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Abstract: The hypothalamic-pituitary-adrenal axis is stimulated in response to stress. When acti-
vated, it is suppressed by the negative feedback effect of glucocorticoids. Glucocorticoids directly
inhibit proopiomelanocortin (Pomc) gene expression in the pituitary. Glucocorticoid signaling is me-
diated via glucocorticoid receptors, 113-hydroxysteroid dehydrogenases, and the FK506-binding
immunophilins, Fkbp4 and Fkbp5. Fkbp4 and Fkbp5 differentially regulate dynein interaction and
nuclear translocation of the glucocorticoid receptor, resulting in modulation of the glucocorticoid
action. Here, we explored the regulation of Fkbp4 and Fkbp5 genes and their proteins with dexametha-
sone, a major synthetic glucocorticoid drug, in murine AtT-20 corticotroph cells. To elucidate further
roles of Fkbp4 and Fkbp5, we examined their effects on Pomc mRNA levels in corticotroph cells.
Dexamethasone decreased Pomc mRNA levels as well as Fkpb4 mRNA levels in mouse corticotroph
cells. Dexamethasone tended to decrease Fkbp4 protein levels, while it increased Fkpb5 mRNA and its
protein levels. The dexamethasone-induced decreases in Pomnc mRNA levels were partially canceled
by Fkbp4 knockdown. Alternatively, Pornc mRNA levels were further decreased by Fkbp5 knockdown.
Thus, Fkbp4 contributes to the negative feedback of glucocorticoids, and Fkbp5 reduces the efficiency
of the glucocorticoid effect on Pomc gene expression in pituitary corticotroph cells.
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1. Introduction

Stress activates the hypothalamic-pituitary-adrenal (HPA) axis. The activated HPA
axis is suppressed by the negative feedback effect of glucocorticoids. Corticotropin-
releasing factor (CRF), produced in the hypothalamic paraventricular nucleus in response
to stress, stimulates the release of the adrenocorticotropic hormone (ACTH) from the ante-
rior pituitary [1-3]. ACTH, cleaved from the proopiomelanocortin (Pomc) gene, stimulates
the secretion of corticosterone and cortisol, the principal glucocorticoid in rodents and
human, respectively, from the adrenal glands [3]. Glucocorticoids bind to the glucocorticoid
receptor (GR), and subsequently inhibit CRF production in the hypothalamus and the
ACTH in the pituitary as an inhibitory feedback loop [4-6].

Glucocorticoid signaling is mediated via the GR, 11p-hydroxysteroid dehydroge-
nases, and the FK506-binding immunophilins, Fkbp52 (Fkbp4) and Fkbp51 (Fkbp5) [7-9].
The genes encoding Fkbp4 and Fkbpb are Fkbp4 and Fkbp5, respectively. Fkbp4 and Fkbp5
differentially regulate dynein interaction and nuclear translocation of the GR [10]. In
the absence of corticosterone, the GR is retained in the cytoplasm as a complex contain-
ing one GR molecule, heat shock protein (HSP) 90 dimer, HSP90-binding protein P23,
and Fkbp5 [11,12].
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Corticosterone binds to a cytoplasmic receptor, GR, in rodents. Following the binding
of corticosterone to the GR, Fkbp5 is replaced by Fkbp4, resulting in translocation of the
complex to the nucleus owing to the interaction between Fkbp4 and the motor protein
dynein [12]. Fkbp5 changes the conformation of the receptor complex, leading to sensitivity
reduction of the GR to corticosterone and negative feedback efficiency [13].

We revealed regulation and roles of Fkbp4 and Fkbp5 in corticotroph cells. In the
present study, we explored the regulation of Fkbp4 and Fkbp5 genes and their proteins using
dexamethasone, a major synthetic glucocorticoid drug, in murine corticotroph AtT-20 cells.
To elucidate further roles of Fkbp4 and Fkbp5, we subsequently examined the effects of
Fkbp4 and Fkbp5 on Pomc mRNA levels in corticotroph cells.

