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Abstract: Gut microbiota has emerged as an important regulator of bone homeostasis. In particular,
the modulation of innate immunity and bone homeostasis is mediated through the interaction
between microbe-associated molecular patterns (MAMPs) and the host pattern recognition receptors
including Toll-like receptors and nucleotide-binding oligomerization domains. Pathogenic bacteria
such as Porphyromonas gingivalis and Staphylococcus aureus tend to induce bone destruction and cause
various inflammatory bone diseases including periodontal diseases, osteomyelitis, and septic arthritis.
On the other hand, probiotic bacteria such as Lactobacillus and Bifidobacterium species can prevent
bone loss. In addition, bacterial metabolites and various secretory molecules such as short chain fatty
acids and cyclic nucleotides can also affect bone homeostasis. This review focuses on the regulation
of osteoclast and osteoblast by MAMPs including cell wall components and secretory microbial
molecules under in vitro and in vivo conditions. MAMPs could be used as potential molecular
targets for treating bone-related diseases such as osteoporosis and periodontal diseases.

Keywords: bone diseases; bone homeostasis; bacteria; microbe-associated molecular patterns; os-
teoblast; osteoclast; pattern-recognition receptors; secretory microbial molecules

1. Introduction

The bone remodeling process is regulated by representative bone cells known as
osteoclasts and osteoblasts [1]. The balance between bone-resorbing osteoclasts and bone-
forming osteoblasts is essential for maintaining bone homeostasis [2]. However, imbalance
between bone resorption and formation could lead to bone diseases [3]. Excessive osteoclast
activity causes various bone diseases including osteoporosis, septic arthritis, osteomyelitis,
and alveolar bone loss in periodontal diseases [4–6]. Especially, bacterial infections can
directly affect bone homeostasis by increasing osteoclast differentiation and activation
and/or decreasing osteoblast differentiation and activation [7]. For example, Streptococcus
pyogenes, Staphylococcus aureus, and Neisseria gonorrhoeae are commonly found in patients
with septic arthritis, resulting in cartilage and bone destruction within the joint [8]. Staphy-
lococcus species such as S. aureus and Staphylococcus epidermidis are etiological agents of
osteomyelitis [5]. Major oral pathogens, including Porphyromonas gingivalis and Fusobac-
terium nucleatum, are associated with periodontal diseases, manifesting alveolar bone
loss [9]. However, unlike those pathogens, probiotics which are microorganisms that
offer health benefits to the hosts are known to increase mineral density and volume of
the bone [10]. For instance, Lactobacillus reuteri and Lactobacillus rhamnosus GG upregulate
bone volume of mice [11,12]. In addition, other probiotics such as Lactobacillus gasseri and
Lactobacillus brevis reduce bone loss and inflammation in mouse periodontitis model [13,14].
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Bacteria have unique structural components called microbe-associated molecular pat-
terns (MAMPs) including lipopolysaccharide (LPS), lipoteichoic acid (LTA), lipoprotein
(LPP), and peptidoglycan (PGN) [15]. The recognition of MAMPs by pattern recognition
receptors (PRRs) is crucial for inducing host immune responses [15]. In addition, secretory
microbial molecules including short chain fatty acid (SCFA), extracellular vesicle (EV), ex-
tracellular polysaccharide, and cyclic dinucleotide (CDN) also modulate bone cells [16–18].
Therefore, for a clear understanding of the regulation of bone metabolism by bacteria,
it is essential to understand the effects of MAMPs and secretory microbial molecules on
bone cells and their regulatory mechanism. Based on those understanding, we could
better prevent bacteria-mediated inflammatory bone diseases and formulate therapeutic
strategies by using bacteria-derived substances.

2. Microbe-Associated Molecular Patterns

MAMPs are structural or secretory molecules that are highly conserved in most
microbes [19]. Well-known MAMPs are bacterial polysaccharides (LPS and LTA), sur-
face proteins (LPP and adhesin), PGNs, and secretory molecules (SCFA, EV, extracellular
polysaccharide, and CDN) [20]. These MAMPs can be sensed by various host PRRs, such
as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain (NOD)-like
receptors (NLRs), or G-protein coupled receptors (GPCRs) [21,22]. Indeed, there are many
host PRRs classified according to their location, function, and ligand specificity [23]. There
are typically four types of PRRs: TLRs, NLRs, C-type lectin receptors, and RIG-1 like recep-
tors [21]. Among these, TLRs localized at plasma membrane or in endosomes and NLRs
localized in cytoplasm are the major PRRs in recognizing bacterial MAMPs [21]. For in-
stance, TLR4 senses LPS, and TLR2 senses LPP and LTA [24]. On the other hand, NOD1 and
NOD2 recognize bacterial PGNs through their distinct structural moieties, D-glutamyl-meso-
diaminopimelic acid (iE-DAP) and muramyl dipeptide (MDP), respectively [25]. Based
on their displayed patterns, each host receptor responds to its specific bacterial ligand,
subsequently producing anti- or pro-inflammatory cytokines and chemokines to counteract
against invading microbes [26]. It has been reported that pathogens or probiotics and their
MAMPs could also affect osteoimmunological responses (Table 1) [27]. Therefore, we will
focus on MAMPs and their effects on bone homeostasis in this section.

Table 1. Effects of cell wall components on bone metabolism.

