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Abstract: Imbalances in gut and reproductive tract microbiota composition, known as dysbiosis,
disrupt normal immune function, leading to the elevation of proinflammatory cytokines, compro-
mised immunosurveillance and altered immune cell profiles, all of which may contribute to the
pathogenesis of endometriosis. Over time, this immune dysregulation can progress into a chronic
state of inflammation, creating an environment conducive to increased adhesion and angiogenesis,
which may drive the vicious cycle of endometriosis onset and progression. Recent studies have
demonstrated both the ability of endometriosis to induce microbiota changes, and the ability of
antibiotics to treat endometriosis. Endometriotic microbiotas have been consistently associated with
diminished Lactobacillus dominance, as well as the elevated abundance of bacterial vaginosis-related
bacteria and other opportunistic pathogens. Possible explanations for the implications of dysbiosis
in endometriosis include the Bacterial Contamination Theory and immune activation, cytokine-
impaired gut function, altered estrogen metabolism and signaling, and aberrant progenitor and
stem-cell homeostasis. Although preliminary, antibiotic and probiotic treatments have demonstrated
efficacy in treating endometriosis, and female reproductive tract (FRT) microbiota sampling has
successfully predicted disease risk and stage. Future research should aim to characterize the “core”
upper FRT microbiota and elucidate mechanisms behind the relationship between the microbiota
and endometriosis.

Keywords: endometriosis; microbiota; dysbiosis; estrogen; estrobolome; metabolome; Lactobacil-
lus; vaginal microbiota; uterine microbiota; gut microbiota; inflammation; immune dysregulation;
antibiotics; probiotics

Term Definition

Microbiota
The collection of all the microorganisms residing in and on the body,
including bacteria, archaea, protists, fungi, and viruses

Microbiome The aggregate of all the genetic material of the microbiota

Estrobolome
The total collection of genes, in the gut microbiota, responsible for
estrogen metabolism

Metabolome The total collection of metabolites in a given environment

Dysbiosis
Imbalance or impairment of the microbiota, characterized by gain of
pathogenic microbes or loss of probiotics

Prebiotic
Compounds that promote growth and activity of beneficial
microorganisms

Probiotic Live microorganisms that are beneficial to host health

1. Endometriosis
1.1. Introduction of Endometriosis

Endometriosis is a complex gynaecological disease characterised by the presence of
endometrial glands and stroma outside the uterus [1]. This tissue is often found at sites in
the pelvis, including ovaries, fallopian tubes, peritoneal surfaces, the bowel and bladder,
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but can also engraft in distant organs [1,2]. Much like the eutopic endometrium, these
histologic lesions respond to estrogen and are driven to proliferate and bleed alongside
the menstrual cycle [1]. Thus, the disease primarily manifests between menarche and
menopause, affecting approximately 10% of reproductive-aged women [1,3–5]. However,
the true prevalence of endometriosis remains enigmatic because the condition presents
differently across patients, ranging from symptomatic to asymptomatic independent of its
severity, and reliable non-invasive tests are not yet available [2,6].

Like the uterine lining, endometriotic implants bleed during menstruation, activating
local inflammation and inducing pelvic pain [1,2]. Often chronic, the disease can have
significant impact on a woman’s physical, mental, sexual and social wellbeing [7–10].
Prolonged inflammation at the lesions can lead to formation of adhesions and scarring
(fibrosis), as well as debilitating symptoms including severe pelvic pain, dysmenorrhea,
dyspareunia, dyschezia and subfertility [1,11]. Symptoms can be relieved by surgically
excising the peritoneal implants, or by supressing lesion growth and bleeding through
hormonal modulation [12,13]. Although many management approaches enhance fertility
and relieve pain, the benefit is moderate and associated with high recurrence rates and
side-effects of hormonal therapy and risks of surgery [1,14]. The current standard of clinical
diagnosis involves surgical visualisation [2], making it not only costly and invasive to
diagnose, but also limits our ability to study it in the asymptomatic general population.

1.2. Aetiology and Pathogenesis

Endometriosis is a multifactorial disease, and its aetiology and pathogenesis are still ill-
established. One of the most widely accepted theories on the origin of ectopic endometrial
tissues is “Retrograde Menstruation”, which refers to the reflux of menstrual debris with
viable endometrial cells via the fallopian tubes into the pelvic cavity [1,15,16]. Once there,
cells in the endometrial deposits must adhere to peritoneal surfaces and proliferate in
order to develop into invasive lesions (Figure 1) [17,18]. Endometrial stromal cells from
women with endometriosis display increased adhesive properties as a result of altered
integrin profiles, allowing them to adhere to the peritoneal lining [18,19]. Cellular adhesion
is further enhanced by the inflammatory peritoneal environment, which is a hallmark of
endometriosis. For example, abundantly present pro-inflammatory cytokine interleukin-8
(IL-8) stimulates cells to adhere to extracellular proteins [20], thus regulating the initial
establishment of the disease.

To survive and expand, endometriotic implants require a blood supply. The process
of angiogenesis is regulated by various angiogenic factors, such as vascular endothelial
growth factor (VEGF), which has upregulated expression in the peritoneal fluid of patients
with endometriosis [18,21,22]. VEGF in the peritoneal fluid (PF) is primarily produced by
macrophages, and its expression is directly regulated by estradiol and progesterone [23].
Tumor necrosis factor-α (TNF-α) and IL-8, also secreted by peritoneal macrophages, are
other potent inducers of angiogenesis and lesion proliferation [24,25]. TNF-α is a predomi-
nant product of activated macrophages, which stimulates other leukocytes to produce IL-6
and more TNF-α. Its role in stimulating endometrial cell adhesion and inducing angio-
genesis is necessary in the initial stages of endometriosis establishment [26]. In addition,
excessive pelvic blood leads to the generation of reactive oxygen species (ROS), which
cause tissue damage and exposes tissues, favoring angiogenesis [11].

