–Curtis dissimilarity indicated a significant difference between 
the treatment and control group on day 55, showing that some differences between groups 
may persist even after four weeks (q = 0.0135; PERMANOVA). An ASV-level analysis of 
the diet-induced changes in the fecal microbiome is shown in Figure 2B (see Table S3A for 
mean relative abundance and taxonomic assignment of ASVs). 

Figure 1. Experimental treatment and bodyweight over time. (A) Experimental timeline showing dietary regimens and
timepoints for body weight measurements. (B) Boxplot depicts the weight of mice over time. Wilcoxon rank sum test was
carried out to compare the weight between WD- and SD-mice (n = 12 mice per group). Asterisks represent significant
difference where (*) denotes q < 0.05, (**) denotes q < 0.01 and (***) denotes q < 0.001. Dotted lines indicate a switch in diet
for the treatment group.

2.2. Effects of Diet-Switches on the Fecal Microbiota

We compared weighted-UniFrac distances between treatment (WD-fed) and con-
trol groups (SD-fed) to analyze the effects of diet switches on the fecal microbiota. We
were particularly interested in determining how repeatable and reversible diet-induced
changes of the fecal microbiome were. At the end of both WD regimens (day 27 and 83),
there was, as expected, a significant separation between treatment and control groups
(q-values < 0.001; Table S2A for permutational multivariate analysis of variance (PER-
MANOVA) test; Figure 2A). However, the fecal microbiome configurations in the treat-
ment group on days 27 and 83 were so similar that no significant difference was de-
tectable (q = 0.0905; PERMANOVA), indicating high repeatability of the diet-induced
change. In contrast, fecal microbiota between the same timepoints differed significantly
in the control group (q = 0.032; PERMANOVA) (Table S2A). We also observed that the
diet-induced change was highly reversible as weighted-UniFrac distances between treat-
ment and control groups on day 55 did not significantly differ (q = 0.1501; PERMANOVA,
Figure 2A). It is noteworthy that Bray–Curtis dissimilarity indicated a significant difference
between the treatment and control group on day 55, showing that some differences be-
tween groups may persist even after four weeks (q = 0.0135; PERMANOVA). An ASV-level
analysis of the diet-induced changes in the fecal microbiome is shown in Figure 2B (see
Table S3A for mean relative abundance and taxonomic assignment of ASVs).
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Figure 2. Beta-diversity between fecal microbiota of treatment (n = 12) and control (n = 12) groups. 
(A) Principal coordinate analysis (PCoA) plots for day-27, -55, and -83 based on the weighted-
UniFrac distance. Statistical significance (q-values < 0.05) for PERMANOVA tests comparing 
weighted-UniFrac distance are shown. (B) A heatmap of 22 ASVs ≥ 0.5 relative abundance (5,203 
counts per sample) per day in treatment and control. The absence of ASV is shown as white. ASVs 
in bold have >99% 16S rRNA gene similarity to the top BLASTn hit. 

2.3. Diet-Dependent Microbiota Differences Are Observable along the Alimentary Tract 
We compared alpha- and beta-diversity among the GIT segments (N = 140) and end-

point fecal samples (N = 24) to identify diet-dependent and segmental differences between 
microbiotas. Overall, significantly reduced alpha-diversity was observed for most seg-
ments and fecal microbiotas of WD-fed mice compared to the control group according to 
Shannon (Figure 3A), Simpson’s (Figure 3B), and Chao1 (Figure 3C) indices. An exception 
to this was the ileal microbiota, where treatment and control groups shared similar species 
evenness (Shannon and Simpson’s indices). However, the ileum of WD-fed mice has sig-
nificantly fewer rare (singletons and doubletons) ASVs than the control based on Chao1 
index.  

Both Shannon and Simpson’s indexes decreased gradually from stomach to ileum 
with no statistically significant difference between adjacent segments (Figure 3A,B; q-val-
ues < 0.01; Table S2B,C for Wilcoxon rank sum tests of Shannon and Simpson’s index, 
respectively). A significant increase was observed from the ileum (least diverse) to the 
cecum (most diverse), followed by a decrease in the colon (q-values < 0.05; significant for 
Shannon index only). The Chao1 index followed a similar trend but with a greater distinc-
tion between all segments of the treatment mice (Figure 3C; Table S2D for Wilcoxon rank 
sum test).  