MAMPs Receptor Effects References

Lipopolysaccharide TLR4

Inducing bone loss
Inhibiting osteoclastogenesis on macrophages

Facilitating osteoclast differentiation on committed osteoclasts
Downregulating osteoblast differentiation

[28–35]

Lipoteichoic acid TLR2
Healing femoral fractures in mice

Attenuating osteoclast differentiation and activating phagocytosis
Upregulating osteogenic markers and osteoblastogenesis

[36–40]

Lipoprotein TLR2
Promoting bone resorption

Upregulating osteoclast differentiation
Stimulating osteoblasts to elevate RANKL/OPG ratio

[41–43]

Fimbria TLR4 Inducing osteoclastogenesis and bone resorption [44–49]

Peptidoglycan

NOD1 Enhancing osteoclastogenesis and bone resorption
Triggering osteoclast differentiation synergistically with LPS [50–56]

NOD2
Upregulation of bone density

Facilitating osteoblast differentiation
Diminishing osteoclastogenesis by reducing RANKL/OPG ratio

[54,57]
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2.1. Bacterial Polysaccharides
2.1.1. Lipopolysaccharide

LPS, also known as endotoxin, is a characteristic cell wall component of Gram-negative
bacteria. It is composed of a hydrophobic lipid A, a hydrophilic core polysaccharide,
and a hydrophilic O antigen-specific side polysaccharide chain (Figure 1) [58]. Lipid A,
an anchoring part of LPS on bacterial outer membrane, plays a crucial role in inducing host
immune responses [59]. O antigen is a sequential sugar molecule, which varies among
bacterial species [59]. Bacteria could escape host immune responses like phagocytosis by
using O antigen [59]. When Gram-negative bacteria infect the host, LPS is recognized by
TLR4 in cooperation with other various host molecules, such as cluster of differentiation
(CD) 14, LPS-binding protein, and myeloid differentiation (MD)-2 [60–62]. LPS-mediated
TLR4 signaling is transferred through Toll/interleukin-1 receptor (TIR) domain-containing
adaptor protein/myeloid differentiation factor 88 (MyD88) or TIR domain-containing
adaptor inducing interferon (IFN)-β (TRIF)/TRIF-related adaptor molecule [63,64]. These
downstream signals activate nuclear factor-κB (NF-κB) or IFN regulatory factor 3 (IRF3),
prompting the production of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6,
tumor necrosis factor (TNF)-α, nitric oxide, or type I IFNs [63,65,66].

To date, many reports have demonstrated that LPS induces bone loss at various sites
in vivo [28–30,67]. For instance, Chen et al. showed that LPS reduces the number of
trabecular bone and bone mineral density in mice [28]. Rid et al. reported that injection
of LPS into gingival sulcus on rats triggers periodontal and alveolar bone damage by the
induction of pro-inflammatory cytokines [29]. In addition, some reports demonstrated that
LPS causes local bone resorption on murine calvaria [30,67]. Overall, numerous research
indicates that LPS induces bone loss under various physiological conditions [28–30,67].

Unlike in vivo, LPS plays dual roles in osteoclastogenesis depending on the timing of
LPS treatment during osteoclast differentiation in vitro [31,32]. LPS inhibits osteoclast dif-
ferentiation when treated on the mouse bone marrow-derived macrophages also known as
pre-osteoclasts, but it triggers osteoclastogenesis when treated on receptor activator of NF-
κB (RANK) ligand (RANKL)-pretreated macrophages which are committed osteoclasts [32].
Mouse bone marrow-derived monocytes treated with macrophage-colony stimulating
factor (M-CSF) and RANKL are differentiated into osteoclasts, while monocytes treated
with M-CSF and LPS are not differentiated into osteoclasts, indicating that LPS cannot be
substituted for RANKL [31]. In addition, LPS prevents RANKL-induced differentiation of
mouse macrophages into mature osteoclasts [32]. In contrast, committed osteoclasts from
mouse show different patterns from macrophages [32]. Retreatment with M-CSF and LPS
to committed osteoclasts in the absence of RANKL leads to vigorous mature osteoclast
differentiation, indicating that LPS is a potent osteoclastogenic factor in committed osteo-
clasts [32]. In consideration of bone loss effects by LPS in mouse or rat [28], we suggest that
committed osteoclasts, rather than pre-osteoclasts, are more suitable to represent in vivo
situation in bone.

Meanwhile, diminished osteoclastogenesis by TLR ligands seems to be a common
phenomenon that occurs in macrophages [68]. When TLR ligands are treated, macrophages
from mouse may preferentially cause to execute the host defense strategy rather than
inducing osteoclast differentiation [68]. In fact, macrophages fail to differentiate into
osteoclast and induce the pro-inflammatory cytokines when stimulated by TLR ligands
including LPS, PGN, poly(I:C), CpG DNA, and LTA [31,32,68,69].

On the other hand, several studies demonstrated that osteoblast differentiation is sup-
pressed by LPS through the downregulation of Runx2, osterix, and activating transcription
factor (ATF) 4 expression [33–35]. In addition, LPS-stimulated osteoblasts induce osteoclas-
togenesis by producing pro-inflammatory mediators, such as IL-1, IL-6, prostaglandin E2
(PGE2), and RANKL, which are well-known osteoclast-activating factors [70–73]. In con-
clusion, LPS is a potent bone resorbing MAMP that upregulates osteoclastogenesis and
downregulates osteoblastogenesis.
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Figure 1. Illustration of lipopolysaccharide (LPS) structure. LPS is a potent immuno-stimulatory molecule of Gram-negative
bacteria. It is composed of O antigen, outer or inner core polysaccharide, and lipid A. O antigen consists of repeating
sugar molecules (n can be up to 40 repeats) and outer or inner core is a continuous polysaccharide chain. Composition and
length of the O antigen and core polysaccharide are varied among bacterial strains. Lipid A consists of two phosphorylated
glucosamines and acyl chains. The number of acyl chains and branched points in lipid A vary among bacterial species.
Man, Mannose; Par, Paratose; Rha, Rhamnose; Abe, Abequose; Col, Colitose; Glc, Glucose; Gal, Galactose; Hep, Heptose;
Kdo, 3-deoxy-D-manno-2-octulosonic acid; GlcN, Glucosamine; P, phosphate.

2.1.2. Lipoteichoic Acid

LTA is one of the important virulence factors of Gram-positive bacteria, which consists
of alditol phosphate-containing polymer and lipid anchor [74]. Based on its chemical
structure, LTA is classified into five types (type I to V), and each bacterium has a distinct
characteristic LTA structure (Figure 2) [74,75]. Bacterial LTA has association with various
inflammatory diseases such as skin infection and sepsis [75]. LTA specifically attaches
to the host cells through TLR2 and CD14, leading to the recruitment of MyD88 and TNF
receptor associated factor (TRAF) 6 [76]. It sequentially induces mitogen-activated protein
kinase (MAPK) and NF-κB activation [76]. Consequently, the downstream cascade induces
innate immune responses, such as the production of nitric oxide and TNF-α [77,78].
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Figure 2. Illustration of lipoteichoic acid (LTA) structure. LTA is a Gram-positive bacterial cell wall component which is
responsible for stimulating immune responses of hosts. There are five types of LTA which varies among bacterial species.
Gro, Glycerol; Glc, Glucose; Gal, Galactose; β-Glu, β-Glucan; AAT-Gal, 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose;
Gal-NAc, N-acetylgalactosamine; Rto, Ribitol; Glc-NAc, N-acetylglucosamine.