The persistence of endometrial debris in the peritoneum may overload the immune
system, causing low-grade inflammation, and over time possibly lead to chronic immune
dysregulation [27]. This results in poor immunosurveillance, allowing the foreign tissue to
escape immune defenses, and has immense consequences for endometriosis [21], as we
review below.

1.3. A Disease of the Immune System

In endometriosis, the peritoneal environment is in a chronic state of local inflam-
mation, and contains immune cells with altered functions. This immune dysregulation



Int. J. Mol. Sci. 2021, 22, 5644 3 of 23

in endometriosis creates an ideal environment for disease progression [21]. At present,
it is unclear whether immune dysfunction is a pathophysiological hallmark or cause of
endometriosis. In either case, there is a strong association demonstrated by the following
findings. Table 1 summarizes how immune dysregulation is embodied in the major types
of immune cells involved.
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1.3.1. Elevated Inflammatory Mediators

Cytokines and prostaglandins are key players in the initiation, propagation and regu-
lation of immune responses, including inflammation processes. Surges of cytokines lead to
signaling cascades and activation of immune cell activity, recruiting more immune cells, and
leading to further cytokine production. In the peritoneum, these molecules are produced
by various leukocytes, mainly macrophages and stromal cells of the ectopic endometrial
tissues, which elicit a localised immune and inflammatory response [2,21,28]. The stromal
cells produce IL-6 at similar rates as macrophages, and have further increased production
when stimulated by TNF-α [29]. It was found that in women with endometriosis, even
eutopic endometrial cells produce higher quantities of IL-6 under basal conditions when
compared to women with endometriosis [30]. Furthermore, events that occur in women
with endometriosis such as overexpression of NF-κB by peritoneal macrophages and en-
dometriotic cells, activation of MAPK pathways and production of ROS all contribute to
cytokine production [31]. Additionally, women with endometriosis have been reported to
have increased numbers of immune cells in the PF, which secrete various growth factors
and cytokines, enhancing survival and proliferation of the ectopic endometrial cells [18,32].
Another study investigating plasma inflammatory markers found that elevated plasma
levels of IL-1β and TNF-α were associated with increased risk for endometriosis [32]. As
a result of all this, the PF of women with endometriosis is a potent mixture of cytokines
whose positive feedback mechanism maintains a chronic state of inflammation.
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Table 1. Dysregulation of peritoneal innate and adaptive immunity creates environment conducive to endometriosis onset
and progression.

Macrophages Neutrophils NK Cells T Cells B Cells
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1.3.2. Macrophages: Principal Contributors to the Pathogenesis of Endometriosis

The peritoneal fluid of women with endometriosis contains a higher number of
activated macrophages in comparison to healthy controls, and these immune cells are
postulated to be the primary contributors to the pathogenesis of endometriosis, in part due
to their high level of cytokine secretion [18,33]. They are recruited to the peritoneal cavity
by various chemo-attractants, including IL-8, and are the main source of IL-6 [18]. Their
activity produces the perfect environment for the adhesion, survival and progression of
ectopic endometrial implants [18,33–35].

These important immune cells phagocytose pathogens, present antigen, and play a
critical role in tissue regeneration, angiogenesis and wound healing [36]. In the healthy
endometrium, their numbers fluctuate throughout the menstrual cycle, heightening in
the secretory phase [37]. This allows them to phagocytose cell debris and apoptotic cells,
effectively cleaning up after endometrial shedding. However, this normal fluctuation is
not observed in women with endometriosis, which could contribute to the survival ability
of refluxed endometrial cells in the peritoneum [33,38].

Furthermore, the peritoneal macrophage population in endometriotic women are phe-
notypically distinct; they exhibit decreased phagocytic capacity and increased activation of
NF-κB pathways, leading to the downstream upregulation of proinflammatory cytokines
(TNF-α, IL-1β, and IL-6), proangiogenic factors (VEGF), growth factors and adhesion
molecules [2,21,33,39,40]. Macrophages can be phenotypically categorised as “classically
activated” (M1) or “alternatively activated” (M2), and their polarisation state depends on
their microenvironment [33]. M1 are involved in proinflammatory responses, while M2
are involved in anti-inflammatory responses, tissue repair and angiogenesis [38]. A recent
study revealed that in women with endometriosis, peritoneal M1 exhibited exaggerated
proinflammatory qualities and M2 tended to switch toward the proinflammatory pheno-
type of M1 [33]. This supports important previous findings in mice that macrophages
infiltrating endometriotic lesions express markers of activation and are necessary for lesion
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growth and vascularisation [35]. However, the mechanisms of macrophage plasticity are
still under debate. Nonetheless, these findings suggest that peritoneal macrophages of
women with endometriosis have reduced ability to clear out invasive endometriotic cells,
and instead contribute to their growth.

