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Abstract: The plant-specific mildew resistance locus O (MLO) proteins, which contain seven trans-
membrane domains and a conserved calmodulin-binding domain, play important roles in many
plant developmental processes. However, their mechanisms that regulate plant development remain
unclear. Here, we report the functional characterization of the MLO4 protein in Arabidopsis roots.
The MLO4 was identified as interacting with CML12 in a screening for the interaction between the
proteins from Arabidopsis MLO and calmodulin/calmodulin-like (CaM/CML) families using yeast
two hybrid (Y2H) assays. Then, the interaction between MLO4 and CML12 was further verified by
Luciferase Complementation Imaging (LCI) and Bimolecular Fluorescence Complementation (BiFC)
assays. Genetic analysis showed that the mlo4, cml12, and mlo4 cml12 mutants displayed similar
defects in root gravity response. These results imply that the MLO4 might play an important role in
root gravity response through interaction with CML12. Moreover, our results also demonstrated that
the interaction between the MLO and CaM/CML families might be conservative.

Keywords: calmodulin; calmodulin-like proteins; CML12; MLO protein; MLO4; root gravitropism

1. Introduction

Mildew resistance locus O (MLO) was first identified as being resistant against pow-
dery mildew (PM) infection in barley [1]. Then, the MLO proteins were found in many plant
species. Arabidopsis has at least 15 MLO proteins that diverged into several clades and were
involved in different physiological processes, such as sexual reproduction, PM infection,
and root thigmomorphogenesis [2–5]. MLO7/NORTIA (NTA), a downstream component
of the receptor-like kinase FERONIA (FER), is involved in pollen tube reception and PM in-
fection [6]. Study showed that its function is dependent on NTA homooligomerization and
its carboxyl-terminal tail identity [7]. MLO5/9/15 played roles in pollen tube responses to
ovular signals, and MLO5/9 selectively recruit Ca2+ channel CNGC18-containing vesicles
to the plasma membrane [8]. The MLO1, MLO2, MLO3, MLO6, MLO8, MLO9, MLO10,
and MLO13 are expressed in discrete domains during reproductive development [4]. The
MLO2, MLO4, and MLO6 modulate defense responses against PM fungi and a number of
other phytopathogens [9]. Furthermore, the MLO2 also function as a negative regulator
in plant ROS responses involving biotic and abiotic stress [10]. Mutations in MLO4 and
MLO11 exhibit abnormal root thigmomorphogenesis and gravity sensitivity [3,11]. Ge-
netical complementation with MLO4 domains indicate that the C-terminal cytoplasmic
domain of MLO4 is necessary for regulation of asymmetrical root growth [11].

All MLO proteins are predicted to share a conserved calmodulin-binding domain
(CaMBD) in C-terminal cytoplasmic tail [12,13]. The gel overlay assays demonstrated
in vitro Ca2+-dependent binding of CaM to the CaMBD of the MLOs from barley [14].
However, little is known about the interaction of individual MLO with the specific calmod-
ulins (CaMs) or calmodulin-like proteins (CML) in Arabidopsis or other plants.
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The Arabidopsis genome encodes 7 CaMs and 50 CMLs, which are presumed to sense
and transduce Ca2+ signals [15]. Functional studies of CaM/CML in plants revealed
that this protein family converts calcium signals into transcriptional responses, protein
phosphorylation, or metabolic changes to regulate plant development responding to the
ever-changing environment [16]. Some CaM/CML proteins are involved in plant growth
and development, such as AtCaM7 regulating light-induced seedling development [17,18],
AtCaM2 functioning in pollen germination [19], AtCML42 for trichome morphogenesis [20],
and AtCML23 and AtCML24 in flowering [21,22]. Some CaM/CML proteins are indis-
pensable for plants to respond to abiotic and biotic stress. The mutations in AtCaM3 lead
to reduction in thermotolerance of the mutant plants [23]. AtCaM4 negatively regulates
freezing tolerance by interacting with CaM-binding protein PATL1 in a CBF-independent
manner [24]. A knockout mutant of AtCML9 enhances its tolerance to drought and salinity
stress [25]. AtCML20 is a negative regulator in guard cell ABA signaling during drought
tolerance [26]. AtCML8 and AtCML9 positively regulate plant immunity in response to Pst
inoculation [27]. Less NtCaM13 expression causes more susceptibility to virulent bacteria
and fungi in tobacco [28]. Overexpression of pepper CaM1 and AtCML43 confers enhanced
resistance to pathogens [29]. All these data suggest that the CaM/CML-mediated defense
signaling pathways involve a complex regulatory network.