Figure 2. Beta-diversity between fecal microbiota of treatment (n = 12) and control (n = 12) groups. (A) Principal coor-
dinate analysis (PCoA) plots for day-27, -55, and -83 based on the weighted-UniFrac distance. Statistical significance
(q-values < 0.05) for PERMANOVA tests comparing weighted-UniFrac distance are shown. (B) A heatmap of 22 ASVs ≥ 0.5
relative abundance (5,203 counts per sample) per day in treatment and control. The absence of ASV is shown as white.
ASVs in bold have >99% 16S rRNA gene similarity to the top BLASTn hit.

2.3. Diet-Dependent Microbiota Differences Are Observable along the Alimentary Tract

We compared alpha- and beta-diversity among the GIT segments (N = 140) and
endpoint fecal samples (N = 24) to identify diet-dependent and segmental differences
between microbiotas. Overall, significantly reduced alpha-diversity was observed for
most segments and fecal microbiotas of WD-fed mice compared to the control group
according to Shannon (Figure 3A), Simpson’s (Figure 3B), and Chao1 (Figure 3C) indices.
An exception to this was the ileal microbiota, where treatment and control groups shared
similar species evenness (Shannon and Simpson’s indices). However, the ileum of WD-fed
mice has significantly fewer rare (singletons and doubletons) ASVs than the control based
on Chao1 index.

Both Shannon and Simpson’s indexes decreased gradually from stomach to ileum with
no statistically significant difference between adjacent segments (Figure 3A,B; q-values < 0.01;
Table S2B,C for Wilcoxon rank sum tests of Shannon and Simpson’s index, respectively).
A significant increase was observed from the ileum (least diverse) to the cecum (most
diverse), followed by a decrease in the colon (q-values < 0.05; significant for Shannon index
only). The Chao1 index followed a similar trend but with a greater distinction between all
segments of the treatment mice (Figure 3C; Table S2D for Wilcoxon rank sum test).
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Figure 3. Alpha- and beta-diversity analyses of the gut segment and fecal microbiota in the western diet and standard
diet-fed mice. Boxplots depict alpha-diversity shown as (A) Shannon, (B) Simpson’s, and (C) Chao1 indices (Table S2B,C
for Wilcoxon rank sum test). (D) A principal coordinate analysis (PCoA) plot showing the weighted-UniFrac distance of
grouped segments and fecal samples. Asterisks represent significant difference where (*) denotes q < 0.05, (**) denotes
q < 0.01 and (***) denotes q < 0.001; PERMANOVA. St: stomach; Du: duodenum; Je: jejunum; Il: ileum; Ce: cecum; Co:
colon; Fe: fecal.

The comparison between fecal and segment microbiotas revealed different degrees
of similarity in alpha diversity depending on the metric used. The treatment group fe-
cal microbiota was highly similar to nearly all segments, except the cecum when using
Simpson’s index (Table S2C). In contrast, fecal microbiota shared similar alpha diversity
with fewer segments when using Shannon or Chao1 index (Shannon: stomach, duodenum,
and colon, Chao1: duodenum and jejunum; Table S2B,D). The control fecal microbiota had
similar alpha-diversity to the stomach (all three alpha-diversity indices), duodenum (all
three alpha-diversity indices), and colon (Shannon and Simpson’s diversity).

Beta-diversity of gut segment microbiota was analyzed using Principal Coordinate
Analysis (PCoA) of weighted-UniFrac distances, which showed statistically significant
separation between treatment and control groups (Figure 3D; Table S4A for PERMANOVA).
Longitudinal comparison within WD-fed mice showed that adjacent segments were sig-
nificantly different from one another except the jejunum vs. ileum and cecum vs. colon
(Table S4B for PERMANOVA). In contrast, there was a similarity between adjacent seg-
ments of the control group except for ileum vs. cecum and cecum vs. colon (Table S4C for
PERMANOVA). Fecal microbiotas were most similar to the respective colon microbiota in
both groups (Table S4B,C).