In addition, LTA attenuates osteoclast differentiation from mouse bone marrow-
derived macrophages [36–38]. LTA from Enterococcus faecalis inhibits differentiation of
macrophages into mature osteoclasts. Macrophages seem to retain phagocytic activity
against bacterial infection [36]. Recently, Wang et al. reported that these inhibitory effects
occur through the transcription factor, recombination signal binding protein (RBP)-Jκ [37].
Not only E. faecalis LTA but also staphylococcal LTA inhibits osteoclastogenesis and bone
resorption through TLR2 pathway [38].

LTA is also responsible for modulating osteoblast differentiation and bone formation.
For instance, mesenchymal stem cells stimulated by LTA from S. aureus upregulate the
expression of various osteogenic markers, such as Runx2, alkaline phosphatase (ALP),
type I collagen, and calcium deposition through enhanced autophagy [39]. Additionally,
LTA from S. aureus promotes the synthesis of bone bridge, ossification, and healing of
femoral fractures induced by medial parapatellar arthrotomy [40]. It is likely that such
phenomenon was induced by enhancing osteoblast differentiation and inhibiting osteoclast
activation [40]. Although LTA appears to be a potential treatment for bone diseases, further
studies are needed because LTA causes differential immune responses depending on the
source of bacteria.
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2.2. Surface Proteins
2.2.1. Lipoprotein

Bacterial LPPs, which are anchored to the cell membrane by N-terminally-linked
fatty acids, are one of the major virulence factors causing potent immuno-stimulatory
effects [79]. The structure of LPP consists of a protein with a lipid moiety [80]. The protein
is in charge of physiological functions, while the lipid moiety anchors LPPs in the bacterial
cell membranes and induces bacteria-specific immune responses via TLR2 and additional
receptors [80,81]. Based on the number of lipid moieties, LPPs are classified into diacylated
or triacylated forms, which are mainly expressed on Gram-positive or Gram-negative
bacteria, respectively [82]. Diacylated LPPs contain S-diacylated cysteine residues and
triacylated LPPs have N-acyl-S-diacylated cysteine residues [82]. Meanwhile, TLR2 forms
a heterodimer with TLR1 or TLR6, recognizing LPPs. Diacylated LPPs are sensed by
TLR2/TLR6, while triacylated LPPs are recognized by TLR1/TLR2 (Figure 3) [83,84]. The
recognition of LPPs through TLR1/TLR2 or TLR2/TLR6 heterodimer mediates MyD88-
mediated signaling transduction and subsequently activates NF-κB, enabling the produc-
tion of pro-inflammatory cytokines and chemokines [85].

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 6 of 22 
 

 

2.2. Surface Proteins 
2.2.1. Lipoprotein 

Bacterial LPPs, which are anchored to the cell membrane by N-terminally-linked 
fatty acids, are one of the major virulence factors causing potent immuno-stimulatory ef-
fects [79]. The structure of LPP consists of a protein with a lipid moiety [80]. The protein 
is in charge of physiological functions, while the lipid moiety anchors LPPs in the bacterial 
cell membranes and induces bacteria-specific immune responses via TLR2 and additional 
receptors [80,81]. Based on the number of lipid moieties, LPPs are classified into diacyl-
ated or triacylated forms, which are mainly expressed on Gram-positive or Gram-negative 
bacteria, respectively [82]. Diacylated LPPs contain S-diacylated cysteine residues and tri-
acylated LPPs have N-acyl-S-diacylated cysteine residues [82]. Meanwhile, TLR2 forms a 
heterodimer with TLR1 or TLR6, recognizing LPPs. Diacylated LPPs are sensed by 
TLR2/TLR6, while triacylated LPPs are recognized by TLR1/TLR2 (Figure 3) [83,84]. The 
recognition of LPPs through TLR1/TLR2 or TLR2/TLR6 heterodimer mediates MyD88-
mediated signaling transduction and subsequently activates NF-κB, enabling the produc-
tion of pro-inflammatory cytokines and chemokines [85]. 

 
Figure 3. Structures of Toll-like receptor (TLR) 2 heterodimers and lipoproteins (LPPs). TLRs consist of extracellular leucine-rich 
repeat, transmembrane helix, and intracellular Toll/interleukin-1 receptor domain. Bacterial LPPs bind to the extracellular do-
mains of TLR. Especially, TLR2/TLR6 heterodimers recognize diacylated LPPs and TLR1/TLR2 heterodimers sense triacylated 
LPPs. 

In bone homeostasis, bacterial LPP is known as a potent bone-destructing factor. Kim 
et al. demonstrated that committed osteoclasts treated with wild-type S. aureus enhances 
osteoclast differentiation, whereas LPP-deficient S. aureus loses such effect [41]. Further-
more, synthetic lipopeptides, Pam2CSK4 and Pam3CSK4, which mimic bacterial LPP in-
duce osteoclastogenesis by activating TLR2/MyD88 pathway and secreting pro-inflamma-
tory cytokines such as IL-6 and TNF-α [41,42]. In addition, Pam2CSK4 and Pam3CSK4 

Figure 3. Structures of Toll-like receptor (TLR) 2 heterodimers and lipoproteins (LPPs). TLRs consist of extracellular
leucine-rich repeat, transmembrane helix, and intracellular Toll/interleukin-1 receptor domain. Bacterial LPPs bind
to the extracellular domains of TLR. Especially, TLR2/TLR6 heterodimers recognize diacylated LPPs and TLR1/TLR2
heterodimers sense triacylated LPPs.

In bone homeostasis, bacterial LPP is known as a potent bone-destructing factor.
Kim et al. demonstrated that committed osteoclasts treated with wild-type S. aureus
enhances osteoclast differentiation, whereas LPP-deficient S. aureus loses such effect [41].