Both MLO and CaM/CML proteins are important for plants. They have potential to
interact with each other in between the two families through CaMBD [12]. However, for
now, it is just predicted by physical structure of the proteins, and not solid evidence, to
prove their interaction or even their related biological function.

Our goals in this study were to preliminarily grasp the co-expression patterns of MLO
and CaM/CML genes, to screen the interactive protein pairs between MLO and CaM/CML
family, and to investigate the biological function of the interactive MLO and CaM/CML
proteins. In our results, MLO and CaM/CML genes were expressed in various tissues and
functioned in different developmental stages. Each MLO protein interacted with more than
one CaM/CML protein by Y2H screen. Two groups of interactive MLO and CaM/CML
proteins, MLO4 and CML12; MLO7/NTA and CML8-12, were further confirmed by BiFC
and LCI assays. Moreover, the biological function analysis showed that the mlo4 and cml12
single mutants, as well as the mlo4 cml12 double mutant, shared similar phenotypes in root
growth. These results indicate that MLO4 is involved in root gravity response, possibly
through interaction with CaM/CML protein.

2. Results
2.1. The Expression Patterns of MLO and CaM/CML Genes

The co-expression patterns of MLO and CaM/CML genes were analyzed using the
e-FP data from TAIR website (www.arabidopsis.org, accessed on 19 May 2021) (Figure 1).
The results showed that the MLO and CaM/CML genes are expressed in various Arabidopsis
tissues. The MLO1 was expressed more highly in seeds than in other tissues. The CaM/CML
genes, which exhibit similar expression in seeds, included 12 members, namely, CaM4,
CML14, CML20, CML24, CML27, CML32, CML33, CML34, CML43, CML48, CML49, and
CML50. The MLO5, MLO9, and MLO14 genes were highly expressed in pollen. In the
pollen, 17 CaM/CML genes, including CaM2, CaM3, CML2, CML3, CML6, CML7, CML13,
CML15, CML16, CML21, CML26, CML28, CML29, CML31, CML39, CML42, and CML49,
were found to be highly co-expressed. In flowers, four MLO genes (MLO4, MLO6, MLO8,
and MLO11) and nine CML genes (CML5, CML24, CML27, CML36, CML40, CML41, CML44,
CML46, and CML47) were highly co-expressed. The four MLO genes, MLO2, MLO3, and
MLO8, were found to be highly expressed in leaves; similarly, five CML genes were highly
expressed in leaves, namely, CML9, CML10, CML18, CML35, and CML46. In roots, MLO12
gene was highly co-expressed, together with five CaM/CML genes (CaM1, CaM5, CaM7,
CML8, and CML19). MLO4 and CML12 were expressed in many tissues, including roots.
Although the highest expression levels of both MLO4 and CML12 did not present in roots,
they were highly co-expressed in roots, implying both of them may function in roots.
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2.2. Screening for Interactive Pairs of MLO and CaM/CML Proteins

The MLO proteins contain a CaMBD in the C-terminus region [12]. Therefore, the
C-terminus regions of the 15 MLO proteins were used to characterize the interaction of
MLO and CaM/CML proteins by Y2H. The results showed that each MLO protein may
interact with at least one CML protein in yeast cells (Table 1, Tables S1 and S2). In particular,
the NTA/MLO7, which was involved in pollen tube reception, could interact with up to 11
candidate CML proteins, including CML8-12, CML26, CML30, CML37, CML38, CML40,
and CML40. Similar results were also obtained from the assays for the three closely-related
proteins MLO4, MLO11, and MLO14, which function in root thigmomorphogenesis [11].
MLO4 interacted with CML12, CML40, and CML44. MLO11 interacted with CML47.
MLO14 interacted with CML17, CML18, and CML49.

Table 1. Interactive protein pairs between MLO and CaM/CML family.