2.4. Taxonomic Compositional Changes along the GIT and in Fecal Samples of WD-Fed Mice

We analyzed microbiota at the phylum-, family- and ASV-level to determine com-
positional differences between WD-fed and SD-fed mice (Figure S1A, Figures 4 and 5,
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respectively). Firmicutes and Verrucomicrobiota (replaced Verrucomicrobia in SILVA 138)
showed significantly higher mean relative abundances (Firmicutes = 86.7% ± 8.8 (Std. Dev.),
n = 82; Verrucomicrobiota = 0.39% ± 0.74) in WD-fed mice than control mice (Firmicutes
= 68.3% ± 17.5, n = 82; Verrucomicrobiota = 0.06% ± 0.23) (q-values < 0.001; Table S2E).
Firmicutes were prevalent in all segments, including feces in both groups. Verrucomicro-
biota represented by Akkermansiaceae was more prevalent in the distal segments and feces
compared to proximal segments of WD-fed mice. Other phyla showed significantly lower
mean relative abundance than the control group (q-values < 0.001; Table S2E for Wilcoxon
rank sum test). The exception to this was the phylum Proteobacteria, which did not differ
significantly in mean relative abundances between the two groups (q = 0.31; Wilcoxon rank
sum test). Consequently, the Firmicutes to Bacteroidota ratios (FBR) in the six gut segments
as well as fecal samples revealed significantly greater variation in the treatment group than
in the control group (q = 8.71 × 10−5; Kruskal–Wallis test; Figure S1B).
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Figure 4. Gut microbiota classified at the family level. (A) Standard diet fed mice. (B) Western diet fed mice. Black
horizontal lines on the bar-plots demarcate the different ASVs. Taxa are arranged alphabetically by phylum as indicated in
legend headings. St: stomach; Du: duodenum; Je: jejunum; Il: ileum; Ce: cecum; Co: colon; Fe: fecal.

Greater contrast between groups and along segments can be observed at the family
level. For example, Actinobacteriota represented by Bifodobacteriaceae and Eggerthellaceae
showed disparate distribution within the GITs of WD- and SD-fed mice with Eggerthellaceae
more prevalent in the stomach and duodenum of the treatment group than other segments
of the treatment or control group (Figure 4).

The high prevalence of the Firmicutes in WD-fed mice can be attributed to seven fami-
lies (in order of highest to lowest relative abundance): Erysipelotrichaceae, Streptococcaceae,
Clostridiaceae, [Eubacterium]_coprostanoligenes group, Enterococcaceae, Christensenellaceae,
and Staphylococcaceae. These families have significantly higher mean relative abundances in
WD-fed mice than in SD-fed mice (q-values < 0.001; Table S2F for Wilcoxon rank sum test
and mean relative abundances). In contrast, the following nine families were significantly
more abundant in SD-fed mice than in WD-fed mice (in order of highest to lowest relative
abundance): Lachnospiraceae, Lactobacillaceae, Clostridia_vadinBB60_group, Butyricicoccaceae,
Acholeplasmataceae, Monoglobaceae, RF39, and Peptococcaceae (q-values < 0.01; Table S2F). Five
families were similarly abundant between the groups (in order of highest to lowest relative
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abundance): Oscillospiraceae, Anaerovoracaceae, Ruminococcaceae, Erysipelatoclostridiaceae, and
Leuconostocaceae (Table S2F).
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microbiomes (ANCOM) method. Only statistically significant ASVs that fall within a distribution
cut-off based on W values are shown (Table S5A for W values).
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ASV-level analysis revealed Erysipelotrichaceae ASV-684 as the most abundant ASV
in the treatment and control group. This ASV shares 100% identity to Faecalibaculum
rodentium ALO17T as the top BLASTn hit against the NCBI 16S rRNA gene database [17].
Moreover, analysis of the composition of microbiomes (ANCOM) identified 69 ASVs
that were differentially abundant in segments of treatment and control groups (Figure 5;
Table S5A). Among these was a substantial fraction of ASVs that have a low identity to
cultured strains (median identity 94.2%). This includes ASVs of the family Muribaculaceae.
We identified nine Muribaculaceae ASVs, which have high abundance in either a gut segment
or fecal sample of the treatment or control mice (Figure 6). Three of these ASVs (ASV-
531 (Paramuribaculum intestinale B1404T), ASV-746 (Duncaniella dubosii H5T), and ASV-883
(Muribaculum intestinale YL27T)) shared identical 16S rRNA genes to known isolates while
the remaining ASVs were low in similarity to cultured representatives (<96%, Table S3B).
All nine ASVs were detectable along the GIT of control mice, following similar relative
abundance patterns for the different segments. There were fewer ASVs of similar relative
abundance in treatment mice than control mice (Figure 6). Notably, ASV-801 decreased
to below detection in treatment mice. ASV-746, ASV-883, and ASV-736 decreased to <1%
relative abundance throughout the GIT in treatment mice.
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Figure 6. Relative abundance of nine Muribaculaceae ASVs along the gastrointestinal tract and feces.
Shown are ASVs with ≥1% relative abundance in at least one segment/fecal group in (A) Control
mice. (B) Treatment mice. Asterisks indicate ASVs with identical 16S rRNA genes to type strains.
Error bars indicate standard error of the mean (n = 12 except duodenum: control n = 11; ileum:
control n = 11, treatment n = 10). St: stomach; Du: duodenum; Je: jejunum; Il: ileum; Ce: cecum; Co:
colon; Fe: fecal.