Int. J. Mol. Sci. 2021, 22, 5805 7 of 22

Furthermore, synthetic lipopeptides, Pam2CSK4 and Pam3CSK4, which mimic bacterial
LPP induce osteoclastogenesis by activating TLR2/MyD88 pathway and secreting pro-
inflammatory cytokines such as IL-6 and TNF-α [41,42]. In addition, Pam2CSK4 and
Pam3CSK4 upregulate RANKL production while downregulating osteoprotegerin (OPG)
by stimulating osteoblasts [41].

LPPs also induce bone loss in vivo. Pam2CSK4 and Pam3CSK4 destruct calvarial
bone in the mouse implanted with a collagen sheet [41]. In addition, intraperitoneal ad-
ministration of Pam2CSK4 or Pam3CSK4 significantly decreases the femur bone density of
mice [41,43]. Souza et al. also reported that Pam2CSK4 promotes periodontal destruction
in mice by inducing gingival inflammation and alveolar bone resorption [43]. Conse-
quently, bacterial LPPs induce differentiation of mouse committed osteoclasts into mature
osteoclasts in vitro and bone resorption in vivo via TLR2/MyD88 pathway [41–43].

2.2.2. Adhesin

Bacteria possess various macromolecules on their cell surface allowing adhesion
and/or interaction with the host [86]. Therefore, these surface molecules play vital roles in
bacterial pathogenesis and host immune responses. There are a number of carbohydrates
and protein adhesins in both Gram-positive and Gram-negative bacteria [87]. Protein
adhesins are further classified into fimbrial and non-fimbrial associated structures [87].
Among them, fimbriae are the most representative bacterial surface adhesins which stick
out from the surface and play a major role in host cell invasion [88].

Porphyromonas fimbriae are known as a potent osteoclastogenesis factor. It was re-
ported that fimbriae of Porphyromonas gulae and P. gingivalis induce osteoclast differenti-
ation and cytokine production such as IL-1β, IL-6, and TNF-α in bone marrow-derived
macrophages [44,45]. In addition, P. gingivalis fimbriae trigger bone resorption by uti-
lizing tyrosine kinases [46,47]. P. gingivalis fimbriae affect osteoclast differentiation but
not osteoblast differentiation [48]. Overall, bacterial fimbriae can induce bone resorption
predominantly by inducing osteoclastogenesis in mice [44–48]. However, little is known
about the effects of other adhesins on bone and bone-related cells. Therefore, it is essential
to demonstrate how various bacterial adhesins affect bone remodeling in the days to come.

2.3. Peptidoglycan

PGN is a highly conserved bacterial cell wall component. It is made up of poly-
mers composed of N-acetylglucosamines (NAGs) and N-acetylmuramic acids (NAMs).
Each NAM has a short peptide chain that is involved in forming a cross-linked peptide
bridge between polymers [89]. MDP (NAM-L-Ala-D-Glu) is a minimal essential structural
motif of PGNs in both Gram-positive and Gram-negative bacteria (Figure 4) [89]. Gram-
positive bacteria possess lysine-type PGNs, while Gram-negative bacteria have DAP-type
PGNs [90].

NODs, which are present in the host cytoplasm, are responsible for sensing PGN
motifs [91]. NODs are composed of caspase recruitment domain (CARD) at N-terminal, an
NOD at intermediate site, and a leucine-rich repeat domain at C-terminal [91]. Among the
NODs, NOD1 recognizes iE-DAP of Gram-negative bacterial PGNs, whereas NOD2 senses
MDP moieties of ubiquitous bacterial PGNs [91]. Once iE-DAP and MDP are recognized
by NOD1 and NOD2, respectively, both NODs induce CARD-CARD interaction and then
form the complex with the adaptor molecules, receptor-interacting protein-like interacting
caspase-like apoptosis regulatory protein kinase (RICK), leading to NF-κB and MAPK
activation for triggering inflammatory responses (Figure 5) [91–93].

Accumulating reports suggested that PGN plays a bi-functional role in bone metabolism.
Kishimoto et al. reported that PGN and LPS synergistically induce bone resorption and
osteoclastogenesis [50]. They showed that S. aureus PGN or Escherichia coli PGN accelerates
osteoclast formation and bone resorption only when they are co-stimulated with LPS.
However, when treated independently, only S. aureus PGN, but not E. coli PGN, induces
alveolar bone resorption [50]. Similarly, Ozaki et al. demonstrated that S. aureus PGN and
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E. coli LPS exacerbate alveolar bone loss and induce osteoclastogenesis from committed
osteoclasts through the upregulation of TNF-α, IL-10, and IL-17 [51]. It was reported
that MDP together with LPS, not MDP alone, could enhance osteoclastogenesis and bone
loss through upregulation of RANKL and TLR4 expression [52]. PGN of Actinomyces
naeslundii also induces osteoclastogenesis and alveolar bone resorption by triggering pro-
inflammatory cytokines, such as IL-1β, IL-6, and TNF-α [53]. The importance of NOD1
stimulation has been suggested because stimulation of NOD1 induces alveolar bone loss
and periodontitis [54]. In addition, Chaves et al. described that osteoclast formation is
increased in NOD1 knockout mice, suggesting that NOD1 affects the upregulation of osteo-
clastogenesis [54]. Collectively, PGN-induced osteoclastogenesis and bone resorption occur
through NOD1-related downstream signals and production of pro-inflammatory cytokines.
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Unlike the NOD1 signaling, NOD2 signals could induce bone formation. Park et al.
reported that MDP could enhance bone mineral density by upregulation of bone forma-
tion [57]. Osteoblasts treated with MDP augment Runx2 expression, which is a major
transcriptional factor of osteoblast differentiation. In addition, MDP indirectly reduces
osteoclastogenesis through the downregulation of RANKL/OPG ratio from osteoblasts.
Furthermore, pre- or post-treatment of MDP alleviates RANKL-induced osteoporosis via
NOD2 signaling [57]. Because MDP increases NOD2 expression level and other NOD2
ligands also induce bone formation similarly to the action of MDP, NOD2 agonists like
MDP could be a novel therapeutic agent of osteoporosis [57]. Lactobacillus fermentum,
which activates NOD2 signaling, attenuates bone resorption and decreases the number of
osteoclasts [54]. Likewise, intraperitoneal injection of L. plantarum PGN in mice enhances
bone density of femurs [57]. Collectively, NOD2-stimulating bacterial PGNs can ameliorate
bone health by increasing bone formation and diminishing bone resorption.
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through CARD-CARD interactions, leading to the activation of NF-κB and MAPK pathways.