1.3.3. Preconditioned Neutrophils

The PF of women with endometriosis also contains higher numbers of neutrophils, re-
cruited by potent chemoattractant IL-8 and preconditioned by bacterial presence [21,41,42].
A study found that neutrophil infiltration in ectopic endometrial tissues peaked in the
early stages of lesion formation and subsequently declined, indicating an important role
for neutrophils in early lesion formation [34].

1.3.4. Impaired Natural Killer Cells

The peritoneal immune environment in endometriosis patients is known to impair
natural killer (NK) cell activity, and is an example of immune dysregulation in endometrio-
sis [21]. NK cells in diseased women express altered patterns of activating and inhibitory
receptors, and display reduced cytotoxicity when exposed to IL-6 and transforming growth
factor beta (TGF-β) [21,43]. This immunosuppressive activity partially explains how ec-
topic endometrial cells are able to evade immunosurveillance and persist in the peritoneal
cavity [21].

1.3.5. Altered T cell Differentiation

T cell subset profiles are altered in women with endometriosis [21]. Cytokine secretion
by T helper (TH) cells is shifted toward TH2, which is involved in the suppression of
cell-mediated immunity, potentially lending to poor immunosurveillance [44,45]. There are
also higher numbers of TH17 cells in the PF of endometriosis patients, and consequently
higher concentrations of IL-17 [46]. The presence of elevated TH17 cells and IL-17 plays an
established role in promoting chronic inflammation [32,47]. IL-17 stimulates production of
cytokines that induce angiogenesis and inflammation, contributing to the progression of
endometriosis [48].

1.3.6. Activated B Cells

B cells are also implicated in endometriosis, although their role is mostly specula-
tive [21]. They are known to produce anti-endometrial autoantibodies, IL-6 and IL-17,
which contribute to inflammation [21,49,50].

It is evident that peritoneal immune dysfunction is deeply involved in endometriosis,
and accumulating evidence suggests that presence of pathogenic, non-commensal bacteria
in the gut and uterine microbiome may be a contributing factor.

1.4. Estrogen Levels and Signaling Is Altered in Endometriosis

Estrogen is heavily involved in many aspects of endometriosis, and the disease is also
considered a hormone-dependent disease, as it bears symptoms restricted to the reproduc-
tive period and is responsive to hormonal treatment [47,51]. In fact, a 2017 study found
that estrogen is necessary to induce endometriosis [52]. In women, estrogen stimulates
the growth of ectopic endometrial tissues and inflammatory activity, and endometriosis
has been associated with alterations in estrogen signaling [47]. For instance, endometriotic
women have a heightened proinflammatory and anti-apoptotic response to estradiol [53].
This may be attributed to the changes in nuclear estrogen receptor expression.

Endometriotic lesions express higher levels of estrogen receptor-β (ER-β), whose
signaling promotes lesion growth by inhibiting TNF-α-induced apoptosis, activating an in-
flammasome which increases IL-1β, and enhancing cellular adhesion and proliferation [54].
In this study, they found that TNF-α, detected abundantly in the peritoneum of women
with endometriosis, cooperates indirectly with ER-β to incite these events [54]. In murine
models, expression of nuclear estrogen receptors (ER-α and ER-β) is altered in lesions, and
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this ER signaling is necessary for lesion establishment [55]. They found that ER-α signaling
drove proliferation, adhesion and angiogenesis of ectopic lesions [55].

Another consequence of estrogen in endometriosis is its ability to affect peripheral
nerve fibres directly or indirectly through the upregulation of various growth factors,
including nerve growth factors (NGF), contributing to nociceptive pain [56].

Three key factors dysregulating estrogen availability in endometriotic women include
expression of estrogen-synthesis enzymes, the estrobolome and the metabolome.

In endometriosis, estradiol is made available through systemic hormones and locally in
the peritoneal environment through aromatase and steroidogenic acute regulatory protein
(StAR) activity [57]. Aromatase is an enzyme that converts androgens into estrogens, and
StAR is a transport protein that regulates the transfer of cholesterol in the mitochondria
required for steroidogenesis. The upregulated expression of these in endometriotic lesions
contributes to the increased availability of estrogen, and drives the disease (Figure 2) [47,57].
In contrast, normal endometrial tissue lacks these enzymes, and is unable to synthesize
estrogen [51].
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Furthermore, estrogen metabolism is known to be regulated by the estrobolome,
a collection of genes in the gut microbiome involved in estrogen metabolism [58,59].
Estrobolome activity modulates the amount of excess estrogen that is expelled from or
reabsorbed into the body [59]. When this activity is impaired, typically as a result of
imbalances in the gut microbiome, excess estrogen can be retained in the body and travel
from the gut to the endometrial and peritoneal environment via circulation [59,60]. This
contributes to the hyperestrogenic state that drives endometriosis, and provides a possible
mechanism as to how dysbiosis in the gut microbiota may be involved in the disease.

Finally, the metabolome also plays a role in regulating circulating estrogen [61].
The metabolome refers to the total metabolites in a given environment, in this case the



Int. J. Mol. Sci. 2021, 22, 5644 7 of 23

gut. It is heavily influenced by gut microbial activity, and includes consequential neuro-
active metabolites that affect the brain and its signalling [62–64]. This bidirectional link
is called the gut-brain-axis, and these compounds bind to host gonadotropin-releasing
hormone (GnRH) receptors to stimulate production of luteinising hormone (LH) and
follicle-stimulating hormone (FSH), which subsequently stimulate the production of estro-
gen [61,65].