2. Results
2.1. Effect of Dexamethasone on Pomc mRNA Levels

This time course study showed that 100 nM dexamethasone significantly decreased
Pomc mRNA levels with marked effects observed within the first 24 h of treatment (p < 0.05,
Figure 1A). Pomc mRNA levels decreased in a concentration-dependent manner (p < 0.005),
with significant effects initially occurring at 1 nM dexamethasone (Figure 1B).
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Figure 1. Effects of dexamethasone on Pormc mRNA levels in AtT-20 cells. (A) Time-dependent
effects of dexamethasone on Pomc mRNA levels. Cells were cultured in medium containing 100 nM
dexamethasone. (B) Concentration-dependent effects of dexamethasone on Porc mRNA levels.
Cells were cultured for 24 h in medium containing 1-100 nM dexamethasone. Data are expressed as
means + standard errors of the means. * p < 0.05 compared with time 0 or the control (C). Cells were
treated in triplicate, and the average of three independent experiments is shown (n = 3).

2.2. Effect of Dexamethasone on Fkbp4 mRNA Levels

This time course study showed that 100 nM dexamethasone significantly decreased
Fkbp4 mRNA levels (p < 0.01). Within the first 24 h of incubation with dexametha-
sone, Fkbp4 mRINA levels decreased to 72% of the control level (Figure 2A). Addition-
ally, Fkbp4 mRNA levels decreased as dexamethasone concentrations increased (p < 0.01),
with significant effects initially occurring at 10 nM dexamethasone (Figure 2B).

2.3. Effect of Dexamethasone on Fkbp5 mRNA Lvels

This time course study showed that 100 nM dexamethasone significantly increased
Fkbp5 mRNA levels (p < 0.0001). Within the first 6 h of dexamethasone incubation,
Fkbp5 mRNA levels increased to 375% of the control level (Figure 3A). Additionally,
Fkbp5 mRNA levels were increased as dexamethasone concentrations increased (p < 0.0001),
with significant effects initially occurring at 1 nM dexamethasone (Figure 3B).
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Figure 2. Effects of dexamethasone on Fkbp4 mRNA levels in AtT-20 cells. (A) Time-dependent
effects of dexamethasone on Fkbp4 mRNA levels. Cells were cultured in medium containing 100 nM
dexamethasone. (B) Concentration-dependent effects of dexamethasone on Fkbp4 mRNA levels.
Cells were cultured for 24 h in medium containing 1-100 nM dexamethasone. Data are expressed as
means + standard errors of the means. * p < 0.05 compared with time 0 or the control (C). Cells were
treated in triplicate, and the average of three independent experiments is shown (n = 3).
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Figure 3. Effects of dexamethasone on Fkbp5 mRNA levels in AtT-20 cells. (A) Time-dependent
effects of dexamethasone on Fkbp5 mRNA levels. Cells were cultured in medium containing 100 nM
dexamethasone. (B) Concentration-dependent effects of dexamethasone on Fkbp5 mRNA levels.
Cells were cultured for 6 h in medium containing 1-100 nM dexamethasone. Data are expressed as
means =+ standard errors of the means. * p < 0.05 compared with time 0 or the control (C). Cells were
treated in triplicate, and the average of three independent experiments is shown (n = 3).

2.4. Effect of Dexamethasone on Fkbp4, Fkbp5, and GR Protein Levels

This time course study showed that 100 nM dexamethasone significantly increased
Fkbp5 (p < 0.005) and tended to decrease Fkbp4 protein levels (p = 0.094) (Figure 4A and
4B). Within the first 24 h of dexamethasone incubation, Fkbp5 protein levels were increased
to 192% of the control level (Figure 4B), while GR protein levels were decreased to 47%
(Figure 4C).
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Figure 4. Effects of dexamethasone on Fkbp4 and Fkbp5 proteins levels in AtT-20 cells. (A) Time-
dependent effects of dexamethasone on Fkbp4 protein levels. (B) Time-dependent effects of dexam-
ethasone on Fkbpb5 protein levels. (C) Time-dependent effects of dexamethasone on GR protein levels.
Cells were cultured in medium containing 100 nM dexamethasone. (3-actin was used as a housekeep-
ing protein. Data are expressed as means + standard errors of the means. * p < 0.05 compared with
time 0. Cells were treated in triplicate, and the average of three independent experiments (n = 3) and
a representative blot are shown.