2.4. Secretory Microbial Molecules
2.4.1. Short Chain Fatty Acid

SCFAs, which consist of fewer than six carbons, are metabolites mainly produced
by commensal bacteria through fermentation of dietary fibers [94]. Acetate, propionate,
and butyrate are the most predominant form of SCFAs in the gastrointestinal tract and
have a molar ratio varying from 40:40:20 to 75:15:10 depending on the diet [95,96]. There
are two major pathways for modulation of host cells by SCFAs. One major pathway
utilized by the host is through GPCRs. GPCRs are seven transmembrane receptors of host’s
signaling molecules or MAMPs to induce intracellular signaling pathways [97]. Among
GPCRs, SCFAs can bind and activate GPCR 40, 41, and 43, which are designated as free
fatty acid receptor (FFAR) 1, 3, and 2, respectively, or GPCR 109a [98]. Conserved two
arginine residues at transmembrane helixes 5 and 7 are important for the recognition of
SCFAs by FFAR 1, 2, and 3 [99]. In addition, GPCRs are commonly expressed in bone
metabolism-involved cells, including adipocytes, neutrophils, macrophages, osteoclasts,
and osteoblasts [100–103]. Another route of host cell modulation by SCFAs is the inhibition
of histone deacetylases (HDACs). HDAC plays an important role in regulating gene
expression by epigenetic modification of chromosome structure [104]. Among SCFAs,
butyrate inhibits HDAC activity, leading to decreased production of MAMP-induced nitric
oxide or pro-inflammatory cytokines [105]. Consequently, SCFAs have various effects on
the host’s health through the activation of GPCR or HDAC inhibition, such as modulating
intestinal homeostasis, enhancing the production of antimicrobial peptides, providing anti-
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inflammatory immune responses, and augmenting mucosal vaccine properties [105,106].
SCFAs also affect bone metabolism by the regulation of osteoclasts and osteoblasts via
GPCR or HDAC inhibition [107–109].

Iwami et al. reported that sodium butyrate potently attenuates the formation of
tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, which are cul-
tured from bone marrow cells [16]. Besides, FFAR1 knockout mice show less bone density
than wild-type mice. In addition, activation of FFAR1 suppresses the mRNA expression of
osteoclast-specific genes, such as TRAP, matrix metalloproteinase-9 (MMP-9), and cathep-
sin K, and RANKL-induced osteoclastogenesis from macrophages via inhibiting RANKL-
induced NF-κB signaling pathway [110]. Similarly, increased alveolar bone loss is observed
in FFAR2 knockout mice. In fact, activation of FFAR2 by SCFAs or its agonists decreases
the RANKL-induced osteoclast differentiation from macrophages and prevents alveolar
bone loss [111]. On the other hand, mRNA expression levels of FFAR3 or GPCR 109a
are downregulated during RANKL-induced osteoclast differentiation from macrophages.
Moreover, inhibitory effect of SCFAs on osteoclastogenesis treated with RANKL is not
observed if SCFAs were administered to committed osteoclasts [107]. Interestingly, two
HDAC inhibitors, trichostatin A and sodium butyrate, inhibit the RANKL-induced osteo-
clast differentiation from macrophages through downregulation of osteoclast-specific gene
expression, such as RANK and cathepsin K [108]. Because HDAC inhibition dampens
osteoclast differentiation [103], inhibition of HDAC by SCFAs may be involved in the sup-
pression of osteoclastogenesis [108]. Collectively, SCFAs inhibit the osteoclastogenesis from
macrophages via HDAC inhibition and/or FFAR1 or 2 activation but not from committed
osteoclasts [107,108,110,111].

SCFAs also influence osteoblast proliferation and differentiation in both animals and
humans. Sodium butyrate increases the ALP activity of MC3T3-E1 murine osteoblastic cell
line [16]. In contrast, a high concentration of sodium butyrate inhibits the differentiation
and mineralization of ROS17/2.8 rat osteoblastic cell line via suppression of osteoblast-
specific factors, such as Runx2, osterix, and Dlx5 [112]. Moreover, a low concentration of
butyrate induces histone H3 acetylation with concurring expression of ALP, osteonectin,
and OPG in MG-63 human osteoblastic cell line [109]. In fact, treatment of sodium butyrate
at 16 mM attenuates osteoblast proliferation by suppression of cell cycle in vitro [113]. No-
tably, they have the potential to treat destructive bone diseases caused by postmenopausal
or inflammatory conditions in animal models [114]. Thus, the optimal concentration of
SCFAs could be used as therapeutic agents for treating bone diseases.

2.4.2. Extracellular Vesicle

EVs could be released from archaea, eukaryote, and bacteria [115]. EVs are usually
classified into three types (exosomes, microvesicles, and apoptotic bodies) according to their
biogenesis [116]. Among them, the diameter of bacterial EVs is roughly 20~500 nanome-
ters, and these spherical membrane-enveloped particles are secreted from parental bac-
teria into the extracellular environment [117]. Bacterial EVs carry diverse cargos such
as membrane-bound proteins, LPPs, polysaccharides, enzymes, toxins, metabolites, and
nucleic acids [118]. Bacteria can utilize EVs for horizontal gene transfer [119]. Various
host cells recognize the content of EVs via diverse PRRs such as TLR, NOD, and retinoic
acid-inducible gene, potentially leading to inflammatory conditions, or in some cases,
immune tolerogenic conditions [120].