2. The Microbiota
2.1. Introduction to the Microbiota

It is well known that the human microbiota, comprising all the microorganisms living
in and on the body, has an immense impact on our wellbeing. From metabolic to immune
functions, these diverse microbial communities are vital to human health and alterations
or imbalances of the microbiome are a significant cause of disease [66,67]. The mammalian
immune system has evolved intricate mechanisms of maintaining homeostasis with resi-
dent microorganisms to avoid barrier breech and ensure the host-microbial relationship
remains mutualistic [68].

2.2. Dysbiosis

Dysbiosis is defined as an imbalance or impairment of the microbiota, which can be a
combination of increased pathogenic microbes or loss of probiotics, and has remarkable
consequences on human health. It has been strongly associated with many diseases such
as Inflammatory Bowel Disease, psoriasis, arthritis and cancer [66,67]. Endometriosis
shares many similarities with such diseases, and we will soon see how it is impacted by
dysbiosis-altered immunoregulatory functions of the microbiota.

2.3. Gut Microbiota

The gut flora is arguably one of the richest and most studied microbiomes, and is
known to play an indispensable role in the absorption and synthesis of nutrients, mainte-
nance of mucosal integrity, protection against pathogens and maturation of the immune
system [68]. Besides its necessity in maintaining physiologic gastrointestinal function, it
has also been found to be a key regulator in many inflammatory and proliferative condi-
tions [69–71]. Furthermore, it has been found to affect estrogen metabolism and stem-cell
homeostasis [17,59]. In the following sections, we will see how aberrant gut microbiota
balance disrupts these important functions and impacts endometriosis.

Role of the Gut Microbiota in Host Immune Function

The gastrointestinal tract is densely populated with organised lymphoid structures
housing immune-related cells [68]. It is well known that the gut microbiota plays a major
role in the development of these structures and in the development of immune cell function.
In fact, in the absence of a gut microbiota, mouse models have shown that such structures
do not even develop, and secretory Immunoglobin A (IgA) and cytotoxic T cells are
deficient [68]. The gut microbiota also shapes mucosal T cell composition (TH1, TH17,
TReg, etc.), and dysbiosis can upset this delicate balance, triggering inflammation and other
diseases [68].

Furthermore, commensal microbes compete for resources, which limits the coloni-
sation of pathogenic microbes. For example, the presence of Lactobacilli in the female
reproductive tract prevents Neisseria gonorrhoeae from adhering, thus protecting the host
from infection [72]. The commensal bacteria also continuously stimulate receptors, leading
to upregulation of Toll-like receptors (TLRs), and consequently increased immunosurveil-
lance [73].

Bacteria also contribute to healthy barrier development in the gut. For example,
Bacteroides play a role in tissue regeneration and vascularisation [68]. In addition, bacteria
are important for physiologic function of other mucosal surfaces, such as endometrial
remodelling in the uterus [73]. During the peri-implantation period, the endometrial
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epithelium exhibits increased permeability, allowing for breaching of uterine microbiota,
and in turn leading to a more pro-inflammatory environment [73]. Secreted metabolites of
residential microbes also affect local microenvironments, altering pH or introducing ROS
for example [74]. Consequently, these intricate interactions can have clinical consequences
if defective.

2.4. Female Reproductive Tract Microbiota

A far less-characterised microbiota exists in the uterine cavity. The upper female
reproductive tract (FRT), consisting of the uterus, fallopian tubes and ovaries, was once
considered a sterile environment. Although this perception has fundamentally changed
over the years, there is still no current consensus on the core female reproductive tract
microbiota that exists in healthy women, nor its exact role in endometriosis [39]. However,
strong evidence continues to grow in support of this changing perception [75].

2.4.1. Proof of Existence

It is well-established that there is a rich microbiota in the vagina, however, far less is
known about the upper FRT microbiota. Up until quite recently, its existence was of debate.
Many researchers have isolated bacteria from the endometrium, during hysteroscopy or
in murine models, confirming that the uterine environment is certainly not sterile [76].
In fact, up to 95% of hysterectomy samples contain bacterial DNA [77]. In a 2016 study,
researchers sought to determine whether microbes in the upper FRT represented a distinct
community to the one in the vagina [76]. They identified the existence of a distinct and
stable endometrial microbiota by examining bacterial samples from endometrial fluid and
vaginal aspirates of reproductive-aged women [76].

2.4.2. Female Reproductive Tract Microbiota Composition

Moreno et al. found that the uterine microbial composition differed from the vaginal
one, and contained up to 191 operational taxonomic units [76]. When analysed, these mi-
crobiotas were categorised as either Lactobacillus-dominant (LD, >90% Lactobacillus spp.) or
non-Lactobacillus-dominant (NLD, <90% Lactobacillus spp. with >10% of other bacteria) [76].
Moreover, they found that NLD microbiotas were associated with adverse reproductive
outcomes. For context, a healthy vaginal microbiota is defined by Lactobacillus presence,
and imbalances lead to pathologies such has bacterial vaginosis [78]. It is hypothesised that
the dominating presence of Lactobacillus spp. in the vaginal microbiota lowers the local pH
through the production of lactic acid and short-chain fatty acids, prohibiting the growth of
pathogenic bacteria [79–81]. However, Moreno et al. did not observe a significant associa-
tion between pH and Lactobacillus-dominance [76], suggesting hypothesised mechanisms
may be unique to the vaginal environment. They suggest instead that NLD compositions
may trigger an inflammatory response in the endometrium, possibly explaining its asso-
ciation with negative pregnancy outcomes [76]. Endometrial inflammation is a hallmark
of endometriosis and a major factor in its establishment and progression. It is therefore
reasonable to suspect that altered endometrial microbiota (or non-Lactobacillus-dominance
in this case) may be related.

