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Abstract: Colorectal cancer (CRC) is the third leading malignant tumor in the world, which has
high morbidity and mortality. In this study we found that trichodermic acid (TDA), a secondary
metabolite isolated from the plant endophytic fungus Penicillium ochrochloronthe with a variety of
biological and pharmacological activities, exhibited the antitumor effects on colorectal cancer cells
in vitro and in vivo. Our results showed that TDA inhibited the proliferation of colon cancer cells
in a dose-dependent manner. TDA induces sustained endoplasmic reticulum stress, which triggers
apoptosis through IRE1α/XBP1 and PERK/ATF4/CHOP pathways. In addition, we found that TDA
mediated endoplasmic reticulum stress also induces autophagy as a protective mechanism. Moreover,
combined treatment of TDA with autophagy inhibitors significantly enhanced its anticancer effect.
In conclusion, our results indicated that TDA can induce ER stress and autophagy mediated apoptosis,
suggesting that targeting ER stress and autophagy may be an effective strategy for the treatment
of CRC.
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1. Introduction

Cancer increasingly becomes the main cause of deaths around the world and the most
important obstacle to improving life expectancy in the 21st century [1]. Colorectal cancer
(CRC) is the third leading cancer among men and the second among women worldwide [2],
with high incidence and low survival rate [3]. The incidence of CRC continues to increase
at an alarming rate due to changes in modern urban lifestyles. The aging population and
eating habits, obesity, lack of physical exercise, smoking and all the other unfavorable
risk factors increase the risk of CRC [4]. At present, about 1.4 million of new patients are
diagnosed with CRC every year, and the total annual death is about 700,000. With the
continuous development of CRC in developing countries, it is estimated that by 2030,
the global burden of CRC will increase by 60% to more than 2.2 million new cases and
1.1 million cancer deaths [3,5]. Currently, radiotherapy, surgery, immunotherapy and
chemotherapy are commonly used methods for the treatment of CRC, but the survival
rate of patients using these methods alone is not very satisfactory, and the 5-year survival
rate of advanced patients is still less than 15% [4,6,7]. In addition, many drugs used have
serious side effects, including multidrug resistance, gastrointestinal toxicity and blood
level decline, liver toxicity, which directly reduce the success rate of treatment [8–11].
For example, the incidence of thrombocytopenia in patients who received oxaliplatin in
chemotherapy regimens was much higher than in patients who did not receive oxaliplatin,
and the use of penfluorouracil often resulted in intestinal mucositis [10,11]. Therefore,
the development of new and effective antitumor drugs is still an important strategy for the
treatment of CRC.
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Trichodermic acid (TDA) is a natural product isolated from the solid-substrate fer-
mentation culture of Penicillium ochrochloronthe associated the roots of Taxus media by our
coworkers [12]. It has been reported that TDA has antibacterial, antifungal and anti-
inflammatory biological activities, and has obvious inhibitory ability on various cancer
cells such as lung cancer, liver cancer, stomach cancer and colon cancer [12,13], showing its
good potential to become a new anticancer drug. AMF-26, a derivative of TDA [14], has
been shown to have good anticancer effects in many studies [15–20]. Among them, the dis-
ruption of endoplasmic reticulum to Golgi transport is the main mechanism of AMF-26′s
anticancer activity. This suggests that TDA may achieve its inhibitory effect on tumor cells
by acting on the function of endoplasmic reticulum. In recent years, endoplasmic reticulum
stress is also a hot topic in cancer treatment, which may be the potential targeting pathway
of TDA.

Endoplasmic reticulum stress (ER stress) is a highly conservative cellular response.
Proteins undergo specific signal pathways to fold, aggregate and transport in the endoplas-
mic reticulum, maintaining the dynamic balance of environmental material levels in the
cell [21–23]. However, when some external stimuli break the balance of the ER, the protein
synthesis signal will be interrupted, causing the accumulation of unfolded and misfolded
proteins in the ER, disturbing the homeostasis and ultimately leading to ER stress [24–26].
Appropriate ER stress is conducive to the recovery of intracellular calcium ion and protein
processing, and enhances the ability of cells to withstand stress stimulation. Severe and
continuous ER stress often triggers cell apoptosis [27,28]. ER stress will activate a series
of cellular regulatory mechanisms, the most typical of which is the unfolded protein re-
sponse (UPR) [29]. UPR relieves stress in the early stage and triggers apoptosis when the
homeostasis fails to maintain for a long time [30,31].