Muribaculaceae ASVs of control and treatment groups reached the highest relative
abundance in the duodenum of the upper intestinal tract and in the colon of the lower
intestinal tract. In the treatment group, the lowest relative abundance of detectable Murib-
aculaceae ASVs was observed in the ileum, while control group Muribaculaceae ASVs were
lowest in either ileum or cecum (Figure 6).
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2.5. Predictive Metagenomic Profiling in Segments of Mice Fed Standard and Western Diets

The diet-induced changes in microbiota composition were also likely to affect the
overall functional gene profile. PICRUSt2 was, therefore, used to predict E.C. enzymes
and pathways from ASVs in gut segments [18]. The weighted mean nearest sequenced
taxon index (NSTI) scores were calculated as a measure of the mean phylogenetic distances
of ASVs to their closest genomic representatives, i.e., the accuracy of the prediction. The
overall mean weighted NSTI was significantly lower for WD than SD fed mice (0.06 ± 0.04
(Std. Dev.); 0.10 ± 0.05, respectively; n = 70; q = 10−5; Wilcoxon test). The NSTI scores
for segments between treatment and control group were significantly different except
within ileal microbiota (q = 0.11; Table S2H for Wilcoxon tests; Figure S3A). A Bray–Curtis
dissimilarity-based non-metric multidimensional scaling (nMDS) of predicted enzyme
counts revealed clustering by similar segment types with high similarity (90%) regardless
of diet (Figure S3B). We observed enzymes of E.C. class 2 transferase and E.C. 3 hydro-
lase that highly correlated with segments of the small intestines (rho > 0.99; Spearman;
q-values < 0.001; Table S4D for Wilcoxon rank sum test and mean relative abundance of
E.C. between small and large intestines). Conversely, we observed E.C. class 1 oxidoreduc-
tase and E.C. class 4 lyase that highly correlated with cecal and colon samples (rho >0.99;
Spearman; q-values < 0.001; Table S4D).

Predicted MetaCyc pathways that were among the 20 most relatively abundant path-
ways in each segment revealed contrasting amino acid biosynthesis, metabolic, and nu-
cleotide salvage pathways between WD and SD groups (Figure S3C for heatmap). Notably,
a sucrose degradation III pathway was significantly enriched in WD-fed mice (q = 3 × 10−5;
Wilcoxon rank sum test) from the stomach to ileum with a mean relative abundance of
0.25% ± 0.06 (Std. Dev., n = 46) compared to the control (0.21% ± 0.04 (Std. Dev., n = 46))
(Figure S3C). In contrast, metabolic pathways of pyruvate fermentation to acetate and lac-
tate II (q = 0.009; Wilcoxon rank sum test), pyruvate fermentation to isobutanol (q = 0.0003;
Wilcoxon rank sum test) and galactose degradation (q = 0.036; Wilcoxon rank sum test)
were significantly lower in the treatment than control group. ANCOM analysis of predicted
MetaCyc pathways between treatment and control group revealed 17 pathways unique
across the segments (Figure 7; Table S5B for W values). ANCOM identified MetaCyc
pathways that were common from stomach to ileum of treatment mice: isopropanol biosyn-
thesis, cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion), and urea cycle. Five
pathways common between the distal segments of the treatment group were isopropanol
biosynthesis, urea cycle, cob(II)yrinate a,c-diamide biosynthesis I (early cobalt insertion),
peptidoglycan biosynthesis V (beta-lactam resistance) and peptidoglycan biosynthesis II
(staphylococci). In the distal segments of control mice, common pathways were myo-, chiro-
and scyllo-inositol degradation, superpathway of menaquinol-8 biosynthesis II, succinate
fermentation to butanoate, 1,4-dihydroxy-6-naphthoate biosynthesis II and L-glutamate
degradation V (via hydroxyglutarate). The pathway unique to the cecum and colon of con-
trol mice were 4-aminobutanoate degradation V and aromatic biogenic amine degradation
(bacteria), respectively.
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2.6. Discussion