Of interest, depletion of Lactobacillus and overgrowth of (opportunistic) pathogenic bac-
teria in the reproductive tract microbiota is characteristic of bacterial vaginosis (BV), a com-
mon vaginal inflammatory condition [82–86]. BV increases local levels of pro-inflammatory
cytokines and damages the epithelial and mucosal barrier [84,85,87–89]. Bacteria associated
with BV, such as Gardnerella, Prevotella and Bacteroides, therefore contribute to increased
risk of more severe gynaecologic diseases, including endometriosis, PID, endometritis and
infertility [74,83,84,90–92].

Several researchers have attempted the challenging feat of characterising the uter-
ine microbiota in healthy women compared to those with underlying diseases such as
endometriosis. Based on reports to date, the uterine microbiota of healthy, asymptomatic
women is most abundantly populated by Firmicutes, Bacteroidetes, Proteobacteria and Acti-
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nobacteria [74]. Moreno et al. identified the five most represented genera in reproductive-
aged women as Lactobacillus (71.7% of identified bacteria), Gardnerella (12.6%), Bifidobac-
terium (3.7%), Streptococcus (3.2%) and Prevotella (0.866%) [76]. Another study identified the
existence of Lactobacillus spp., Mycoplasma hominis, Gardnerella vaginalis and Enterobacter
spp. in the endometrial microbiota [93].

3. Evidence of an Intricate Connection

Recently, research on the involvement of the microbiota in endometriosis has begun
to accrue. It is postulated that dysbiosis may be involved in dysregulating the immune
system and altering estrogen metabolism. Having discussed the extensive role of the
immune system and estrogen signaling in endometriosis, it would seem inevitable that the
microbiota plays a critical role in the disease.

Studies have shown that patients with pelvic inflammatory disease (PID), which
results from the ascension of vaginal bacteria up into the uterus, fallopian tubes and
ovaries, are associated with a threefold increase in risk of developing endometriosis [94],
possibly suggesting that the disease may have an infectious etiology, at least in part [39].

Researchers have found evidence suggesting the gut and female reproductive tract
microbiota may be inextricably linked to the onset and progression of endometriosis. This
novel perspective on endometriosis opens the door to many preventative, diagnostic and
therapeutic possibilities, and is an emerging area of research.

3.1. Endometriotic Women Exhibit Altered Microbiotas

A recent study by Ata et al. sought to compare the vaginal, cervical and gut microbiota
composition of women with Stage III/IV endometriosis to healthy controls [95]. Remark-
ably, they did indeed detect a difference at the genus level. In the cervical microbiota of
endometriotic women, they found increased abundance of potentially pathogenic species
including Gardnerella, Streptococcus, Escherichia, Shigella and Ureaplasma. Stool microbiota of
the endometriotic group were Shigella and Escherichia dominant. Interestingly, they found
a complete absence of Atopobium, a gynaecologic pathogen, in the vagina and cervix of
the endometriotic group. Another study reported high incidence of Atopobium vaginae in
women with endometrial cancer, and suggested that Atopobium can facilitate intracellular
Porphyromonas infection, leading to disrupted cell regulatory functions and carcinogenic
trigger [96]. Conversely, they found A. vaginae to have lower incidence in women with
benign gynaecologic pathologies, suggesting a possible connection through a different
mechanism of action, since endometriosis is also a benign gynaecologic pathology [96].
Several other studies have also found that uterine microbiota composition is altered in
women with uterine diseases, including endometriosis, demonstrating its clinical rele-
vance [97–99]. For example, researchers found an elevated abundance of Streptococcaceae,
Moraxellaceae, Staphylococcaceae and Enterobacteriacea, and lowered Lactobacillacae in
endometriotic women [97]. Recently, Hernandes et al. found that, compared with eutopic
endometrium, ectopic lesions have higher microbial diversity [98]. In Wei et al.’s attempt
to characterize microbiota composition and distribution along the FRT in endometriotic
women, they found in conformance that the lower FRT was Lactobacillus dominant, and
significant differences in community diversity appeared and increased from the cervix up
into the endometrium and PF [99].

In general, studies to date have consistently found increases in BV-associated bacteria
and opportunistic pathogens, and a decrease in Lactobacillus in the reproductive tract of
endometriotic women [82,83,95].

3.2. Endometriosis Induces Gut Microbiota Alterations

In a study where mice were injected with intraperitoneal endometrial tissue to induce
endometriosis, it was demonstrated that after 42 days of endometriotic lesion persistence,
a distinct gut microbiota develops [100]. In other words, endometriosis progression was
able to change the gut microbiota. Among the observed differences, the nearly doubled
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Firmicutes/Bacteroidetes ratio in endometriotic mice was discriminative and concrete [100].
A previous study in 2002 also found similar differences in microbiota profiles in rhesus
monkeys [101]. Compared to healthy controls, monkeys with endometriosis had lower
Lactobacilli and higher gram-negative bacteria [101]. The ratio Firmicutes/Bacteroidetes
is widely accepted as a feature of dysbiosis (Figure 3); hence, these momentous findings
support that endometriosis induces gut microbiota alterations.
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3.3. Faecal Microbiota Transfer Induces Endometriosis

Findings from a compelling mouse model study (Figure 4) support that a distinct gut
microbiota promotes endometriosis [102]. In this study, mice were subjected to surgical
induction of endometriosis, and then treated with antibiotics which reduced lesion size.
Subsequently, they received faecal microbiota transfers from endometriotic mice, which
restored lesion growth and associated inflammation [102].