UPR involves endoplasmic reticulum molecular chaperones (HSPA5/GRP78), endo-
plasmic reticulum stress sensor proteins (PERK, IRE1α and ATF6) and their downstream
signaling pathways [32,33]. Under normal conditions, these three transmembrane sensor
proteins (PERK, IRE1α and ATF6) bind to the ER molecular chaperone HSPA5 (also known
as GRP78) and are in an inactive state [34]. In the process of ER stress, PERK dissociates
from HSPA5 and activates ATF4, thereby promoting the transcription of genes related to
cell survival and the proapoptotic factor CHOP [35]. After IRE1α is activated, it can cut the
mRNA encoding XBP1 to generate active transcription factor XBP1s (spliced XBP1, XBP1s).
After XBP1s is translocated to the nucleus, it can upregulate the expression of genes related
to ER stress [36]. IRE1α can also induce cell apoptosis through TRAF2-activated JNK
pathway and caspase-12 mediated signaling pathway [37]. After the dissociation of ATF6
and HSPA5, ATF6 will be transported from the ER to the Golgi to be cleaved and activated.
The activated ATF6 enters the nucleus and alleviates ER stress from multiple levels by
initiating a series of gene transcripts [38]. In addition to the two classic apoptosis pathways,
the mitochondrial pathway and the death receptor pathway, apoptosis induced by ER stress
is a common apoptotic pathway newly discovered in recent years. Additionally, it has
been proved in many studies that ER stress-induced apoptosis is the molecular mechanism
of many anticancer drugs [39]. Tunicamycin is an ER stress inducer, which can inhibit
protein glycosylation and maturation in eukaryotes [40]. According to reports, tunicamycin
reduces the proliferation, invasion and chemotaxis activities of breast tumor cells in nude
mice [41]. In addition, Tunicamycin promotes the apoptosis of colon cancer cells through
the AKT/mTOR signaling pathway and inhibits tumor growth in vivo and in vitro [42].
Combination therapy with tunicamycin, BAY 11-7082 and naringin induce ER stress and
induce apoptosis of HT29 colon cancer cells through the PERK/eIF2α/ATF4/CHOP path-
way [43]. Cucurbitacin I can activate two of the three ERS pathways, IRE1α and PERK
and CHOP, thereby inducing apoptosis in SKOV3 and PANC-1 cells [44]. Recently, ER
stress has also been reported as a major mechanism that celecoxib can induce cell death in
cancer [45]. Therefore, activating the proapoptotic function of UPR through long-term or
severe ER stress is considered to be an attractive cancer treatment strategy [39,46].
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Meanwhile, the continuous stress of the endoplasmic reticulum may lead to autophagy.
Autophagy is a self-degradation process that is important for balancing energy sources
during the critical period of development and in response to nutritional stress [47,48].
During autophagy, the cytoplasmic contents of cells are sequestered in double-membrane
vacuoles called autophagosomes, and then transported to lysosomes for degradation [49].
It is generally believed that under hypoxia, nutritional deficiencies, and anti-cancer treat-
ments (such as chemotherapy and radiation therapy), cancer cells can continue to survive
through autophagy [50–52]. The results of early clinical trials using hydroxychloroquine
to treat cancer indicate that autophagy inhibition may be a promising method for the
treatment of advanced cancer [53]. Studies have shown that autophagy has a dual role in
promoting and inhibiting tumors in CRC [54–56], but its mechanism is still unclear. This dif-
ference in opposing effects is usually due to differences in the cells and tumor models used.
This suggests that the role of autophagy in regulating cell death is highly dependent on
cell type and stimulation conditions [57,58]. Therefore, further research on autophagy will
reveal its potential therapeutic effects in diseases, and the regulation of autophagy may
become a new direction for the drug development of cancer therapy [59,60].

In this study, we found that TDA can significantly inhibit the growth of colon cancer
cells both in vitro and in vivo. In vitro experiments have shown that TDA induces ER stress-
mediated apoptosis by upregulating the IRE1α and PERK pathways and activating the
subsequent CHOP and caspases proteins. At the same time, ER stress induces autophagy
as a cytoprotective mechanism to reduce ER pressure. Therefore, treatment combined with
autophagy inhibitors can enhance the anti-CRC effect of TDA both in vivo and in vitro.
Overall, our results provide new insights into the molecular basis of CRC treatment and
demonstrate the potential of TDA to treat cancer.