MLOs CaM/CML Proteins that Interacted with Corresponding MLO Proteins

MLO1C CaM2, CML29
MLO2C CML9, CML18
MLO3C CML18, CML20, CML23, CML26, CML32, CML40, CML44
MLO4C CML12, CML40, CML44
MLO5C CML18, CML26, CML40, CML44
MLO6C CML8, CML10, CML20, CML26, CML73, CML40, CML44, CML49
MLO7C CML8, CML9, CML10, CML11, CML12, CML26, CML30, CML37, CML38, CML40, CML44
MLO8C CML8, CML9, CML23, CML26, CML37, CML40, CML44
MLO9C CML10, CML42, CML44, CML49
MLO10C CML8, CML9, CML10, CML26, CML37, CML44
MLO11C CML47
MLO12C CML10, CML12, CML30, CML35, CML36, CML37, CML44
MLO13C CML32, CML40, CML41
MLO14C CML17, CML18, CML49
MLO15C CML10, CML44

2.3. LCI and BiFC Assays Further Demonstrated That MLO4 Interacted with CML12

At first, MLO4 and CML12 were chosen to verify the results of Y2H screening (Figure
S1). Then, the LCI results showed that CML12 interacted with the full length of MLO4 in
tobacco cells (Figure 2a). BiFC results demonstrated that the CML12 interacted with the
cytoplasmic domain of MLO4, in concert to Y2H result. Furthermore, when the full length
of MLO4 was used for the assays, the interactive signal was detected only on the plasma
membrane, which was co-localized with the staining signals of the membrane dye FM 4-64
(Figure 2b). This result was consistent to the ones obtained from the membrane localization
of MLO4 with a signal peptide and seven transmembrane domains [11].
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plasma membrane, colocalized with FM 4-64. The YFP signals are indicated by pointed triangles in each figure. Bars = 50 
μm. 
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pCML12::CML12-GFP transgenic lines showed that the CML12-GFP fusion protein was 
detected in the root cap (Figure 3k). Real-time PCR results showed that MLO4 and CML12 
shared a similar expression pattern. Both genes were expressed constitutively in many 
tissues, including seedlings, roots, stems, leaves, inflorescence, and siliques. Expression 
levels of both genes were closely similar in seedlings. MLO4 was expressed with twice the 
CML12 expression in roots (Figure 3l). A previous study revealed that the pMLO4::MLO4-
GFP was also expressed in the roots, and MLO4-GFP fusion protein was detected in the 
root epidermal cell [11]. Therefore, both CML12 and MLO4 proteins were expressed in 
roots, suggesting that they may function coordinately. 

Figure 2. CML12 interacted with MLO4. (a) LCI results showed CML12 interacted with full length of MLO4 in tobacco
cells. (b) BiFC results showed that CML12 interacted with cytoplasmic domain of MLO4 in onion cells, and the signal
was detected in nucleus and periphery. When CML12 interacted with full length of MLO4, the signal was only detected
on the plasma membrane, colocalized with FM 4-64. The YFP signals are indicated by pointed triangles in each figure.
Bars = 50 µm.

2.4. MLO4 and CML12 Displayed a Similar Expression Pattern

To understand the relationship between MLO4 and CML12, we further investigated
whether MLO4 and CML12 have a co-expression pattern in vivo. First, GUS staining
of pCML12::CML12-GUS transgenic lines showed that CML12 was expressed in most
of the vegetable tissues, such as seedlings, roots, root hairs, leaves, trichomes, stems,
siliques, calyxes, and chalazal end of ovules but not in pollen (Figure 3a–j). In addition,
pCML12::CML12-GFP transgenic lines showed that the CML12-GFP fusion protein was
detected in the root cap (Figure 3k). Real-time PCR results showed that MLO4 and CML12
shared a similar expression pattern. Both genes were expressed constitutively in many
tissues, including seedlings, roots, stems, leaves, inflorescence, and siliques. Expression
levels of both genes were closely similar in seedlings. MLO4 was expressed with twice the
CML12 expression in roots (Figure 3l). A previous study revealed that the pMLO4::MLO4-
GFP was also expressed in the roots, and MLO4-GFP fusion protein was detected in the
root epidermal cell [11]. Therefore, both CML12 and MLO4 proteins were expressed in
roots, suggesting that they may function coordinately.
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Figure 3. Expression pattern of CML12 Gene. GUS staining of pCML12::CML12-GUS transgenetic lines showed CML12 was
expressed in most of the vegetable tissues: Seedling (a), root hairs (b), root tip (c), stems (d), silique (e), leaf (f), sepals (g),
chalazal end of ovules (h), and trichomes (i), not in pollen (j), as indicated by pointed triangles in each figure. Bars = 100 µm.
(k) pCML12::CML12-GFP transgenetic lines showed CML12-GFP was detected in root cap. Bar = 20 µm. (l) Real-time PCR
showed that CML12 and MLO4 genes both were expressed in various tissues of Arabidopsis. ns: not significant; the * above
bars indicate the t-test results at significant level of 0.05.
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2.5. The mlo4 and cml12 Mutants Shared Similar Phenotypes

The MLO4 has been characterized as regulating root thigmomorphogenesis, including
gravitropism in roots [11]. Previous characterization of cml12 revealed that the mutations
in CML12 exhibited a similar phenotype [30]. To study the genetic relationship between
MLO4 and CML12, we further characterized their roles in root growth.