It has been reported that EVs derived from Filifactor alocis inhibit the differentiation of
bone-derived mesenchymal stromal cells in vitro [17]. In addition, F. alocis EVs potently
downregulate osteogenic factors, such as Runx2, osterix, ALP, osteocalcin (OCN), and
type I collagen, thereby attenuating mineralization. Notably, F. alocis EVs activate TLR2
but not TLR4, and the inhibitory effect of F. alocis EVs on osteogenic differentiation is
fully dependent on TLR2 signaling pathway which mediates the activation of MAPK
and NF-κB [17]. Unfortunately, the role of bacterial EVs on osteoclast differentiation
and function has been poorly investigated. However, emerging evidence indicates that
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bacterial EVs might directly or indirectly influence osteoclast differentiation. Bacterial
EVs activate the monocyte-derived dendritic cells to induce pro-inflammatory cytokines,
such as IL-1β, IL-6, or TNF-α, which can trigger the osteoclast differentiation from com-
mitted osteoclasts [121,122]. Moreover, bacterial EVs regulate the expression of RANKL
and OPG, which are modulators of osteoclastogenesis, through TLR2 in mesenchymal
stromal cells [17]. Further studies are needed to understand the role of bacterial EVs on
bone metabolism.

2.4.3. Extracellular Polysaccharide

Many bacteria produce extracellular polysaccharides which are classified into two
types: exopolysaccharides (EPS) and capsular polysaccharides (CPS) [123]. EPS are de-
fined as released polysaccharides around the bacterial cell surface, becoming an integral
component of biofilm [124]. On the other hand, CPS are covalently bonded to the bacterial
cell surface [125]. Bacteria exploit the extracellular polysaccharide as a barrier to protect
themselves against harsh environments [126].

Mounting evidence suggested that extracellular polysaccharides of bacteria have
bi-functional effects on bone metabolism. For example, EPS purified from Bifidobacterium
longum (EPS-624) inhibit osteoclast differentiation from mouse bone marrow-derived
macrophages by activating TLR2 signaling pathway [127]. In addition, EPS-624 increase
the differentiation of osteoblasts from human bone marrow-derived mesenchymal stro-
mal cells [127]. Thus, authors suggested the potential therapeutic use of EPS-624 against
destructive bone diseases [127]. Moreover, EPS isolated from Vibrio diabolicus, which are
hyaluronic acid-like EPS, potently enhance bone healing without abnormal bone growth
in vivo [128]. Indeed, lying osteoblasts on trabecular bone surfaces and increasing osteo-
cytes inclusion are observed in the bone treated with EPS [128]. In contrast, oversulfated
EPS produced by Alteromonas infernus (OS-EPS) inhibit the proliferation and mineralization
activity of osteoblasts in vitro [129]. Also, OS-EPS decrease the RANKL-induced osteoclast
differentiation from CD14+ human monocytes while increasing the collagenolytic activity
of osteoclasts by using cathepsin K [129]. Notably, OS-EPS cause trabecular bone loss
through enhanced osteoclastogenesis [129].

Similar to EPS, CPS also affect the activation and differentiation of bone cells, including
osteoclasts and osteoblasts. CPS from Aggregatibacter actinomycetemcomitans Y4 (Aa-CPS)
enhance the formation of osteoclasts and promote the bone resorptive activity through the
induction of IL-1α in vitro [130]. Aa-CPS also activate osteoclasts by upregulating PGE2,
which has a positive effect on osteoclast formation in vitro [131]. These reports indicate
that Aa-CPS-induced PGE2 and IL-1α are involved in inflammatory bone diseases such as
periodontitis by promoting osteoclastogenesis. In addition, Aa-CPS show anti-proliferative
activity by causing Fas-mediated apoptotic cell death in MC3T3-E1 murine osteoblastic cell
line in vitro [132]. Moreover, immunization of CPS from P. gingivalis exhibits immunoglob-
ulin responses and protects P. gingivalis-induced oral bone loss in vivo, suggesting that
CPS are one of the responsible molecules for bone diseases [133]. In conclusion, because
extracellular polysaccharides have controversial effects on the bone metabolism, further
studies are needed.

2.4.4. Cyclic Dinucleotide

CDNs were originally identified in 1987 as bacterial second messengers that regulate
cellulose synthesis [134]. Bacterial CDNs are classified as cyclic diadenylate monophos-
phate (c-di-AMP), cyclic diguanylate monophosphate (c-di-GMP), and 3′,3′-cyclic guano-
sine monophosphate-adenosine monophosphate (3′3′-cGAMP) [135]. CDN contains two
nucleotide monophosphates that are linked to each other by phosphodiester bonds to
form a cyclic structure [135]. CDNs are important for the maintenance of bacterial life
cycle including survival, colonization, and biofilm formation [136]. For instance, CDNs
trigger extracellular matrix production, subsequently forming biofilm in bacteria [137].
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Furthermore, CDNs released from bacteria can be recognized by host cells and activate
various host immune responses [138].

Stimulator of IFN genes (STING), also known as transmembrane 173, has 4 trans-
membrane regions and is located at the endoplasmic reticulum of host cells [139]. STING
directly recognizes the cytosolic CDNs, leading to secretion of type I IFNs (Figure 6) [140].
When CDNs bind to STING, STING recruits TRAF-associated NF-κB activator-binding
kinase 1 (TBK1) to the C-terminal tail [141]. Recruited TBK1 phosphorylates IRF3, forming
a homodimer [142]. Phosphorylated IRF3 homodimer enters through the nucleus pore,
inducing the gene expression of IFN-β [142]. Several studies investigated that STING
is involved in bone metabolism. Overexpression of STING in RAW 264.7 cell inhibits
RANKL-induced osteoclast differentiation and expression of osteoclast-specific genes, such
as TRAP, cathepsin K, and MMP-9 [143]. On the other hand, lack of STING suppresses
bone accrual via inhibition of pro-osteogenic gene expression [144].
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Interestingly, CDNs can also influence bone metabolism. CDNs inhibit RANKL-
induced osteoclast differentiation from mouse bone marrow-derived macrophages through
STING-dependent signaling pathway [18]. Authors demonstrated that CDNs potently
trigger STING-TBK1-IRF3 cascade and induce the mRNA expression of IFN-β during
osteoclast differentiation from macrophages. IFN-β in turn acts as a negative regulator of
osteoclast differentiation by activating Janus kinase (Jak)-signal transducer and activator
of transcription (STAT) signaling [145], which is the major pathway responsible for the
inhibition of osteoclastogenesis. In contrast, because ubiquitin-mediated degradation of
Jak in committed osteoclasts, CDN-induced IFN-β cannot activate the Jak-STAT signaling
pathway during differentiation of committed osteoclasts from mouse. Notably, CDNs pre-
vent the RANKL-induced bone destruction in collagen sheet implanted mouse model [18].
Recently, it has been reported that STING interacts with TRAF6, which is a TLR signaling
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mediator, in human keratinocytes and monocytes [146]. Thus, further studies are needed to
understand cooperative effects of MAMPs and CDNs on bone metabolism. In conclusion,
targeting STING using CDNs serves as a novel therapeutic strategy for bone disorder
treatment due to its heavy regulatory association with bone metabolism.