2.5. Effect of Fkbp4 and Fkbp5 Knockdown on Dexamethasone-Induced Changes of Pomc
mRNA Levels

Fkbp4 mRNA levels were reduced by 18% in cells transfected with siFkbp4, while Fkbp5
mRNA levels remained unchanged. Pormc mRNA levels were not changed in cells trans-
fected with siFkbp4, while they were decreased by dexamethasone. Dexamethasone-
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induced decreases in Pomc mRNA levels were partially canceled by Fkbp4 knockdown
(Figure 5A).
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Figure 5. Effects of Fkbp4 and Fkbp5 knockdown on dexamethasone-induced changes of Pomc
mRNA levels in AtT-20 cells. Cells were incubated with medium containing control small interfering
(si)RNA or Fkbp4- or Fkbp5-specific siRNA (siFkbp4 or siFkbp5), and subsequently with medium
containing 100 nM dexamethasone (Dex) or control medium. (A) Effect of Fkbp4 on dexamethasone-
induced changes of Pormc mRNA levels. (B) Effect of Fkbp5 on dexamethasone-induced changes
of Pomc mRNA levels. Data are expressed as means + standard errors of the means. * p < 0.05
compared with control siRNA and Dex (-). * p < 0.05 compared with control siFkbp and the Dex (-)
group or control siRNA and the Dex (+) group. Cells were treated in triplicate, and the average of
three independent experiments is shown (n = 3).

Fkbp5 mRNA levels were reduced by 55% in cells transfected with siFkbp5. As expected,
Fkbp4 mRNA levels were not affected by Fkbp5 knockdown. Pormc mRNA levels were not
changed in cells transfected with siFkbp5, while they were decreased by dexamethasone
(Figure 5B). The dexamethasone-induced decreases in Pornc mRNA levels were further
decreased by Fkbp5 knockdown (Figure 5B).

3. Discussion

The activated HPA axis is suppressed by the negative feedback effect of glucocorti-
coids [14]. Pituitary corticotroph cells express high levels of GRs, and glucocorticoids di-
rectly inhibit Pomc gene expression in pituitary corticotroph cells [15]. However, the molec-
ular mechanisms for glucocorticoid negative regulation of Pomc gene expression are not
fully understood. Glucocorticoid suppression of the Pomc gene is specific for the pituitary,
while Pomc gene expression is upregulated by glucocorticoids in the hypothalamus [16].
King et al. [17] proposed that the differences of transcription factors among cells or tis-
sues cause differential regulation, because the interactions with specific DNA-regulatory
sequences and other transcription factors produce cell-type specific effects.

By binding glucocorticoid to the GR, the GR translocates from the cytoplasm to the
nucleus [12]. The glucocorticoid-GR complex directly and indirectly regulates target gene
transcription. The glucocorticoid-GR complex binds to glucocorticoid-response elements
(GRE) in the target gene promoter, and subsequently activates target gene transcription [18],
while the negative glucocorticoid-response elements (nGREs) are necessary for the negative
regulation of Pomc gene expression by glucocorticoids [4,19]. The GR complex binds
to nGREs of the Pomc promoter, and the nGRE complex suppresses Pomc transcription
in the pituitary corticotroph [12]. Additionally, suppression of Nur77 or NeuroD1 by
glucocorticoids is also involved in the glucocorticoid-mediated negative regulation of Pomc
in the pituitary [16,20].
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In our study, dexamethasone-induced decreases in Pomc mRNA levels were partially
canceled by Fkbp4 knockdown. Following the binding of corticosterone to the GR, Fkbp5 is
replaced by Fkbp4, resulting in translocation of the complex to the nucleus (Figure 6A).
Newly-formed GR/HSP90/Fkbp4 complexes generally accumulate in the nucleus [21].
Thereafter, the GR acts on the expression of target genes. Thus, Fkbp4 contributes to
the negative feedback effect of glucocorticoids. Fkbp4 mRNA levels decreased 24 h after
incubation with dexamethasone, and Fkbp4 protein levels tended to decrease. To induce
homeostasis, the decrease in Fkbp4 could lead to a decrease in the effects on Pome gene
expression of glucocorticoids.