2. Results
2.1. TDA Inhibits Colon Cancer Cell Viability In Vitro

Trichodermic acid (TDA) is a natural product isolated from Penicillium ochrochloronthe,
an endophytic fungus derived from Taxus media [12]. The chemical structure of TDA is
shown in Figure 1A and was characterized by comparison of its spectroscopic data (see
Figures S1–S3) with those reported in the literature [13]. In previous studies, TDA has
shown promising anticancer therapeutic potential. To determine the effect of TDA on colon
cancer, we first evaluated the cell growth of two colon cancer cell lines (HCT116 and DLD1)
and human colon mucosal epithelial cell line (NCM460) after TDA treatment. As revealed
in Figure 1B–D, TDA inhibited the growth of colon cancer cells in a dose-dependent and
time-dependent manner. The viability of HCT116 and DLD1 cells decreased rapidly in the
presence of 1−6 µg/mL TDA, while NCM460 cells showed higher tolerance to TDA. At the
same time, oxaliplatin, the standardized drug for colon cancer, was used as a comparison.
As shown in Figure 1B,C, compared with oxaliplatin, colon cancer cells were more sensitive
to the toxic response of TDA, which also proved its anticancer effect. According to the
inhibitory ratio, we calculated that half-maximal inhibitory concentration (IC50) of TDA
toward HCT116 and DLD1 cells at 24 h were 3.410 and 3.866 µg/mL, respectively. Based on
the IC50 value, we choose 0, 2, 4 and 6 µg/mL of TDA to conduct the following experiments.
Consistently, the proliferation of colon cancer cells was significantly inhibited under TDA
treatment, as evidenced by retarded cell growth (Figure 1E,F) and reduced colony formation
(Figure 1G–J). At the same time, the proliferation of colon cancer cells decreased obviously
with TDA treatment in a dose-dependent manner. Together, these results indicated that
TDA exhibits a considerable anticancer effect in colon cancer cells in vitro.
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Figure 1. TDA inhibits cell viability in colon cancer cells. (A) The chemical structure of TDA. (B,C) HCT116 and DLD1 
cells were treated with TDA or oxaliplatin (0, 1, 2, 4, 6, 8 and 10 µg/mL) for 24 or 72 h, respectively. Cell viability was 
measured by CCK-8 assay. The absorbance was measured at 450 nm. (D) NCM460 cells were treated with TDA (0, 1, 2, 4, 
6, 8 and 10 µg/mL) for 24 or 72 h, respectively. Cell viability was measured by CCK-8 assay. The absorbance was measured 
at 450 nm. (E,F) Morphological observation of colon cancer cells treated with TDA at indicated concentration. (G–J) Colony 
formation assay of HCT116 and DLD1 cells treated with the indicated concentrations of TDA. Representative images (G,I) 
and quantification of colonies (H,J) was shown. Data are presented as the mean ± SD from at least three separate experi-
ments. * p < 0.05; ** p < 0.01. 

2.2. TDA Treatment Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells 
Cell cycle arrest plays a key role in antitumor therapy, so we tested whether TDA 

treatment can induce cell cycle changes in colon cancer cells. Flow cytometry analysis 
showed that after TDA treatment, the proportion of cells in G0/G1 phase increased by 
14.93% (HCT116) and 17.12% (DLD1) on average, while the total proportion of cells 

Figure 1. TDA inhibits cell viability in colon cancer cells. (A) The chemical structure of TDA. (B,C) HCT116 and DLD1
cells were treated with TDA or oxaliplatin (0, 1, 2, 4, 6, 8 and 10 µg/mL) for 24 or 72 h, respectively. Cell viability was
measured by CCK-8 assay. The absorbance was measured at 450 nm. (D) NCM460 cells were treated with TDA (0, 1,
2, 4, 6, 8 and 10 µg/mL) for 24 or 72 h, respectively. Cell viability was measured by CCK-8 assay. The absorbance was
measured at 450 nm. (E,F) Morphological observation of colon cancer cells treated with TDA at indicated concentration.
(G–J) Colony formation assay of HCT116 and DLD1 cells treated with the indicated concentrations of TDA. Representative
images (G,I) and quantification of colonies (H,J) was shown. Data are presented as the mean ± SD from at least three
separate experiments. * p < 0.05; ** p < 0.01.

2.2. TDA Treatment Induces Cell Cycle Arrest and Apoptosis in Colon Cancer Cells

Cell cycle arrest plays a key role in antitumor therapy, so we tested whether TDA
treatment can induce cell cycle changes in colon cancer cells. Flow cytometry analysis
showed that after TDA treatment, the proportion of cells in G0/G1 phase increased by
14.93% (HCT116) and 17.12% (DLD1) on average, while the total proportion of cells in the
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G2/M phase and S phase showed a significant downward trend (Figure 2A–D). Similarly,
Western blot results showed an increase in CCNB1 level and a decrease in CCND1 level
(Figure 2E), indicating that cell cycle was arrested in the G0/G1 phase with the TDA
treatment. However, unlike TDA, the cell cycle of colon cancer under the influence of the
standard drug oxaliplatin presents G2/M phase arrest (Figure S4), suggesting that TDA
may have different therapeutic targets from oxaliplatin.
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Figure 2. Flow cytometric analysis of colon cancer cells with TDA treatment. (A–D) Flow cytometric analysis of cell cycle in
HCT116 and DLD1 cells upon TDA treatment as indicated concentration for 24 h was performed. (E) The expression of cyclin
B1 and cyclin D1 in HCT116 cells with TDA treatment as indicated concentration for 24 h was detected by immunoblotting
analysis. Beta-actin was used as internal control. (F,G) The protein expression levels of PARP1, cleaved PARP1, Caspase 9,
cleaved Caspase 9, Caspase 3 and cleaved Caspase 3 in colon cancer cells treated with the indicated concentrations of TDA
for 24 h were detected by Western blot. (H–K) Flow cytometric analysis of apoptosis in HCT116 and DLD1 cells upon TDA
(6 µg/mL) treatment was performed for 24 h. (H,J). The percentage of apoptotic HCT116 and DLD1 cells treated with TDA
is shown (I,K). Western blot results were quantified using Image J software, and the results were numerically marked below
each band. Data are presented as the mean ± SD from at least three separate experiments. * p < 0.05; ** p < 0.01.
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To examine whether TDA induces apoptosis of colon cancer cells, we first examined the
proapoptotic effect of TDA by examining the expression of apoptosis related genes. Using
Western blotting, we measured the activation of apoptotic proteins caspase-9, caspase-3
and PARP1. In HCT116 and DLD1, we found that the cleavage levels of caspase-9, -3
and PARP1 in cells treated with TDA were observably higher than those in untreated
cells (Figure 2F,G). Next, we performed flow cytometry analysis by phosphatidylserine
translocation using FITC-annexin V and propidium iodide (PI) double-staining. Consistent
with the above results, our data showed a 30−40% increase in the percentage of apoptotic
cells in the TDA treatment group, most of which occurred in the late apoptotic region
(Figure 2H–K). Taken together, these results suggested that TDA can induce the apoptosis
of colon cancer cells.