The cml12-3 mutant (SALK_122731) was obtained from Dr. Sherryl R. Bisgrove (De-
partment of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada). Real-time
PCR showed that cml12-3 was a knock-out mutant, as reported by Gleeson et al. [31]
(Figure S2a,d). To test its gravity response, cml12-3 seedlings were vertically grown on the
agar minimal medium (0.25% sucrose) for 7 d (16 h light/8 h dark cycle); then, the plates
were rotated by 90◦ in the clockwise direction. The roots bent down in response to gravity
change until root tips became parallel with new gravity vector (Figure 4a). Compared to
the time (12.60 ± 0.66 h) for the wild-type roots to form a bend, the cml12-3 roots took less
time (9.33 ± 0.75 h) to form a bend (Figure 5a), suggesting that cml12-3 roots were more
sensitive to gravity response.

To verify the phenotype of cml12-3 in gravity response, a complementation assay was
performed using the construct pCML12::CML12-GFP in PCAMBIA 1300 vector containing
the native promoter (1500 bp upstream ATG) and coding sequence of CML12 (975 bp). Two
pCML12::CML12-GFP transgenic cml12-3 mutant lines were chosen to further characterize
their root phenotype. The average times for the roots from each pCML12::CML12-GFP
(cml12-3/-) transgenic lines to form a bend were 12.10 ± 1.42 h and 12.90 ± 0.96 h, re-
spectively, similar to that of wild-type roots (12.60 ± 0.66 h) (Figure 4a). The real-time
PCR results showed that CML12 expression was higher in transgenic roots than that in
cml12-3 mutant roots (Figure 5a). Therefore, CML12 was able to restore the defect of cml12-3
mutants in gravity response, further demonstrating that CML12 is involved in gravity
response.

The previous study showed that mlo4-1, mlo4-3, and mlo4-4 mutants exhibited different
growth patterns on the reclined medium than wild-type [11]. In this study, we identified
another Salk allele mlo4-5 in which the T-DNA was inserted in the last exon of MLO4
(Figure S2b), different from the previously-reported alleles (Figure S2c). Real-time PCR
showed that mlo4-5 was a knock-out mutant and expressed truncated protein (Figure S2e).
At first, an allelic analysis was performed. The F1 progeny of mlo4-5 from the crosses with
mlo4-4 exhibited a resembled phenotype in growth pattern (Figure S3). The loops in each
root of mlo4-4/+; mlo4-5/+ plant were denser with shorter wavelengths, and its phenotype
was similar to that of single mutant-mlo4-4/- and mlo4-5/-. The result demonstrated that
mlo4-5 also was an effective mutant of MLO4 gene. Therefore, the mlo4-5 was used for
further characterization.

The phenotypic comparison in root gravity response was performed with the single
mutant cml12-3 (cml12-3/-) and mlo4-5 (mlo4-5/-), as well as the double mutant cml12-3
mlo4-5 (cml12-3/-; mlo4-5/-). The time for bend formation was 12.97 ± 0.45 h in wild-type
roots. In contrast, the roots of the single mutant cml12-3, mlo4-5 took 9.63 ± 0.45 h and
8.57 ± 1.22 h to form bends, respectively. The roots of the double mutant cml12-3 mlo4-5
took relatively shorter time (6.43 ± 0.83 h) to form a bend (Figure 4b, Figure 5b), indicating
that the phenotype of double mutant was a little stronger than those of the single mutants.

Starch grains in root tips are sensors of gravity response [30]. Therefore, the starch
stain assays were further performed to compare the starch contents in the mutants and
wild-type root tips using KI-I2 staining. Contents of the starch grains in the single mutant
cml12-3 and mlo4-5, as well as the double mutant cml12-3 mlo4-5, were obviously higher
than that in wild-type root tips (Figure 4c).