3. Therapeutics

Microbes influence bone metabolism by constant interaction with host using their
various MAMPs (Table 2) [7]. In infectious condition, MAMPs often trigger immoderate
osteoclastogenesis or inhibit osteoblast differentiation through the activation of immune
responses, causing bone diseases such as osteomyelitis, osteoporosis, and periodontitis [7].
Antibiotics are commonly used to treat MAMP-induced bone diseases in bacterial infec-
tion [147]. Nevertheless, the emergence of antibiotic-resistant bacteria and remaining
MAMPs after treatment pose significant challenge for complete clearance [148]. Therefore,
further studies are needed to understand the role of MAMPs in bone diseases and to control
the immune responses induced by MAMPs.

Table 2. Effects of secretory microbial molecules on bone metabolism.

MAMPs Mechanism Effects on Bone Metabolism References

Short chain
fatty acids

Activation of
GPCRs

Inhibition of
histone

deacetylases

Inhibited osteoclast differentiation and function
Upregulated osteogenic factors in low dose

Attenuated osteoblast differentiation and mineralization
Prevented bone loss in various mouse models

[109,111,112,114]

Extracellular
vesicles

Activation of
TLR2

Induction of pro-
inflammatory

cytokines

Downregulated osteoblast differentiation and activity
Regulated RANKL and OPG expression in mesenchymal cells [17]

Extracellular
polysaccha-

rides

Activation of
TLR2

Inhibited osteoclast differentiation from macrophages, but some EPS
increased collagenolytic activity of osteoclasts

Enhanced osteoblast differentiation, but oral pathogen-derived CPS
decreased proliferation of osteoblasts

[127–129,132]

Cyclic
dinucleotides

Induction of
STING-mediated

IFN-β

Inhibited differentiation of macropahges into mature osteoclasts
Alleviated RANKL-induced bone destruction [18]

On the other hand, several studies investigated that some MAMPs, especially derived
from probiotics, decrease bone resorption or enhance bone formation by controlling the
differentiation of osteoclasts or osteoblasts, respectively, in both in vitro and in vivo stud-
ies [18,57,114]. Many therapeutic drugs, such as bisphosphonates, monoclonal antibodies,
or hormone preparations, are traditionally developed to treat bone diseases by inhibiting
bone resorption or inducing bone formation [149–151]. However, conventional drugs show
unexpected side effects, such as nausea or osteonecrosis of jaw [151–153]. Therefore, we
suggest that probiotic-derived MAMPs could alternatively be used in place of conven-
tional therapies. To evaluate their therapeutic use, we have discussed below how to treat
MAMP-induced bone diseases and how to exploit MAMPs in bone health.

3.1. Treatment of Microbe-Associated Molecular Patterns-Induced Bone Diseases

In general, most MAMPs are potent inducers of pro-inflammatory cytokines, such
as IL-1, IL-6, or TNF-α, via the recognition by PRRs on animal and human cells, includ-
ing epithelial cells, endothelial cells, and immune cells [154]. These MAMP-induced
pro-inflammatory cytokines positively influence the differentiation of animal and human
committed osteoclasts into mature osteoclasts and the activity of osteoclasts, leading to
bone loss [155]. Thus, targeting pro-inflammatory cytokines or their receptors can become
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one of the therapeutic strategies for MAMP-induced bone diseases. For example, through
the use of blocking antibodies that antagonize TNF-α and IL-1 receptors, significant reduc-
tion of inflammation and osteoclastogenesis were observed in experiment using mouse
committed osteoclasts in vitro [41]. Antibody specific to IL-6 or IL-6 receptor directly
inhibits osteoclast differentiation from mouse committed osteoclasts in in vitro experiment
and restores bone erosion in TNF-α-transgenic mice [41,156]. Furthermore, many pre-
clinical and clinical studies reported that TLR inhibitors or blocking antibodies alleviate
inflammatory diseases [157]. Since MAMPs directly promote osteoclast differentiation
from mouse committed osteoclasts through the activation of PRR signaling pathway in
both in vitro and in vivo, regulation of MAMPs using inhibitors or antibodies may also be
effective to control MAMP-induced osteoclastogenesis [41,158].

In the case of osteoblasts, targeting and inhibiting some potent MAMPs involved in
diminishing osteoblasts could be a useful way to alleviate bone diseases [159]. For instance,
hindering the action of LPS, which is a potent osteoblast inhibitor, might be valuable to
prevent LPS-induced bone loss in bacterial infections [159–162]. There are several ways to
inhibit the action of LPS. Jung et al. demonstrated that TLR4 decoy receptor inhibits LPS-
induced NF-κB activation in human lymphatic microvascular endothelial cells in vitro and
prevents Gram-negative bacterial sepsis in LPS-induced sepsis mouse model [159]. Indeed,
anti-TLR4-antibody effectively treated stroke in vivo, hinting the therapeutic potency of
anti-TLR4-antibody [160]. Therefore, blocking TLR4 by its specific antibody or decoy
receptor might be helpful in LPS-induced osteoporosis patients. Another way to prevent
LPS from binding osteoblasts is direct neutralization of the LPS. There are several peptides
that can bind and inhibit LPS-induced inflammation. Antitoxin peptide Pep 19-2.5, which
is designed to bind to LPS, reduced TNF-α expression and inflammation in several in vitro
and in vivo models [161]. In addition, polymyxin B, which neutralizes LPS, shut down
NF-κB signaling pathway in vitro [162]. As mentioned, LPS-neutralizing peptides could
inhibit downstream signaling pathway of LPS and, therefore, are expected to be useful
in preventing LPS-induced osteoblast reduction. Furthermore, LPPs or adhesins, which
negatively affect osteoblast differentiation, could also be prevented by blocking osteoblast
recognition receptors or neutralizing the MAMPs by antibodies or neutralizing peptides.