2.3. Transcriptome Analysis Identified the Apoptotic- and Autophagy-Related Genes Contributive
to the TDA-Induced Cell Death

In order to explore the underlying mechanism of TDA inducing apoptosis of colon
cancer cells, we used RNA sequencing (RNA-seq) to study the transcriptome of HCT116
cells treated with TDA (4 µg/mL) for 24 h in comparison with untreated control cells. The
analysis identified 3136 differentially expressed genes (p < 0.05, fold change > 2), of which
1066 were upregulated and 2070 were downregulated (Figure 3A). Differential gene en-
richment analysis showed that TDA affected cellular components, biological processes and
molecular functions by regulating 3136 genes in various pathways. The top 20 enriched
by Gene Ontology have been listed (Figure 3B). Among them, endoplasmic reticulum
unfolded protein response, response to endoplasmic reticulum stress and IRE1-mediated
unfolded protein response occupy the top ones. At the same time, we observed that the
transcription level of the ER stress related genes (HSPA5, PERK, CHOP, XBP1, etc.) signif-
icantly increased in the TDA treated cells (Figure 3C). In conclusion, we speculated that
TDA induced ER stress in colon cancer cells. Accumulation of misfolded proteins can cause
ER stress, which in turn induces an adaptive intracellular response known as UPR. How-
ever, when UPR cannot completely relieve ER stress, cells undergo apoptosis or autophagy.
On the other hand, we found that autophagy-related genes (ATG and MAPILC3B) were
also significantly upregulated in the TDA treatment group (Figure 3D), indicating that
autophagy may be also involved in the toxic effect of TDA on colon cancer cells.

Next, we verified the results of transcriptome analysis by RT-PCR, and the mRNA
levels of HSPA5, IRE1α, XBP1, PERK, ATF4 and CHOP all increased visibly in a time-
dependent manner. As expected, mRNA levels of HSPA5, PERK and IRE1α had increased
observably before 16 h, while ATF4 and CHOP showed a more significant increase at 24 h,
which was consistent with the action pattern of ER stress (Figure 3E). Moreover, LC3 and
ATG5 expression were upregulated upon TDA treatment (Figure 3F). In summary, we
hypothesized that TDA-induced apoptosis is achieved through the ER stress pathway, and
autophagy is also involved in the process.

2.4. TDA Induced Apoptosis through IRE1α and PERK Pathways

The ER is a highly dynamic organelle in eukaryotic cells. Many studies have shown
that once UPRs (PERK, ATF6 and IRE1α) pathway are activated, they initiate early adaptive
responses by increasing HSPA5 expression, thus regulating the transcription and translation
of a series of genes. However, with prolonged stress, additional responses were activated,
including caspase 12/9/3 and ATF4/CHOP, which promoted apoptosis. To determine
whether TDA activates endoplasmic reticulum stress in colon cancer cells, we examined the
expression of PERK, IRE1α, XBP1 and HSPA5 using Western blot. We observed elevated
levels of these proteins after TDA treatment in a dose-dependent manner, indicating an
activation of ER stress (Figure 4A,B). Meanwhile, we found that CHOP and cleaved-caspase
3 also increased after TDA treatment, further suggesting that TDA-induced ER stress leads
to cell apoptosis (Figure 4C,D).
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Figure 3. Transcriptome analysis of TDA-treated HCT116 cells. (A) The number of upregulated and downregulated
differentially expressed genes in the transcriptome upon TDA (4 µg/mL) for 24 h treatment is shown in the volcano map.
(B) GO enrichment analysis of the signaling pathways of differentially expressed genes in the transcriptome. (C) The relative
expression of genes related to ER stress pathway in transcriptome analysis was shown. (D) The relative expression of
autophagy related genes in transcriptome analysis was shown. (E,F) The mRNA level of ER stress related genes (E) and
autophagy related genes (F) were determined by real-time quantitative PCR after treatment with 6 µg/mL TDA for indicated
time. Data are presented as the mean ± SD from three separate experiments. * p < 0.05; ** p < 0.01; *** p < 0.001.
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TDA for 24 h. (C,D) The protein expression levels of CHOP and cleaved Caspase 3 in TDA-treated HCT116 (C) or DLD1 
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Figure 4. TDA activates ER stress response to induce apoptosis in colon cancer cells. (A,B) Western
blot detection of the expression of HSPA5, PERK, IRE1α and XBP1 in HCT116 and DLD1 cells treated
with the indicated concentrations of TDA for 24 h. (C,D) The protein expression levels of CHOP
and cleaved Caspase 3 in TDA-treated HCT116 (C) or DLD1 (D) cells were detected by Western blot.
(E) Western blot detection of the expression of HSPA5, PERK, IRE1α and CHOP as well as cleaved
Caspase 9 (cleaved-cas9), cleaved Caspase 3 (cleaved-cas3) in HCT116 cells treated with or without
6 µg/mL TDA in the presence or absence of 2 mM 4-phenylbutyrate (4-PBA) for 24 h. (F,G) Cell
viability in HCT116 or DLD1cells treated with 4-PBA or TDA alone or together was measured by
CCK-8 assay. Western blot results were quantified using Image J software, and the results were
numerically marked below each band. Data are presented as the mean ± SD from three separate
experiments. ns, no statistical significance; ** p < 0.01.