In this study, we analyzed the gut microbiota of mice fed different dietary regimens to
determine the effects of diet switches on the animals, the reversibility and repeatability of
diet-induced microbiota changes, and the GIT segment-specific microbiota compositions
in response to a diet-switch experiment. The repeated feeding of WD had profound
effects on the mice in that we observed shortened gut length and altered bodyweight.
The changes to bodyweight and the GIT length of laboratory mice from dietary types have
been previously reported to a similar extent [13]. The increase in bodyweight was primarily
attributable to an increased intake of dietary calories, and to a lesser extent to low grade
inflammation leading to insulin resistance [19]. However, factors causing a reduced GIT
length from WD are less well understood. A lack of fermentable fiber in WD can reduce
the mass and shorten cecal and colon lengths. These phenotypes may be ameliorated by
short-chain fatty acids (SCFAs) in the colon but not in cecal mass loss [20]. This indicates
that different mechanisms for regulation of segment size and weight may exist and that
microorganisms could contribute to some of these mechanisms, e.g., via the production of
SCFAs as a byproduct of fermentation of dietary fibers [21]. The mechanisms for the length
phenotypes in other GIT segments remain to be elucidated in more detail.

We show that although dietary switches induced largely reversible changes in the
microbiota, a diet switch may also lead to small-scale microbiota changes that persist even
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after extended periods of time, i.e., four weeks. This illustrates that diet not only rapidly
changes the microbiota [8] but that dietary changes may also have long-lasting effects on
the microbiome composition. From the obtained data, it was not possible to infer if the
microbiota would ultimately become entirely undistinguishable from the control mouse
microbiota again or if the diet-switch induced changes that would persist permanently.
A complete reversal of the gut microbiota may not be expected due to compositional
variation among mice as they age and between cages [22,23]. Overall, our findings were
consistent with previous studies indicating that WD-induced microbiota changes to the
gut microbiota may take a longer time to or not fully reverse into the original state and
may even be transmitted vertically to offspring [10]. It was also noteworthy that the diet
composition may affect the impact and duration of the induced microbiota changes [9,14,16].
This was also evident in our study as we did not see significant microbiota differences
between animals at the end of the two WD periods. The implications of these findings for
diet-switch experiments in laboratory animals or for potential therapeutic interventions in
humans warrant further investigations.

Lastly, we analyzed the effects of repeated feeding of WD on the composition of the
microbiota and predicted microbiome in the different segments of the GIT. Regardless of the
alpha-diversity index used, alpha-diversity declined from stomach to ileum, then reaching
a maximum in the cecum before decreasing again in the subsequent segments and feces.
This is consistent with studies of laboratory and house mice, which observed that alpha-
diversity is split anatomically between small and large intestines with significantly greater
species richness and evenness in the latter segments, particularly the cecum [5,24,25].
These trends are independent of diet, potentially driven by multiple factors. These factors
include the anatomy and physiology of the respective GIT segment, but potentially also
coprophagy, transit time, etc. However, it is also noteworthy that diet-specific effects
impacted beta-diversity. WD lowered beta-diversity substantially thus that even small
microbial community structure differences between adjacent segments, e.g., duodenum
and jejunum, were more noticeable than in SD-fed mice.

Significant dissimilarities were also observed between fecal and stomach microbiota of
WD-fed mice compared to the SD-fed control mice. This may indicate that the coprophagy
behavior could be affected by the consumed diet. A reduced appetite for low fat/low
sucrose diet has been observed in mice switching between WD and SD [11], which may
suggest a dietary preference for WD and could provide an explanation for the observations.
Ultimately, this change in eating behavior could also influence host physiology. Reduced
coprophagy may not only affect the migration of fecal microbes into the gut but could
limit nutrient intakes such as vitamin B12 and folic acid that are beneficial to the host
wellbeing [26,27].

An increased fecal Firmicutes/Bacteroidota ratio has been reported previously and
appears to be a consistent response of the murine and human fecal microbiota to WD [28].
Our study reveals that the FBR varies between gut segments. Although higher variation
and mean FBR between ileal microbiota and cecal or colon microbiota have been shown in
C57BL/6J mice fed a refined high fat (60%) diet [14], similar comparisons to microbiotas
of the upper intestinal tract have not been demonstrated. This is important as our study
shows a greater shift towards a higher FBR in most of the microbiota of the upper intestinal
tract compared to the cecum and colon.