3.4. Diet-Induced Gut Microbiota Changes Reduce Endometriosis Risk

Another interesting finding is that women with a high omega-3 polyunsaturated fatty
acids (PUFAs) intake have lower risk for endometriosis [103,104]. A similar diet showed
anti-inflammatory effects and suppressed endometriotic lesion formation in murine mod-
els [105,106]. It is reasonable to speculate that this can be at least partially attributed to
diet-induced modification of the gut flora. Research has shown that diets high in PUFAs
and probiotic supplements may alter the gut flora, and may contribute to the prevention
and treatment of various diseases, including osteoporosis and obesity [107,108].
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4. Postulated Mechanisms of Microbiota Involvement in Endometriosis

Endometriosis is a multifactorial disease; it is impacted by activation of innate and
adaptive immunity, cytokine secretion, estrogen signaling and stem and progenitor cell
homeosis. Although it remains unclear whether dysbiosis causes endometriosis or vice
versa, it is apparent that these connections are promising in the pursuit of diagnostic tools
and therapeutics. There are several postulated mechanisms of how each of the above
factors influencing endometriosis is intertwined with the microbiota, shown in Figure 5.

4.1. Bacterial Contamination Theory and Immune Activation

The Bacterial Contamination Theory proposes that bacterial presence in the uterine
environment triggers the altered inflammatory reaction observed in endometriosis, by sup-
plying lipopolysaccharides (LPS) which are refluxed into the PF and bind to the abundant
pattern recognition receptors (PRRs) [109]. In support of this theory, Khan et al. found
higher levels of Escherichia coli in menstrual blood of women with endometriosis, which
suggests that elevated endotoxin levels in peritoneal fluid may promote TLR-4 mediated
endometriosis progression [110].

Menstrual debris and endometrial fragments that arrive in the peritoneum via retro-
grade menstruation also release damage-associated molecular pattern (DAMP) molecules,
iron and ROS [16,21,47]. These molecules lead to the activation of innate immune cells
such as macrophages, neutrophils and mast cells [21,47], initiating the release of proinflam-
matory cytokines and angiogenic growth factors in the PF. This recruits more immune cells,
promoting the inflammation and vascularisation of endometriotic lesions. The secreted
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interleukins also affect adaptive immune cell differentiation, thus increasing the number of
TH17 cells which stimulate hypervascularisation [17,21].
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While the Theory of Retrograde Menstruation may explain the arrival of endometrial
tissue in the peritoneum, it does not provide an adequate explanation for why these
fragments develop into endometriosis in some women and not others. At least part of
this explanation may lie in the immune dysregulation of endometriotic women, who
present differences in the intensity and extent of this initial immune response and in
their peritoneal immune environment [1,17,21,26]. But why do some women have a far
stronger immune reaction than others? It has been shown that the microbiota is a major
regulator of such processes. For example, bacteria presence in the gut pre-stimulates
neutrophils, pre-conditioning them for recruitment to sites of the inflammation in the
peritoneum [42]. Furthermore, dysbiosis in the gut compromises barrier function, causing
increased permeability and microbial metabolite leakage, which all trigger inflammatory
changes [17,21]. As a result, peritoneum macrophage numbers increase and they display
dysregulated function (altered phenotypes); their capacity to phagocytose newly implanted
endometriotic lesions is hindered, promoting survival of lesions [17,100,111]. The presence
of filamentous bacteria in the gut also induces the activation of CD4+ T cells, namely TH17
cells [112].

It is likely that the microbiota, particularly in a state of dysbiosis, may contribute to the
immune activation that strengthens and prolongs peritoneal inflammation, and possibly
endometriosis progression.

4.2. Cytokines Affect Gut Function

Another possible mechanism explaining how endometriosis may be inducing gut
dysbiosis was elucidated when researchers discovered that endometriotic rhesus monkeys
also had higher prevalence of intestinal inflammation, in addition to their gut dysbio-
sis [101]. The intestinal inflammation was characterised by recruitment of macrophages
and monocytes, and secretion of pro-inflammatory cytokines. By now, it is well-established
that peritoneal inflammation, attributable to the high local cytokine concentration, is a
hallmark of endometriosis [113–115]. Cytokines can travel and are known to exert effects
on the gastrointestinal tract, playing a role in the suppression of gastric acid secretion
and gut motility [101,116,117]. This makes the internal environment less conducive to
Lactobacilli species, and allows for overgrowth of gram-negative ones [101]. Although
preliminary, this hypothesis offers the possible explanation that endometriosis induces gut
dysbiosis by impairing gut function through cytokine activity.

4.3. Microbiota Composition and Estrogen Availability

Another way that the microbiota may be related to endometriosis is through the regu-
lation of estrogen. It is known that the gut microbiota is involved in estrogen metabolism,
and it was demonstrated that gut microbial richness regulates systemic estrogen levels
through the action of β-glucuronidase [58,59,118,119]. β-glucuronidase converts estrogens
into their active forms so that they can bind ERs (Figure 2). When there is gut dysbiosis,
microbial β-glucuronidase secretion can be upregulated, which increases estrogen abun-
dance [59]. Active estrogen in the gut can then be transported to distal mucosal sites, such
as the endometrium, through the bloodstream [59]. In this way, the gut microbiota regulates
estrogen homeostasis in both intestinal and distal sites. It is suspected that gut microbiotas
of endometriosis patients have a larger number of β-glucuronidase producing bacteria [59].
In fact, the implicated Firmicutes/Bacteroidetes ratio observed in endometriotic women
may be acting through the dysregulation of estrogen metabolism, since microbes in these
phyla possess glucuronidase-related genes [120,121].