In addition, cml12-3, mlo4-5, and cml12-3 mlo4-5 mutant roots shared similar growth
patterns with denser loops and shorter wavelengths on the reclined agar medium. The
phenotype of the double mutant cml12-3 mlo4-5 was not obviously aggravated (Figure S4).
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MLO4, their relative expression levels in each other mutants were analyzed. The real-time 
PCR assay showed the expression of CML12 was significantly elevated in mlo4-5 mutant, 
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Figure 4. Phenotype analysis of cml12-3 and mlo4-5 mutants. cml12-3 and mlo4-5 mutants were indicated, respectively, as
cml12 and mlo4, for short. (a) 7-day-old seedlings growing through the agar medium were rotated by 90◦ in the clockwise
direction. Roots bent down to respond to gravity change. Red lines point to tip position at the time of rotation and the
location where root growth became parallel with new gravity vector. Bar = 1 cm. (b) Roots bent down to respond to gravity
change. Red lines point to tip position at the time of rotation and the location where root growth became parallel with new
gravity vector. Bar = 1 cm. (c) Starch was detected using KI-I2 stain Starch in single mutants cml12-3 and mlo4-5 and double
mutant cml12-3 mlo4-5 was obviously more than that in wild-type root tips. Bar = 100 µm.

2.6. Mutation in MLO4 Affected the Expression of CML12

CaM/CMLs bound calcium and were supposed to regulate target proteins down-
stream [16]. To further study the possible regulatory relationship between CML12 and
MLO4, their relative expression levels in each other mutants were analyzed. The real-time
PCR assay showed the expression of CML12 was significantly elevated in mlo4-5 mutant,
far more than MLO4 expression changing in cml12-3 mutant (Figure 5d). Thus, MLO4
likely modulates the expression of CML12.
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Figure 5. Quantitative analysis of bend formation and gene expression in cml12-3 and mlo4-5 mutants.
cml12-3 and mlo4-5 mutants were indicated, respectively, as cml12 and mlo4 for short. (a)The time
taken to form a bend in Col, cml12-3, pCML12::CML12-GFP (cml12-3)-1, and pCML12::CML12-GFP
(cml12-3)-2 were 12.60 ± 0.66, 9.33 ± 0.75, 12.10 ± 1.42, and 12.90 ± 0.96 h, respectively, 80 < n <
150. (b) The time taken to form a bend in Col, cml12-3, mlo4-5, and cml12-3 mlo4-5 were 12.97 ± 0.45,
9.63 ± 1.36, 8.57 ± 1.22, and 6.43 ± 0.83 h, respectively, 80 < n < 150. (c) Real-time PCR showed that
expression of CML12 gene was restored in pCML12::CML12-GFP (cml12-3/-) plants. (d) Real-time
PCR showed that relative expression of CML12 increased significantly in mlo4-5 mutant. Different
letters above the bars indicate significant differences (P < 0.05, Bonferroni correction) in a pairwise
comparison using the least significant difference (LSD) method.

3. Discussion
3.1. MLO4 and CML12 Function Coordinately in Root Thigmomorphogenesis

In this study, the cml12-3 roots were more sensitive to gravity, as demonstrated by
taking less time for them to form a bend in gravity response assays. Moreover, the CML12
gene could restore the cml12-3 phenotype. These results suggest that CML12 regulates root
gravity response. The transgenic plants of pCML12::CML12-GUS and pCML12::CML12-GFP
showed that CML12 protein was expressed in root, especially in root cap. Previous studies
showed that gravity sensing happens in the root cap and is related to the starch sediment in
the root cap [32–36]. Starch-filled amyloplasts sediment settled in the bottom of statocytes
under gravity [35]. In starch-deficient mutants, amyloplasts did not precipitate and gravity
response was deficient [37]. Characterization of both starch-less and starch-more mutants
suggested that starch amount was directly associated with gravity sensing [30]. In cml12-3
and mlo4-5 mutants, starch grains detected by I2-KI stain were more than those in wild-type.
Both mutants exhibited more sensitive gravity sensing than wild-type. Therefore, MLO4
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and CML12 may be involved in gravity sensing through regulating starch content in root
caps.

In the mlo4-5 mutant, CML12 expression was dramatically upregulated, implying that
MLO4 may negatively modulate the expression of CML12. The mlo4-5 and cml12-3mutants
shared a similar growth pattern that exhibited a more sensitive response to gravity on the
reclined medium plates in comparison with that of wild-type plant (Figures 4a and 5a).
Moreover, MLO4 and CML12 could interact with others. These results indicate that MLO4
and CML12 may function coordinately to regulate root thigmomorphogenesis. However,
it is unclear how loss of MLO4 could promote expression of CML12. CML12, also called
TOUCH3/TCH3, is a touch-induced gene whose mRNA increases massively within seconds
in response to various environmental stimuli, including touch, wind, and darkness [38].
A newly changed gravity vector may be a stimulus upregulating CML12 expression, or
there may be also other unknown regulators involved in regulation of CML12 expression.
Nevertheless, more studies are required to explain the regulatory mechanism of MLO4 and
CML12.