A
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Glucocorticoid
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Figure 6. Proposed signaling mechanisms of Fkbp4 and Fkbp5 by glucocorticoids in pituitary
corticotroph cells. (A) Contribution of Fkbp4 to the negative feedback of glucocorticoids. Following
binding of glucocorticoid to the glucocorticoid receptor (GR), Fkbp5 is replaced by Fkbp4, resulting in
translocation of the complex to the nucleus. Newly-formed GR/heat shock protein 90 (HSP90)/Fkbp4
complexes generally accumulate in the nucleus. The GR subsequently suppresses the expression
of the target Pomc gene. (B) Reduced efficiency of the glucocorticoid effect of Fkbp5 on Pomc gene
expression. GR activity stimulates Fkbp5 gene transcription and upregulates the protein FKPB5
(indicated by a red arrow). Increases in the Fkbp5 protein inhibit GR translocation to the nucleus,
resulting in diminished effects on target genes of glucocorticoids.
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GR activity directly stimulates Fkbp5 gene transcription, and upregulates the protein
FKPB5 [22]. Thereafter, Fkbp5 inhibits GR activity [10]. In our study, dexamethasone
increased Fkpb5 mRNA and Fkbp5 protein levels. Fkbp5 gene expression was reported to
be induced by glucocorticoids in humans and rodents [23-25]. In fact, the human Fkbp
gene contains numerous sites for GR binding [26]. Glucocorticoids activate the Fkbp5
gene and increase the protein content, resulting in inhibition of GR translocation to the
nucleus (Figure 6B). Our present study shows that dexamethasone-induced decreases in
Pomc mRNA levels were further decreased by Fkbp5 knockdown. Thus, the increase in
Fkbp5 also diminishes the effects on Pome gene expression of glucocorticoids. Additionally,
in cooperation with the decrease in GR, Fkbp5 may contribute to the desensitization of
glucocorticoid action after the long-term exposure.

Other molecules, such as HSP90, HSP90-binding protein P23, and GR itself, may be
involved in these glucocorticoid effects. Post-tanslational regulation of these molecules,
such as protein phosphorylation, acetylation, and SUMOylation, as well as expression
regulation, may also contribute to the effects. For example, HSP90 hyperacetylation results
in a loss of chaperone activity [27]. Riebold et al. [28] also showed that Cushing’s disease is
caused by overexpression of HSP90 protein and can be treated with an appropriate HSP90
inhibitor. It remains undetermined whether dexamethasone also affects HSP90 expression
or its activity in pituitary corticotroph cells.

In this study, mouse corticotroph tumor cells were used. However, it is unclear
whether these results would be obtained in normal corticotroph cells. In fact, corti-
cotroph tumor cells may show glucocorticoid resistance compared with normal corti-
cotroph cells. Therefore, it is possible that the expression levels of Fkbp4 and Fkbp5 might
differ between these cell types. Studies to determine this are required in future.

In conclusion, dexamethasone decreased Pormc mRNA levels as well as Fkpb4 mRNA
levels in the mouse corticotroph. Dexamethasone increased Fkpb5 mRNA and its protein
levels. Moreover, dexamethasone-induced decreases in Pomc mRNA levels were partially
canceled by Fkbp4 knockdown, and were further decreased by Fkbp5 knockdown. Thus,
Fkbp4 contributes to the negative feedback of glucocorticoids, and Fkbp5 reduces the
efficiency of the glucocorticoid effect on Pormc gene expression in pituitary corticotroph cells.

4. Materials and Methods
4.1. Materials

Dexamethasone was purchased from Sigma-Aldrich (St. Lois, MO, USA).

4.2. Cell Culture

Murine pituitary AtT-20 corticotroph tumor cells were obtained from ATCC (Manas-
sas, VA, USA). The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
(Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS), 100 ug/mL strepto-
myecin, and 100 U/mL penicillin at 37 °C in a humidified atmosphere (5% CO, and 95%
air). Cells were seeded in six-well plates at 15.0 x 10* cells/cm? for 2 day prior to each
experiment. On day 3, cells were washed with DMEM supplemented with 0.2% bovine
serum albumin (BSA), and subsequently cultured overnight in DMEM without FBS prior
to each experiment. Total cellular RNA was collected at the conclusion of each experiment,
and stored at —80 °C until required for the relevant assay.

4.3. RNA Extraction

Cells were incubated at the indicated times with medium alone (control) or medium
containing 100 nM dexamethasone. To examine the concentration-dependent effects of
dexamethasone, cells were incubated with medium alone (control) or medium containing
1-100 nM dexamethasone. Total cellular RNA was extracted using the RNeasy Mini Kit
(QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. The extracted
RNA (0.5 ug) was subjected to a real-time (RT) reaction using random hexamers as primers
with the SuperScript First-Strand Synthesis System for the quantitative RT polymerase
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chain reaction (RT-qPCR) (Thermo Fisher Scientific, Waltham, MA, USA) as described
previously [29].