Gut dysbiosis can also contribute to changes in the metabolome, which may manifest
in increased levels of neuro-active metabolites such as serotonin, glutamate, short chain
fatty acids (SCFAs) and gamma-aminobutyric acid [61,63,64,122–124]. These metabolites
travel to the brain and stimulate neural receptors, including GnRH neurons, ultimately up-
regulating ovarian secretion of estrogen through sequential hormone signaling [61,62,65].
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Conversely, estrogen levels have also been shown to impact the microbiota [97]. A
study found that suppression of estrogen with GnRH-agonist modified uterine microbiota
composition [97], while increased estrogen promoted Lactobacillus-dominance in the genital
microbiota [125]. The altered estrogen availability and signaling in endometriosis, resulting
from imbalances in the estrobolome, upregulation of estrogen-synthesis enzymes and
abnormal estrogen receptor expression, could therefore have implications on the genital
microbiota composition [97]. This could lead to loss of healthy microbiota, and increase
risk for conditions such as BV, which are a known gateway to more severe gynaecologic
diseases, such as endometriosis, by increasing inflammatory cytokine concentration and
damaging epithelial barriers [59,74,83–85,87–89].

4.4. Microbiota Regulates Progenitor and Stem-Cell Homeostasis

Research on the involvement of stem cells and progenitor cells derived from the bone
marrow in endometriosis is accumulating. Human endometrial tissue is highly dynamic
and undergoes regular cyclic regeneration, and therefore contains a repository of progenitor
stem cells [126]. In patients with endometriosis, normal stem cell mobility and trafficking
to the uterus is altered [126]. They migrate to ectopic sites via the bloodstream, allowing
for uncontrolled growth of endometrial tissue beyond the normal uterine environment,
and contributing to endometriosis [126]. Interestingly, the gut microbiota composition has
been reported to correlate with stem cell proportions in the bone marrow, suggesting it
may be involved in modulating stem-cell homeostasis [127], and thus the pathophysiology
of endometriosis.

The present explanations still require extensive research; many are speculations arising
from interesting observations, but there is a paucity of robust studies to demonstrate
causal relationships.

5. What Can This Mean for Endometriosis Care

It is evident that bacterial presence in both the gut and uterus plays a major role in
endometriosis. But what does this mean for patients? Could the modulation of the micro-
biota be a therapeutic or preventative approach? Could certain microbial compositions or
the presence of microbiota-based biomarkers be used as screening or diagnostic tools?

5.1. Gynaecologic and Obstetric Applications of Microbiota Modulation

Microbiota modulation through antibiotics is already broadly applied in the field of
gynaecology and obstetrics [128]. In accordance with ample research showing uterine
dysbiosis threatens fertility and pregnancy outcomes, it is suggested that intervention
options such as uterine lavage or antibiotics to eradicate microbes or pro/prebiotics and
improve the microbiota could be valuable [128]. In a recent clinical setting, broad-spectrum
antibiotics and pre/probiotics were employed to achieve Lactobacillus-dominant uterine
microbiota (from previously non-Lactobacillus-dominant), which led to higher pregnancy
rates [129]—A hopeful finding that encourages further investigation of this approach.
Moreover, many studies show that treatment of chronic endometritis with antibiotics leads
to improved reproductive outcomes [130–133].

5.2. Treating Endometriosis with Antibiotics

Antibiotics may be a promising approach for treating endometriosis. In fact, broad-
spectrum antibiotic treatments have demonstrated efficacy for treating endometriosis in
animal models [102]. A recent study found that use of broad-spectrum antibiotics inhibited
ectopic lesions, while treatment with metronidazole significantly decreased inflammation
and reduced lesion size, possibly by lessening Bacteroidetes presence [102]. Peculiarly,
treatment with neomycin did not produce the same results, indicating that lesion-growth-
promoting bacteria are metronidazole-sensitive and neomycin-resistant [102].
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5.3. Treating Endometriosis with Probiotics

Alternatively, probiotic intervention, the administration of live microorganisms, could
be another effective approach [128]. For instance, in randomised, placebo-controlled trials,
oral administration of Lactobacillus has been shown to ameliorate endometriosis-associated
pain in women [134,135], and reduce endometriotic lesions in mice by increasing IL-12 con-
centration and NK cell activity [128,136,137]. Dysbiosis and endometriotic-inflammation
leads to impaired NK cell activity, and the probiotic treatment reversed this immune dys-
regulation. Lactobacillus probiotic treatment not only improved endometriosis, but is also
capable of preventing its growth in rats [136]. These impressive frontiers warrant research
and testing.