3.2. The Conservative Amino Acids of CaMBDs and C-terminal Sequence of MLO Protein May
Determine Their Specific Interacting CaM/CMLs

MLO proteins are encoded by medium-sized gene families present in all investigated
land plant species and they share a conserved CaMBD in cytoplasmic C-termini, which
consists of 20 amino acids [39,40].

As reported previously, the barley MLO C-terminus interacted with soy bean CaM1.
When the conservative amino acids (L420R, W423R) in CaMBD were mutated, the inter-
action of mutated HvMLO with SCaM1 was weak and even became undetectable [14].
These results suggest that the MLO–CML interaction is likely to depend on the specific
CaMBD in C-terminus of MLO proteins. The C-terminal sequences of MLO proteins are
obviously diversified. Studies showed that C-terminal regions of the MLO proteins could
determine specific binding to the individual CaM/CML proteins to fulfill their distinct bio-
function [13,41,42]. Domain-swap experiments testified that the identity of the C-terminal
intracellular tail contributes to MLO function [43].

As confirmed in our study, the Y2H assays also showed that, for each MLO protein,
only the C-terminus region was sufficient for binding the CaM/CML proteins (Table 1).
Each MLO might interact with more than one CaM/CML proteins. The specific interaction
between MLO and CaM/CML proteins are due to CaMBD of the MLO C-terminus. First,
Y2H screen results revealed that C-terminus region of NTA/MLO7 interacted with CML8-
12 (Figure S5). Then, Y2H assays was conducted with site mutation in CaMBD of C-
terminus. NTA variants with modification of the conservative sites (L452R, W455R) could
not interact with CML12, while NTA variants with changes in the non-conservative sites
(K457N, L464R) remained able to interact with CML12. All NTA variants (L452R, W455R,
K457N, L464R) failed to interact with CML8 or CML9 but still bound CML10 and CML11
(Figure S6).

Therefore, the invariant and conservative amino acids may enable CaMBD to bind
CaM/CMLs. Meanwhile, the variant amino acids and C-terminal sequence may determine
their specific interaction with CaM/CMLs, with the former directly affecting binding ability
and the latter indirectly influencing MLO-CaM/CML spatial distance via conformation.

3.3. MLO-CaM/CML Interaction May Relate to Ca2+ Signaling and Mediate Vesicle Transport

The Ca2+ dynamics were detected in various cells upon responding to extracellular
signals, for instance, the root development and root hair growth, the synergid cells sensing
the arriving pollen tube, and vice versa, the pollen tube tips sensing ovules during sexual
reproduction [8,44–47]. Meanwhile, more and more evidence has pointed out that vesicle
transport was revealed in the corresponding root tips, synergid cells, and pollen tube
tips [43,46,48].
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The CaM/CML proteins distinguish themselves with EF-hands that can bind Ca2+,
a second messenger generated by various stimulations [49]. Previous study has demon-
strated that CML12 could bind to Ca2+ in vitro [38]. Additionally, nuclear Ca2+ signatures
are detected in root cells and associated with root development [46,47]. MLO4 protein was
located in vesicle membrane of root cells, and its subcellular localization responded to
vesicle traffic inhibitor BFA. The expression of auxin efflux carrier fusion, PIN1-GFP, was
altered at root tip of mlo4 mutant seedlings, implying that MLO4 protein participated in
auxin transport [11]. Now that MLO4 interacts with CML12 (Figure 2), this case provides
the first scattered clues where Ca2+ signaling and vesicle transport may be related by
MLO4–CML12 interaction.

The second case is Ca2+ oscillations displayed in the synergid cells and the FER-
NTA pathway is required for Ca2+ responses [44,45,48]. NTA/MLO7 protein is located in
vesicular-membrane and evenly distributed in synergid cells before arrival of the pollen
tube. Upon pollen tube arrival, it is then polarly transferred to the micropylar end. In
this way, MLO might deliver out certain signal through vesicle traffic by responding to
the approaching pollen tube [6]. The interaction between NTA/MLO7 and CML8–12 was
also verified by Y2H, BiFC, and LCI assays (Figures S5–S8), although later genetic analysis
showed that the quadruple mutant cml8 cml9 cml11 cml12 has normal fertility, not similar
to that of the nta/mlo7 mutant, indicating the possible functional redundancy of the CML
proteins (CML10/26/30/37/38/40/44) (Table 1). Therefore, NTA/MLO7 protein may
mediate Ca2+ signaling and vesicle transport by interacting with CMLs during pollen tube
reception.