Of the Bacteroidota, the family Muribaculaceae have only been described recently,
and few isolates have been obtained thus far [7,29–33]. Muribaculaceae were strongly
impacted by WD, and this study is, to our knowledge, the first to analyze the relative
abundance of Muribaculaceae ASVs in the different segments of the intestinal tract. Diet
differentially affected the relative abundance of the different Muribaculaceae ASVs, e.g., ASV-
520 (currently uncultured) increased significantly in relative abundance in the treatment
group. Currently, it remains difficult to deduce the ecological function of specific Murib-
aculaceae ASVs in this differential response. However, the results show that diet-induced
microbiota changes could increase the relative abundance of uncultured microorganisms.
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This approach could be used to cultivate novel members of this family, either from feces or
gut segments. A comparison of the spatial distribution of different Muribaculaceae species
in the GITs of non-mouse hosts is currently difficult due to the lack of data on this recently
described family. Muribaculaceae have been found predominantly in rodents but less so
in humans or other animals, but it appears likely that each host type harbors specific
Muribaculaceae species [7,24,34].

The exact role of Firmicutes ASVs in the murine intestinal tract remains -similarly
to the beforementioned Bacteroidota- often not well understood. This is also the case
for ASV-684 (100% identity to Faecalibaculum rodentium). ASV-684 is highly prevalent
throughout the alimentary tract and feces during dietary changes. Faecalibaculum rodentium
strains have been isolated from murine feces, and the type strain has been shown to
harbor genes associated with fermentation and alcohol utilization, including L-lactate and
butanol dehydrogenases [35,36]. To our knowledge, the extent of F. rodentium prevalence
throughout the alimentary tract of the laboratory murine gut has not been demonstrated
before. However, it must be noted that experimental conditions, such as the supplier
of mice, may lead to the observation of other phylotypes even when using C57BL/6
mice [5,37].

The use of PICRUSt2 to predict functional composition (E.C. numbers and MetaCyc
pathways) revealed differences between proximal and distal segments. As monosaccharide
absorption occurs mainly in the small intestine [38], the correlation of enzymes involved
in sugar or other substrate metabolism is consistent with the functional role of the small
intestine. Similarly, as distal segments are more anoxic than proximal segments, enzymes
involved in redox reactions such as dehydrogenases correlate with the cecum and colon.
Although a previous metagenomic study of fecal microbiomes revealed similar pathways
and enzymes associated with simple sugar degradation in high fat/high sugar WD-fed
mice [15], we demonstrate the spatial distribution of these enzymes within the gut. How-
ever, limitations to the accuracy of the presented predictions are given as the cultivation
and characterizations of mouse microorganisms are, despite recent efforts, still not as com-
prehensive as databases available for human gut microbes. This is also shown by a study
that compared the metagenomic profile of mice using a mouse reference database and
PICRUSt2 default reference genomes, which indicated a better prediction using PICRUSt2
reference genomes [39,40]. Analytical tools for mouse gut microbiome research are likely to
improve with the ongoing efforts to characterize the murine gut, including metagenomic
sequencing, isolation, and mechanistic studies [30,41].

Although humans and mice share some anatomical similarities, differences in diet,
behavior (e.g., coprophagy), and host-specific microbiota prevent direct inference to human
health [1]. The direct translatability of our results to clinical research remains, therefore,
limited. However, this study highlights the need to investigate the microbiota of other
segments of the intestinal tract, potentially also humans. Particularly analysis of the
microbiota in the small intestine are not performed on a routine basis. However, studies in
mice have shown that the small intestine may harbor more immune system inductor sites
than the colon [42]. The complex interplay of diet and microbiota in the small intestine
may, therefore, be crucial for immune maturation, and a better understanding of these
interactions could, therefore, also have implications for human health.