5.4. A Mechanism for Known Treatments

New research is showing that some known endometriosis treatments may have actu-
ally been working through gut microbiota modulation [138]. For example, letrozole, an
aromatase inhibitor that reduces estrogen levels and Shaofu Zhuyu decoction (SFZYD),
a traditional Chinese medicine that inhibits cellular proliferation, promotes apoptosis,
and reduces angiogenesis in ectopic endometrial tissues, have been shown to inhibit the
progression of endometriosis and reduce inflammation in mice [138]. In a 2020 study, it
was found that both letrozole and SFZYD exert their therapeutic effect in part through
restoration of the gut microbiota; they both attenuated the Firmicutes/Bacteroidetes ratio,
which was elevated in the untreated endometriotic group, and restored α-diversity and
Ruminococcaceae abundance in the gut microbiota [138]. Loss of Ruminococcaceae may
exacerbate peritoneal inflammation, as it may be negatively correlated to apoptosis of
intestinal epithelial cells and murine IL-6 levels [139]. Therefore, these treatments at least
partially function through restoring gut microbiota health.

5.5. Side Effects and Challenges

Unfortunately, the use of antibiotics is known to introduce off-target effects and new
interventions such as pre/probiotics have poorly understood pharmacological mechanisms
with difficult-to-prove clinical efficacy. For example, it is well known that routine or overuse
of antibiotics increases the risk of antimicrobial resistance, which is currently one of the
largest threats to global human health [140]. Furthermore, the core FRT microbiota should
be well characterised before applying any such treatments [128]. Antibiotics are widely
effective in treating infection by reducing abundance or eliminating pathogenic species,
however its use alters microbial community profiles, and can create lasting disruptions
to healthy microbiotas [141,142]. A study examining the urinary microbiotas of women
during BV and after oral administration of metronidazole found that while it was an
effective treatment, it also significantly decreased the Shannon diversity, an effect which
persisted for up to 28 days [141]. Furthermore, the antibiotic treatment created complex
changes to the microbiota composition, and healthy microbial community could not be
restored [141]. Compared to BV, dysbiosis related to endometriosis is far less studied, and
therefore the convoluted effects of antibiotic treatments are largely undetermined. The
use of antibiotics to treat endometriosis still requires extensive research, but is an area
of potential. There are many unanswered questions regarding its practical use, and the
diagnosis of an “abnormal uterine microbiota” to indicate such treatment remains a major
hurdle to overcome.

5.6. Opportunities for Diagnostics

Another appealing application of the microbiota-endometriosis relationship lies in
diagnostics. So much is yet to be learned about the mechanisms involved, but based on
the current state of knowledge that there is an appreciable difference in the microbiotas
of women with endometriosis, we can imagine its potential value as a diagnostic or
screening tool. Significant differences in the community diversity of cervical microbiota in
endometriotic women indicate that cervical samples may be used as an endometriosis risk
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indicator [99]. A recent study found for the first time that vaginal microbiome profiles could
be successfully used to predict the rASRM (revised American Society for Reproductive
Medicine) stage of endometriosis [143]. These exciting findings hopefully incite further
research into non-invasive diagnostics and screening tools, as traditional techniques are
limited and remain a challenge today.

6. Limitations and Future Directions

As a newly emerging area of research, the relationship between and the impact of the
microbiota on endometriosis is still largely enigmatic. Within the current pool of literature,
many studies were performed on small sample sizes with a lack of robust randomised-
controlled experiments. Different techniques of analyzing microbial composition and
varying levels of resolution may produce disparate results, contributing to the already
challenging feat of achieving a “core” microbiome consensus. Furthermore, current stan-
dards of diagnosing endometriosis and sampling the uterine microbiota involve invasive
procedures; as a result, ethical inclusion of asymptomatic healthy populations in studies is
limited. Nonetheless, the vast implications of this research on prevention, diagnosis and
treatment of endometriosis hold promise (Figure 6).
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Future investigations should include not only the profiling of a core FRT microbiome,
but the identification of “keystone” microbial species associated with endometriosis and
their mechanisms of exerting influence, such as through disruption of healthy FRT mi-
crobiota, activation of immune responses or secretion of microbial metabolites [27,74].
Research should also aim to understand the causational direction between dysbiosis,
estrogen metabolism and endometriosis, as well as site-specific host-microbiota interac-
tions, possibly elucidating how it applies to other gynaecologic or estrogen-mediated
diseases [59,74]. Certainly, efforts to test the efficacy and unravel the mechanisms of differ-
ent microbiota-modulating therapies, as well as non-invasive FRT microbiome sampling
techniques, should be made [17,128].

7. Conclusions

Dysbiosis in the gut and female reproductive tract disrupts normal immune function,
leading to inflammatory responses by elevating proinflammatory cytokines, compromising
immunosurveillance and altering immune cell profiles. This immune dysregulation can
progress into a chronic state of inflammation, creating an ideal environment conducive to
increased adhesion and angiogenesis, which may drive the vicious cycle of endometriosis
onset and progression. Recent studies have demonstrated both the ability of endometriosis
to induce microbiota changes, and the ability of antibiotics to treat endometriosis. In
general, endometriotic microbiotas are associated with diminished Lactobacillus dominance
and the elevated abundance of potentially pathogenic species. The Bacterial Contamina-
tion Theory and immune activation, cytokine-impaired gut function, aberrant estrogen
metabolism and signaling, as well as aberrant progenitor and stem-cell homeostasis, are
possible explanations for how dysbiosis is implicated in this disease. Although preliminary,
antibiotic and probiotic treatments have demonstrated efficacy in treating endometriosis,
and FRT microbiota sampling has successfully predicted disease risk and stage. Extensive
research is still required, particularly to characterise the “core” microbiota and elucidate
mechanisms behind the microbiota-endometriosis relationship.
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