To evaluate whether ER stress plays a major role in TDA-induced apoptosis, HCT116
cells were treated with TDA combined with an ER stress inhibitor, 4-phenylbutyrate
(4-PBA). As shown in Figure 4E, 4-PBA treatment significantly reduced the expression of
HSPA5, PERK and IRE1 induced by TDA, while the protein levels of apoptosis-related pro-
teins CHOP and cleaved caspase 3 also decreased under the combined treatment of 4-PBA.
Importantly, by measuring cell viability by CCK-8, we observed that in the cells treated
with TDA combined with 4-PBA, cell viability was increased compared with TDA alone,
indicating that inhibition of endoplasmic reticulum stress reduced apoptotic proportion of
the cells (Figure 4F,G). In summary, these results indicated that the endoplasmic reticulum
stress pathway dominated the TDA-induced apoptosis of colon cancer cells.
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2.5. Endoplasmic Reticulum Stress Induces Protective Autophagy

Autophagy is an evolutionarily conserved mechanism that maintains cell homeosta-
sis. More and more evidence suggest that ER stress-induced UPR activation promotes
autophagy to coordinate ER homeostasis. We also observed upregulation of autophagy-
related genes in transcriptome data. Therefore, to clarify whether TDA induces autophagy
in colon cancer cells, we analyzed the changes of autophagy flux with or without TDA
treatment from three aspects. Firstly, fluorescence microscopy evaluation showed that the
number of autophagosomes in TDA treated cells increased after 24 h treatment (Figure 5A).
Secondly, we found that TDA induces the conversion of LC3-I to lipidated LC3-II (an
established autophagosome marker) (Figure 5B,C). Thirdly, we evaluated the expression of
autophagy-related proteins ATG5 and P62 (Figure 5B,C). ATG5 is a key protein involved in
the formation of autophagosome, and P62 is a marker of autophagy degradation. When
autophagy is triggered, P62 is decreased and when autophagy is inhibited, P62 accumulates.
The results showed that TDA significantly reduced P62 levels. In contrast, TDA increased
the expression of ATG5 (Figure 5B,C). Taken together, these data suggest that TDA induces
autophagy in colon cancer cells.

To investigate whether autophagy induction is an adaptive process in response to ER
stress, we examined the expression of autophagy-related proteins in HCT116 cells treated
with TDA alone and in combination with 4-PBA. As shown in Figure 5D, 4-PBA inhibited
TDA-induced upregulation of autophagy-related proteins. In contrast, the autophagy
inhibitor chloroquine (CQ) had no significant effect on the expression of ER stress markers
in TDA-treated cells (Figure 5E). These data indicated that TDA-induced ER stress is an
upstream event of autophagy.

Abnormal autophagy plays a dual role in promoting cancer cell survival and cell death
in colon cancer. To elucidate the role of TDA in inducing autophagy in colon cancer cells, we
treated cells with TDA alone or in combination with autophagy inhibitor 3-methyladenine
(3-MA) or CQ. As shown in Figure 5F,G, an increase in cell toxicity were observed following
CQ or 3-MA treatment in TDA-treated colon cancer cells. This suggested that TDA-induced
autophagy is protective but not harmful in colon cancer cells.