In summary, our study shows that WD-induced microbiota changes are largely re-
versible and repeatable among the more abundant ASVs. Diet strongly alters relative
abundances of ASVs and metabolic pathways along the lumen of the alimentary tract in
a diet-dependent and in segment-specific manner. Furthermore, our study also shows
that a considerable fraction of mouse gut microorganisms remain uncultured. Cultivating
these microorganisms will be a prerequisite for gnotobiotic mouse experiments that aim
at improving our understanding of diet-dependent and gut biogeographic microbiome
differences on host physiology and immune maturation.
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3. Materials and Methods
3.1. Diet Experiment, Fecal Sampling, and Gastrointestinal Segments Harvest

A total of 24 10-week-old male C57BL/6J mice were randomly distributed into 6 cages
of 4 mice each and maintained on SD for 34 days before the diet experiment commenced.
Half the mice were fed ad libitum WD (carbohydrate = 49.9%, protein = 17.4%, fat = 20.0%;
AIN-76A; TestDiet, St Louis, MO, USA) for 28 days, SD (carbohydrate = 53.4%, protein
= 21.0%, fat = 5.0%; PicoLab Rodent Diet 20; LabDiet, St Louis, MO, USA) for another
28 days, and then WD for the last 30 days before sacrifice. The remaining mice acted as
a control group and were fed SD throughout. Fresh fecal samples were collected weekly,
after which the mice were weighed (Figure 1B).

Mice were euthanized using carbon dioxide and subsequent cervical dislocation.
Segments of the intestinal tract were sampled according to an established standard pro-
tocol [43]. Length of GIT segments (stomach, small intestine, cecum, and colon) were
measured directly after euthanasia and dissection for individual animals. The stomach,
cecum, and colon segments were grossly further subdivided into 2 equal parts, while the
jejunum was divided into 3 equal parts. Individual segments or parts and fresh fecal pellets
were collected into sterile 2 mL screw-cap tubes, flash-frozen in liquid nitrogen, and stored
at −80 ◦C before DNA extraction.

3.2. DNA Extraction, Indexing, and Amplicon Sequencing

Cells were lysed from sampled material using a zirconia (0.1 mm sized beads) bead-
beating phenol-chloroform DNA extraction method as previously described [44]. DNA
yield and purified PCR products were quantified using Quant-it Picogreen (Thermo Fisher
Scientific, OR, USA). PCRs were carried out in triplicates (plus 1 no template control
per sample) using primers 515F and 806R for the V4-V5 regions of the 16S rRNA gene
as described in the Earth Microbiome Project protocol (Table S6A,B for fecal and seg-
ment barcodes) [45–47]. Each PCR contained 25 µL of 1 × Taq PCR Mastermix (Qiagen
GmbH, Hilden, Germany), a final concentration of 0.2 µM of each primer, ≤20 ng of DNA,
and molecular water. PCRs were carried out in 96 well plates on a Bio-Rad thermal cycler
using the following conditions: 94 ◦C for 3 min, 35 cycles of 94 ◦C for 45 s, 50 ◦C for 60 s,
72 ◦C for 90 s followed by a final elongation of 72 ◦C for 10 min. Equimolar concentrations
of PCR products were purified and pooled using a 0.8 volume of AMPure XP beads (Beck-
man Coulter Genomics, Danvers, MA, USA) and eluted with molecular water. Amplicons
were sequenced using the 250 bp paired-end sequencing chemistry on Illumina MiSeq
platforms at Axil Scientific Pte Ltd and Genome Institute of Singapore, respectively.