The third case is that Ca2+ formed a tip-focused gradient in the pollen tube and
underwent oscillation in the tip region during pollen tube growth [8,43]. The pollen-
specific MLO5/9 was distributed on vesicle membrane in the tip region of the pollen tube
and directly bound Ca2+ channel CNGC18, which recruited CNGC18-containing vesicles
to the plasma membrane through the R-SNARE proteins VAMP721 and VAMP722 in trans
mode, in response to ovular signals [8]. In short, MLO5/9 mediated the exocytosis of a
Ca2+ channel to reply to ovular guidance. In addition to that, our Y2H screen disclosed that
MLO5 interacted with CML18/26/40/44, MLO9 interacted with CML10/42/44 (Table 1),
which, of course, needs further verifying. Therefore, it is rational to deduce that MLO5/9-
CML interaction may relate to Ca2+ signaling and mediate vesicle transport.

In conclusion, responding to extracellular signals, MLO proteins seem to modulate
SNARE-dependent vesicle transport-associated processes at plasma membrane, in close
relation to Ca2+ signaling, possibly through interacting with CaM/CMLs.

The MLO proteins are unique to plants [40]. Although some mlo mutants have been
characterized, the mechanisms of the modulation of CaM by MLO proteins remain poorly
understood. The biochemical function of MLO in modulating Ca2+-loaded CaM/CML also
remains elusive.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Arabidopsis thaliana plants in Columbia (Col) background were used in this study.
The cml12-3 (SALK_122731) was a gift from Dr. Sherryl R. Bisgrove [31]. The primer
pairs used for the mutant characterization were LBa1 and SK122731-1 (Table S3). The
mlo4-4 (SAIL_266_C02) and mlo4-5 (SAIL_563_E06) were purchased from the Arabidopsis
Biological Resource Center (ABRC, www.arabidopsis.org, accessed on 19 May 2021). The
primer pairs for identifying mlo4-4 and mlo4-5 were SAIL-LB3/SAIL266C02-1 and SAIL-
LB3/SAIL563E06-1, respectively (Table S3). The seeds were surface-sterilized in the solution
containing NaClO:ddH2O (1:8) for 5 minutes and washed with sterilized ddH2O three
times. Then, the seeds were sowed on 1/2 MS culture medium and stood in 4 ◦C for 2–4
days. The vernalized seeds on 1/2 MS were cultured under a 16 h/8 h day/night cycle at
22 ◦C for 7–10 days for further growth. The resulting seedlings were then planted into soil
under a 16 h/8 h day/night cycle at 22 ◦C as previously described [50].

www.arabidopsis.org
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4.2. Root Phenotype Analysis

For gravity response, the seeds were planted on the agar medium (1/2 MS, 0.8%
Agar, 0.05% MES, 1% Sucrose, pH 5.8) and grown inside the agar on vertical plates for
7 d. The root bend formation times were counted from the moment when the plates were
rotated by 90◦ in the clockwise direction to the time when root growth became parallel
with new gravity vector [31]. For root growth pattern, the seedlings were grown for 2 d on
agar-solidified minimal medium (0.25% sucrose) that was vertically set. Then, the plates
were slanted at a 45◦ angle for 4 days [11].

4.3. Real-Time PCR Assay

The RNA samples were extracted from different tissues of Arabidopsis plants using a
total RNA extraction kit (TIANGEN, Beijing, China). The cDNA templates were prepared
using SuperScript II kit (Invitrogen, http://www.invitrogen.com/, accessed 2 July 2019).
Using ABI 7500 real-time system (Applied Bioystems, http://www.appliedbiosystems.
com/, accessed 2 August 2019) and the Power SYBR Green PCR Master Mix, all the real-
time-PCR assays were performed with the primers listed in Table S3. The RNA input
was normalized with the ACTIN2/8 (At3g18780) RNA levels. The mRNA levels were
calculated with comparative Ct (threshold cycle) method as previously described [50].