2.6. Treatment of TDA Retards the Growth of Transplanted Tumors

In order to further test the anticancer effect of TDA in vivo, we subcutaneously inocu-
lated human colon cancer HCT116 cells into 6-week-old nude mice to establish a xenograft
tumor model. Compared with the control group, xenograft tumors treated with TDA alone
showed a significant reduction in volume, growth rate and weight (Figure 6A–C). Notably,
the efficacy of TDA was reduced in combination with 4-PBA compared to TDA alone
(Figure 6A–C). In contrast, the size, growth rate and weight of xenograft tumors treated
with TDA combined with CQ were further reduced (Figure 6D–F). In addition, obvious
ER stress and apoptosis were observed in mouse tumors treated with TDA, as evidenced
by increased HSPA5 and cleaved-caspase-3 levels in immunohistochemistry, while single
treatment of TDA displayed more robust cleaved-caspase 3 staining (Figure 6G), which
further proved that the apoptosis induced by TDA is dominated by the ER stress pathway.
We also observed an increase in LC3B expression and a decrease in P62 expression by
immunohistochemical staining (Figure 6H). These results suggest that CQ enhances the
antitumor effect of TDA by inhibiting autophagy of colon cancer cells.
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immunofluorescence staining of LC3B in HCT116 cells, which were treated with TDA (3 µg/mL)
for 24 h. CQ (10 µM) was treated for 24 h as a positive control. (B,C) The protein expression
levels of P62, ATG5 and LC3 in TDA-treated HCT116 or DLD1 cells were detected by Western blot.
(D) Immunoblotting of PERK, IRE1α, LC3 and P62 in HCT116 cells treated with TDA, 4-PBA alone
or together as indicated for 24 h. (E) Immunoblotting of HSPA5, PERK, IRE1α and LC3B in HCT116
cells treated with TDA, CQ alone or together as indicated for 24 h. (F,G) HCT116 and DLD1 cells
were treated with TDA alone or combination with autophagy inhibitors 3-MA or CQ as indicated.
Cell viability was measured by CCK-8 assay. Cells were pretreated with 3-MA (1 mM) or CQ (10 µM)
for 4 h, followed by TDA (6 µg/mL) treatment for 24 h. Data are presented as mean ± SD. ** p < 0.01.
Western blot results were quantified using software Image J v1.8.0 (National Institutes of Health,
USA) and the results were numerically marked below each band.
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volumes reached 100 mm3, mice were treated with TDA alone or combination with CQ as indicated. Images (D) and
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performed to detect the expression of cleaved Caspase3, HSPA5 (G), LC3B or P62 (H). Data are presented as mean ± SD.
ns, no statistical significance; * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Discussion

CRC is still one of the notorious cancers at present [4]. Although the current research
made significant progress in the mechanism understanding of tumorigenesis and devel-
oped multiple treatments such as surgery, radiotherapy and chemotherapy, the 5-year
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survival rate of advanced stage patients is still less than 15% [6,7]. This low survival rate
is due to late diagnosis and resistance to current chemotherapy [9]. Therefore, new and
effective treatment approaches are still essential and urgent.

In recent years, natural products have aroused people’s interest in the development
of new anticancer therapeutic drugs [61–63], because most of them show good potential
of medicinal significance, which can be used as alternative drugs for the treatment of
various diseases (including cancer) with few side effects relatively [64,65]. TDA is a newly
discovered octahydronaphthalene derivative, isolated from the secondary metabolites of
plant endophytic fungi, and has shown anticancer activity in a variety of cancers [12,13].
However, until now, the anticancer mechanism of TDA remains unclear. Therefore, in
this study, we explored the antitumor activity and molecular mechanism of TDA in colon
cancer. At first, we found that genes related to ER stress pathway and autophagy pathway
were significantly activated in TDA treated cells through transcriptome analysis. In subse-
quent studies, we mainly analyzed the death-promoting mechanism of TDA from these
two aspects.

Recently, ER stress and unfolded protein response (UPR) have attracted extensive
attention as targets of tumor therapy [39,66]. The ER is responsible for the correct folding
and post-translational modification of proteins, calcium storage and lipid synthesis [22,23].
The disturbance of ER homeostasis usually leads to ER stress, and UPR is activated to
relieve ER pressure. PERK, IRE1α and ATF6 are sensors of ER stress and markers of UPR.
They can promote transcription of genes responsible for maintaining ER homeostasis, but
under certain conditions, they may extend ER stress and eventually lead to the proapoptotic
pathway [24,28,46]. In our study, the protein expression levels of PERK, IRE1α and XBP1
were significantly increased after TDA treatment. Meanwhile, the apoptotic marker CHOP
and caspase protein were also activated, indicating that the proapoptotic pathway of ER
stress had been triggered. In addition, the combined treatment of ER stress inhibitor 4-PBA
and TDA attenuated the therapeutic effect of TDA, further demonstrating that the activation
of UPR dominates the apoptosis induced by TDA. According to the survival curve of colon
cancer patients, patients with high expression of ER stress-related proteins such as HSPA5,
IRE1α and PERK have a higher survival time than those with low expression, suggesting
that UPR activation may have a potential tumor suppressive effect, especially when ER
stress intensity is high and persistent.