3.3. Amplicon Sequences Processing, Microbiota and Predicted Metagenome Analyses

Demultiplexed fastq files for the segment and fecal samples were provided by the
sequencing vendor. Fastq files were processed using QIIME 2 2020.2 release with default
options unless stated otherwise [48]. Primer sequences were removed from paired-end
reads using the “qiime cutadapt trim-paired” command [49]. Paired-end reads were
denoised, trimmed, clustered de-novo, and chimera checked using the “qiime dada2
denoise-paired” command [50] with options: “–p-trunc-len-f 180” and “–p-trunc-len-r 137”
to truncate forward and reverse reads, respectively. To minimize PCR artifacts, ASVs in less
than 4 samples and fewer than 12 total sequences were filtered using the “qiime feature-
table filter-features” command. Paired-end reads of segment samples with multiple parts
namely, stomach, jejunum, cecum, and colon were grouped by taking the mean ASV count
using the “qiime feature-table group” command with the “–p-mode mean-ceiling” option
(Table S6C for segment sample identities of merged sample parts). ASVs were assigned
taxonomic identities using the “qiime feature-classifier classify-sklearn” command against
the latest SILVA SSU for V4 region release 138 non-redundant 99% identity database,
which has major changes to taxonomic nomenclature and phylogenetic lineages [51]. ASVs
classified as unassigned, mitochondria, and chloroplast were removed before further
analysis. After quality filtering, the segment sample mean count was 33,641 reads per
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sample ± 10,519 (Std. Dev., N = 140) with 477 ASVs of 252 bp ± 0.44 (Std. Dev.) while
fecal sample mean count was 9935 reads per sample ± 3889 (Std. Dev., N = 72) with
384 ASVs of 207 bp ± 0.40 (Std. Dev.) (Table S6A,C for fecal and segment read count). We
combined endpoint segment and fecal quality filtered feature tables and representative
sequence files using “qiime feature-table merge” and “qiime feature-table merge-seqs”,
respectively. The merged representative sequences were exported, aligned using the
MUSCLE alignment tool and ends were trimmed to 201 bps using MEGA X version
10.2.0 [52,53]. The aligned fasta file was imported into QIIME 2 and aligned masking
was performed using the “qiime alignment mask” command with the following options
“–p-max-gap-frequency 0.2” to retain columns with no more than 20% gaps and “–p-min-
conservation 0.8” to retain columns with at least 80% nucleotide. Unrooted and rooted
phylogenetic trees for UniFrac distances were generated using “qiime phylogeny fasttree”
and “qiime phylogeny midpoint-root” commands, respectively. A maximum-likelihood
tree was generated using the masked aligned sequences with “qiime phylogeny raxml-
rapid-bootstrap” command with the options “–p-seed 477” and “–p-rapid-bootstrap-seed
898” to construct a reproducible tree, “–p-bootstrap-replicates 1000” for 1000 bootstrapping
replicates and “–p-substitution-model GTRCAT” for the GTR-CAT tree model [54]. The
maximum likelihood tree was used to find identical sequences between fecal and segment
dataset, and where the sequences were identical, the ASV identity from the fecal dataset
was used for consistency.

PICRUSt2 was used to predict enzymes (E.C. numbers) and MetaCyc metabolic path-
ways [18,55] of segment microbiota via the default pipeline using the “picrust2_pipeline.py”
script. Briefly, the PICRUSt2 script ran the following commands, “place_seqs.py” aligned
ASVs to reference phylogeny, “hsp.py” obtained normalized 16S rRNA gene copies based
on the predicted genome to calculate NSTI values, E.C. abundances per genome. The
command “pathway_pipeline.py” predicted the MetaCyc pathways from E.C. numbers,
“add_descriptions.py” was used to generate enzymes and pathways output files.

ASVs featured in heatmaps and ANCOM analyses were further annotated by taking
the top BLASTn hit against the NCBI 16S rRNA gene database [17]. Phylogenetic lineages
of Muribaculaceae and Lactobacilli were manually curated to identify recently recognized
bacterial species or formal changes to nomenclature [7,30,31,33,56]. The “qiime emperor
plot” command was used to generate custom PCoA plots of dissimilarity matrices with
categorical groups on the x-axis against the first principal coordinate (PC1) on the y-axis and
PC2 on the z-axis. Emperor plots were visualized at https://view.qiime2.org/ (accessed on
11 May 2021) [57]. All alpha-diversity metrices, conventional PCoA plots, heatmaps, bar
graphs and boxplots were generated using R and relevant R packages, including ggplot2,
phyloseq, reshape2, tidyverse, and qiime2R [58–63].

3.4. Statistical Analysis

R was used to perform statistical operations for mean, standard deviation, Kruskal–
Wallis [64] and Wilcoxon rank sum tests with Benjamini–Hochberg false discovery rate
(FDR) [65,66] based on counts from rarefied tables of segment and fecal (2945 counts
per sample) and fecal only (5203 counts per sample). Pairwise PERMANOVA test was
performed using the “qiime diversity beta-group-significance” command at 9999 permuta-
tions [67]. An FDR-corrected p-value (q < 0.05) was considered as statistically significant.
A Bray–Curtis similarity matrix of square-root transformed values of a rarefied table
(716,085 counts per sample) of E.C. was visualized on a nMDS plot using PRIMER-E ver-
sion 6.1.16 [68]. Other PRIMER-E functions that used the Bray–Curtis similarity matrix of
E.C enzymes were Spearman’s rank correlation test between enzymes and sample groups
and the Similarity Profile Analysis (SIMPROF) to find significant (p < 0.05) clusters of sam-
ples using 999 permutations. Differential abundance tests were performed on centered-log
transformed counts of ASVs and predicted MetaCyc pathways using ANCOM to compare
between treatment and control groups [69].

https://view.qiime2.org/
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