3.2. Probiotics as Therapeutic Agent for Bone Health

Recent decades, numerous studies are implemented to understand the role of commen-
sal microbiota on digestive, endocrine, nervous, and immune system in the host [163]. No-
tably, emerging evidence indicates that commensal microbiota could regulate bone metabolism
by controlling immune function and enhancing barrier function (Table 3) [11,164].

Table 3. Benefits of probiotics on bone health.

Probiotics
Bone Effects

Animal Model References
Increase Decrease

L. reuteri ATCC 6475

BV/TV, Tb.N, Tb.Th, OCN Normal [12]

BV/TV, Tb.N, Tb.Th RANKL, TRAP5 Ovariectomy [165]

BV/TV, OCN, Wnt10b Diabetic osteoporosis [166]

L. rhamnosus GG
BV/TV, OCN RANKL, TNF-α, IL-17 Ovariectomy [11]

Bone loss, Inflammation Periodontitis [167]

L. paracasei
and L. plantarum BV/TV, Tb.N, Cortical bone Ovariectomy [168]

L. casei Osteolysis Calvarial resorption [169]

L. gasseri SBT2055 Bone loss, Inflammation Periodontitis [13]

L. brevis CD2 Bone loss, Inflammation Periodontitis [14]
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For instance, supplementation of probiotics, microorganisms that offer health benefit
to the host, prevents bone loss in postmenopausal ovariectomized mice [11,164]. In addi-
tion, L. reuteri ATCC 6475 upregulates bone volume/tissue volume (BV/TV), trabecular
number (Tb.N), and trabecular thickness (Tb.Th) in normal mice, postmenopausal ovariec-
tomized female mice, and type I diabetic bone loss male mice [12,165,166]. L. rhamnosus
GG increases BV/TV and OCN level but decreases RANKL, TNF-α, and IL-17 mRNA
expression in ovariectomized osteoporotic mice [11]. Lactobacillus paracasei and L. plan-
tarum enhance BV/TV, Tb.N, and cortical bone in osteoporotic mice [168]. L. casei prevents
wear-debris induced osteolysis [169]. Furthermore, L. rhamnosus GG, L. gasseri SBT2055,
or L. brevis CD2 downregulates alveolar bone loss and inflammation in periodontitis an-
imal model [13,14,167]. These reports suggest that probiotics are enough to induce bone
formation and reduce bone resorption in the host, presenting their possibility as novel
bone healing agents. Moreover, the underlying action mechanisms of probiotics on bone
metabolism are being elucidated. A well-known mechanism is that probiotic-derived
MAMPs, such as cell wall components and secretory molecules, interact with bone cells,
resulting in the regulation of bone metabolism.

As mentioned previously, MDP has positive effects on bone metabolism. MDP po-
tently augments osteoblast differentiation and induces bone formation through the ac-
tivation of NOD2 signaling pathway [57]. MDP has both preventive and therapeutic
effects against RANKL-induced osteoporosis mouse model [57]. Other NOD2 ligands,
including M-TriLYS, L18-MDP, and murabutide, also promote osteoblast differentiation
in vitro and upregulate bone volume when injected in normal mice [57]. Furthermore,
MDP indirectly inhibits osteoclastogenesis with attenuated RANKL/OPG ratio [57]. No-
tably, increased RANKL/OPG ratio can be observed in postmenopausal women with low
bone mineral density [170], suggesting that MDP can effectively be used to treat patients
with abnormal RANKL/OPG ratio. Collectively, MDP and other NOD2 agonists including
NOD2-stimulating PGNs are promising therapeutic agents for the prevention or treatment
of bone diseases by controlling the differentiation of both osteoclasts and osteoblasts.

Probiotic-derived secretory molecules, such as SCFAs and CDNs, also influence bone
metabolism. SCFAs directly decrease the formation and function of mouse osteoclasts
by HDAC inhibition and change the metabolic condition of mouse bone marrow cells
in vitro [114]. In addition, adequate dose of SCFAs upregulates ALP activity of MC3T3-E1
mouse osteoblastic cell line in vitro [16]. Low dose of SCFAs increases osteoblast differentia-
tion by HDAC inhibition in vitro using MG-63 human osteoblastic cell line [109]. Moreover,
SCFAs indirectly increase osteoblast differentiation in wild-type mice compared to T-cell
receptor knockout mice in which butyrate-activated T cells release the osteoblast differen-
tiation factor, Wnt10b [171,172]. Furthermore, SCFAs systemically increase bone density
in postmenopausal ovariectomized or collagen-induced inflammatory arthritis mouse
model [114]. Like SCFAs, CDNs which are secretory bacterial second messengers also
decrease osteoclast differentiation from mouse macrophages in vitro via STING-mediated
IFN-β signaling pathway. In addition, CDNs potently prevent calvarial bone loss in col-
lagen sheet implanted mouse model [18]. It is likely that bacterial secretory molecules,
such as SCFAs and CDNs, can be developed as therapeutic agents for the treatment of
bone diseases by inhibiting excessive osteoclastogenesis and promoting the activity of
osteoblasts. Further studies are necessary to fully understand the regulatory effects of
probiotic-derived molecules on osteoclast or osteoblast differentiation and activation.

4. Conclusions

In this review, we discussed the properties of MAMPs on bone metabolism in both
in vitro and in vivo conditions. The MAMPs, including the cell wall components and
secretory molecules, can directly or indirectly modulate the differentiation and activation
of osteoclasts and osteoblasts. Thus, the MAMPs could be promising molecular targets for
bacteria-induced bone diseases such as osteoporosis and periodontal diseases. Furthermore,
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a use of beneficial MAMPs on bone metabolism might be a novel therapeutic strategy for
prevention or treatment of bone disorders.
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