Due to the harsh living environment of tumor cells, most malignant tumor cells them-
selves have slight chronic ER stress, and ER chaperone HSPA5 is often highly expressed
in tumor cells [67]. ER stress-induced cell death is controlled by many factors, includ-
ing calcium ions, reactive oxygen species and proapoptotic proteins [68]. Among them,
CHOP is a key protein in this process [69]. Despite tumor cells have mild ER stress, the
expression of CHOP is still at a low level. However, levels of CHOP and other apoptotic
proteins were greatly increased in severe ER stress. The extent and duration of this in-
crease is a determining factor in the cell fate [70,71]. Therefore, it may be an opportunity
for therapeutic interventions to further aggravate the existing stress conditions in tumor
cells by appropriate drugs, forcing the ER stress response into a proapoptotic mode. At
present, many drugs have been used to induce apoptosis of the ER stress pathway. These
drugs are also called ER stress aggravating agents (ERSA) [72], such as drugs perturb-
ing calcium levels (thapsigargin, ionomycin and A-23187) [73,74], impairment of protein
folding (2-deoxyglucose, tunicamycin and geldanamycin) [73,75,76] and inhibiting protein
trafficking (brefeldin A and monensin) [77,78]. Among them, thapsigargin, tunicamycin
and brefeldin A are the most widely used [39]. Current research is trying to use these
compounds in clinical anticancer applications, but unfortunately, most of the drugs have
been shown to have systemic toxicity in clinical animal studies [79,80]. In addition, a few
FDA-approved drugs have also been found to have ERSA activity, such as celecoxib and
bortezomib, although this activity was not discovered until after the main pharmacological
action had been approved by the FDA [45,81,82]. In conclusion, there is still a long way to
go for ER stress to establish a clinical treatment effect.
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On the other hand, autophagy is also an important regulatory factor in the occurrence
and development of cancer. Apoptosis and autophagy interact in both normal physiology
and a wide range of diseases, and are crucial in determining the fate of cells [48,57]. Up to
now, there is no research report that autophagy occurs in cancer cells after TDA treatment.
In this study, we found that after TDA treatment of colon cancer cells, LC3-I conversion
to LC3-II increased, the expression of P62 decreased and the number of autophagosomes
also showed an increase as determined by immunofluorescence staining, indicating that
TDA induced autophagy. Autophagy removes damaged organelles through lysosomal
degradation and retrievals components to meet cellular metabolic needs [47]. Therefore,
autophagy is essential for homeostasis and mediates resistance to radiation, chemotherapy
and some targeted therapies [83]. More and more evidence show that autophagy inhibitors
such as bafilomycin A1 and chloroquine (CQ) can enhance the effects of different cancer
treatments, and clinical trials have been initiated [84]. However, the role of autophagy
in cancer remains controversial. Some studies have suggested that cancer cells develop
autophagy as a temporary survival mechanism after antitumor drug therapy [85,86]. Op-
positely, some treatments can induce autophagic death or both apoptosis and autophagic
death [87,88]. Thus, the exact role of autophagy appears to be highly dependent on cell
type and environment. In order to further study the interaction between autophagy and
apoptosis under TDA treatment, we pretreated HCT116 cells with autophagy inhibitors.
HCT116 cells are more sensitive to TDA treatment, and the proportion of apoptotic cells in-
creases. It shows that TDA-induced autophagy is cytoprotective. Therefore, joint treatment
with autophagy inhibitors can make TDA achieve the best therapeutic effect.

In recent years, many studies have shown that ER stress can act as an upstream target
of autophagy. The molecular mechanisms of ER stress induced autophagy include UPR,
Ca2+ imbalance and Bcl-2 [89–91]. After we pretreated cells with ER stress inhibitors, the
level of TDA-induced autophagy decreased, suggesting that TDA-induced autophagy
was most likely to occur through ER stress, but the exact mechanism has still not been
revealed. Clearly, more research is needed to determine the role of autophagy in TDA-
treated cancer cells.

4. Materials and Methods
4.1. Animal Study

Animal experiments were conducted under the guidance of Animal Management
Regulations in Chongqing University. In vivo tumorigenesis assays were conducted as
previously described [92]. When the tumor volume reached about 50 mm3, mice were
randomly divided into four groups and subcutaneously injected with TDA, TDA/4-PBA,
TDA/CQ or PBS every two days. Tumor volume was measured every five days. The mice
were sacrificed after twenty days of treatment, and tumors were harvested.

4.2. Cell Culture and Reagents

Human colon cancer cell lines (HCT116 and DLD1) were purchased from Procell
Company (Wuhan, China) and human colon mucosal epithelial cell line (NCM460) were
purchased from Fenghui Biotechnology (Hunan, China). All cells were cultured in DMEM
containing 10% fetal bovine serum (FBS) and 100 U/mL mixture of penicillin and strep-
tomycin. The TDA is provided by the School of Pharmacy, Chongqing University. Cell
counting kit 8 was purchased from MCE. Annexin V-FITC/PI Apoptosis Detection kit
was purchased from CWBIO (Beijing, China). Primary antibodies for Western blotting,
immunofluorescence and immunohistochemistry against target proteins are shown as
follows: Caspase9/P35/P10 (Proteintech, Chicago, IL, USA, 66169), Caspase3 (Zen Bio-
science, Chengdu, China, 300968), cleaved-Caspase3 (Zen Bioscience, 380169), PARP1
(Zen Bioscience, 380451), LC3 (Sangon Biotech, Shanghai, China, D163557), ATG5 (San-
gon Biotech, D121650),SQSTM1/p62 (Beyotime, Shanghai, China, AF5312), β-actin (Santa
Cruz, sc-47778), cyclinD1 (Cell Signaling Technology, USA, 2978S), cyclinB1 (Cell Sig-
naling Technology, 4135S), PERK (Cell Signaling Technology, 3192S), IRE1 (Zen Bio-
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science, 220399), XBP1(Zen Bioscience, 381710), CHOP (Zen Bioscience, 381679) and HSPA5
(Sangon Biotech, D260466).