4.4. GUS Assay for Expression Pattern

Because the CML12 coding sequence (CDS) had three regions that shared high sim-
ilarity [38], it was difficult to clone the full sequence of CML12 CDS. For the CDS, 18 bp
upstream the start codon ATG was included and the promoter sequence was from 1500
bp upstream start codon to 18 bp upstream start codon. The 1482 bp promoter fragment
and 993 bp coding sequence of CML12 were amplified using the primer pairs HindIII-
PCML12/PCML12-XbaI and XbaI-TCH3/TCH3-BamHI (Table S3) from Col genomic DNA
and cDNA, respectively. The resulting fragments were then inserted into the modified
pCAMBIA1300 vector (CAMBIA, http://www.cambia.org/, accessed on 13 June 2020) to
generate the construct pCML12::CML12-GUS. After being verified by sequencing, the result-
ing construct was introduced into Col plants using the Agrobacterium-mediated infiltration
method [51]. GUS staining was performed as described previously [52].

4.5. Subcellular Localization of CML12 Protein

The 993 bp coding sequence DNA and 1482 bp promoter of CML12 were amplified
by PCR using the primer pairs HindIII-PCML12/PCML12-PstI and PstI-TCH3/TCH3-
BamHI listed in Table S3. These two fragments were then inserted into the Ti-derived
pCAMBIA1300 vector (CAMBIA, http://www.cambia.org/, accessed on 13 June 2020)
to generate the construct pCML12::CML12-GFP. The construct was then introduced into
cml12-3 mutant plants. The GFP signals in the root epidermal cells were detected using the
Zeiss confocal microscope (LSM710 Meta; Zeiss, http://www.zeiss.com, accessed on 21
March 2020).

4.6. Yeasts Two Hybrid (Y2H) Assay

The DNA fragments of CML12 and cytoplasmic domain of MLO4 (MLO4C) were ampli-
fied by PCR using the primer pairs NdeI-CML12/CML12-BamHI and NdeI-MLO4C/MLO4C-
ECoRI listed in Table S3. The resulting fragments were inserted into the assay vector pairs
pGADT7 (AD) and pGBKT7(BD) (Clontech, www.clontech.com/, accessed on 21 October
2020), respectively, as described previously [53]. The yeast strain AH109 was co-transformed
with generated construct pairs. SD/-Leu-Trp plates were used to culture the transformed
yeast cells for 3 days at 30 ◦C. Then, SD/-Trp-Leu-His-Ade plates were used to select the
colonies with interacting protein pairs for 3 to 7 days.

http://www.invitrogen.com/
http://www.appliedbiosystems.com/
http://www.appliedbiosystems.com/
http://www.cambia.org/
http://www.cambia.org/
http://www.zeiss.com
www.clontech.com/
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4.7. Luciferase Complementation Imaging (LCI) Assay

The coding sequences of CML12 and MLO4 were amplified by PCR using the primers
KpnI-CML12/CML12-SalI and KpnI-MLO4/MLO4-SalI (Table S3). These fragments were
then subcloned into the vectors pCAMBIA1300-nLUC and pCAMBIA1300-cLUC, respec-
tively. The positive control pair was SGT1-nLUC and RAR1-cLUC, which was a kind
gift from Dr. Shuhua Yang (China Agricultural University, Beijing, China). Applying
electroporation, all the constructs were introduced into A. tumefaciens strain GV3101, which
was then injected into 3-week-old tobacco leaves to transiently transform the tobacco cells.
Under the detection of the low-light cooled charge-coupled device camera (iKon-L936;
Andor Technology, http://www.andor.com/, accessed on 21 April 2020), the fluorescence
signal was detected 3–6 days after infiltration, as previously described by Chen et al. [54]
and Hua et al. [55].

4.8. Bimolecular Fluorescence Complementation (BiFC) Assays Luciferase Complementation
Imaging

The coding sequences of CML12, MLO4 and MLO4C were amplified by PCR using the
primers XbaI-CML12/CML12-BamHI, XbaI-MLO4/MLO4-BamHI, and XbaI-MLO4C/MLO4-
BamHI (Table S2). Applying the biolistic PDS-1000/He gene gun system (Bio-Rad, http:
//www.biorad.com/, accessed on 11 July 2020), onion epidermal cells were transiently
transformed. After cultivated on 1.5 MS culture medium (1.5% Agar, 1/2 MS) for 16–24 h, the
fluorescent signals were detected under a Leica confocal laser scanning microscope (LSM710,
Carl Zeiss, http://www.zeiss.com/, accessed on 21 March 2020) as described by Gookin
et al. [56].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22115962/s1.
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