4.4. RT-qPCR

The resulting cDNA was subjected to RT-qPCR as follows. mRNA expression levels of
mouse Pomc and Fkbp4/5 were evaluated using RT-qPCR with transcript-specific primer and
probe sets (Assays-on-Demand Gene Expression Products; Applied Biosystems, Foster City,
CA, USA). To standardize gene expression levels, 32-microglobulin (B2mg) was used as a
reference gene. Across all treated samples, B2mg mRNA levels did not significantly differ
from those of controls.

The 25-uL RT-qPCR reactions consisted of 1 x TagMan Universal PCR Master Mix
(Applied Biosystems) and 1 x Assays-on-Demand Gene Expression Products for each
of the transcripts (Mm00435874_m1 for mouse Pomc, Mm00487391_m1 for mouse Fkbp4,
Mm00487401_m1 for mouse Fkbp5, and Mm00487401_m1 for mouse B2mg), and 500 ng
c¢DNA (25 uL total volume). An ABI PRISM 7000 Sequence Detection System (Applied Biosys-
tems) was used for amplification with the following thermal cycling conditions: 95 °C for
10 min followed by 40 cycles at 95 °C for 15 s and 60 °C for 1 min. All data are expressed
as a function of the threshold cycle (Ct) for quantitative analyses using ABI PRISM 7000
SDS software (Applied Biosystems). Analyses that used diluted samples of the gene of
interest and the reference gene (B2mg) revealed identical amplification efficiencies. Relative
quantitative gene expression was calculated using the 2-24Ct method.

4.5. RNA Interference Experiments

Fkbp4/5 and control siRNA fragments were designed and purchased from QIAGEN.
The HiPerFect transfection reagent (QIAGEN) was used to transfect AtT-20 cells with
siRNA fragments according to the manufacturer’s protocol.

Target mRNA levels in samples were determined from cells that were seeded in 6-well
plates at a density of 15 x 10* cells/well. Cultures were incubated for 24 h in 1 mL of culture
medium control or experimental siRNAs: Fkbp4-specific siRNA (siFkbp4, Mm_Fkbp4_1) or
Fkbp5-specific siRNA (siFkbp5, Mm_Fkbp5_8), and subsequently incubated in BSA medium
containing dexamethasone or control for 24 h. Thereafter, Pomc, Fkbp4, Fkbp5, and B2mg
transcript levels were assayed via qRT-PCR.

4.6. Western Blot Analysis

Western blot analysis was performed to examine the effect of dexamethasone (100 nM)
on changes in the protein expression of Fkbp4, Fkbp5, and GR. -actin was used as a
housekeeping protein. Cells were washed twice with phosphate-buffered saline (PBS;
Life Technologies, Grand Island, NY) and lysed with Laemmli sample buffer. Cell debris
was pelleted via centrifugation and the supernatant was recovered. Samples were boiled
and subjected to electrophoresis on a 4-20% gradient polyacrylamide gel, and proteins
were transferred to a polyvinylidene fluoride membrane (Daiichi Kagaku, Tokyo, Japan).
After blocking with Detector Block® buffer (Kirkegaard & Perry Laboratories, Gaithersburg,
MD), the membrane was incubated at room temperature for 1 h with each antibody (anti-
Fkbp4 antibody [1:5000 dilution]; anti-Fkbp5 [1:2500 dilution] antibody; anti-GR antibody
[1:5000 dilution] (Proteintech Group, Rosemont, IL); and anti-f3-actin [1:20,000 dilution]
antibody, ab8227, Abcam, Cambridge, MA), washed with PBS containing 0.05% Tween
20, and incubated with horseradish peroxidase-labeled anti-rabbit immunoglobulin G
(1:20,000 dilution; Daiichi Kagaku). The chemiluminescent substrate SuperSignal West
Pico (Pierce Chemical Co., Rockford, IL) was used for detection, and the membrane was
exposed to BioMax film (Eastman Kodak Co., Rochester, NY).

4.7. Statistical Analyses

Each in vitro experiment was performed three times. Samples were analyzed in
triplicate for each group of experiments. Data are expressed as means =+ standard errors of
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the means. Analysis of variance was performed, followed by Shceffe’s multiple comparison
tests. Results with p values < 0.05 were considered significant.
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