4.3. Cell Viability and Colony Formation Assay

Cell viabilities were assessed by cell counting kit 8 (CCK8) assay. Cells were seeded in
96-well plates at a concentration of 5 × 103 per well. After the cells adhered to the wall, the
cells were treated with different concentrations of TDA and cultured for 48 h. Then, CCK8
was added and incubated at 37 ◦C for 2 h and absorbance value was measured at 450 nm of
wavelength. Colony-formation assay was conducted as previously described [93]. Colonies
with more than 50 cells were counted.

4.4. Flow Cytometric Analysis

HCT116 and DLD1 cells were seeded into a 6-well plate, attached overnight and were
treated with TDA for 24 h. Then, cells were collected and stained with Annexin V-FITC/PI
apoptosis detection kit and subjected to an apoptosis assay. Cell cycle analysis were
conducted as previously described [94], cells were incubated with indicated concentration
of TDA for 24 h, cells were rinsed in precooled PBS and followed by fixed with 75% alcohol
overnight at 4 ◦C. Then cells were digested with 1% RNase A and stained with 1 mg/mL
PI for 30 min. All of these experiments were performed according to the corresponding
manufacturer’s instructions. Experimental data were analyzed using Flow Jo VX (Becton,
Dickinson and Company, Franklin Lake, NJ, USA) and ModiFit LT 4.1 (Verity Software
House, Topsham, ME, USA).

4.5. Western Blotting Analysis

Protein extraction and Western blot analysis were conducted as previously depicted [93].
Cells were rinsed in precooled PBS and proteins were extracted using RIPA lysis buffer
(150 mM NaCl, 50 mM Tris-HCl, pH 8, 0.5% sodium deoxycholate, 1% NP-40, 0.2% SDS)
containing protease inhibitor cocktail (EDTA free) (MedChemExpress, HY-K0011). After
centrifugation (13,000× g, 10 min), total proteins were quantified with BCA Protein Assay
Kit (CWBIO, Beijing, China, CW0014). Equal amounts of protein samples (30−80 µg)
were separated on SDS-PAGE gels and then transferred to 0.45 µm PVDF membranes
(GE Healthcare, Erlangen, Germany, A29280264). After incubation of the membranes
with primary antibodies (1:1000) at 4 ◦C overnight, the samples were incubated with the
secondary antibodies (1:5000) conjugated with horseradish peroxidase for 1 h at room
temperature. The blots were visualized with WesternBrightTM ECL reagent (advansta,
Bering Dr, San Jose, CA, USA, 191026-11) using ChemiDocTM XRS+ (Bio Rad, Berkeley, CA,
USA).

4.6. Real-Time PCR Analysis

Total RNA was extracted using trizol reagent as described [93], quantitative real-
time PCR was performed using SYBR-Green qPCR master mix. β-actin was used to
normalize sample. The RT-PCR primers were used as follows: HSPA5, forward: CT-
GTCCAGGCTGGTGTGCTCT, reverse: CTTGGTAGGCACCACTGTGTTC, PERK, for-
ward: GTCCCAAGGCTTTGGAATCTGTC, reverse: CCTACCAAGACAGGAGTTCTGG,
IRE1, forward: CACCTCCACTCCCTCAACAT, reverse: CTTCTTGCAGAGGCCAAAGT,
ATF6, forward: CAGACAGTACCAACGCTTATGCC, reverse: GCAGAACTCCAGGT-
GCTTGAAG, XBP1, forward: GTTGGGCATTCTGGACAACT, reverse: AAGGGAGGCTG-
GTAAGGAAC, ATF4, forward: TTCTCCAGCGACAAGGCTAAGG, reverse: CTCCAA-
CATCCAATCTGTCCCG, CHOP, forward: CAGAACCAGAGGTCACA, reverse: AGCT-
GTGCCACTTTCCTTTC, LC3, forward: GAGAAGCAGCTTCCTGTTCTGG, reverse: GT-
GTCCGTTCACCAACAGGAAG, ATG5, forward: CCCTCTTGGGGTACATGTCT, reverse:
CGTCCAAACCACACATCTCG, β-actin, forward: CCTAGAAGCATTTGCGGTGG, re-
verse: GAGCTACGAGCTGCCTGACG.
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4.7. Confocal Microscopy Imaging

To evaluate the expression level of endogenous LC3, we treated cells with TDA for
24 h, and then fixed with 4% paraformaldehyde and permeabilized with 0.2% Triton X-100,
followed by blocking with 10% goat serum, cells were incubated with anti-LC3 antibody
(1:200) and Alexa Fluor 555 goat anti-mouse IgG (H + L) antibody, then images were
visualized under confocal microscopy [92].

4.8. Immunohistochemistry

Tumors obtained from HCT116 xenograft mice were fixed with 4% paraformaldehyde,
embedded in paraffin and sectioned. Tumor slides were incubated overnight with the pri-
mary antibody at 4 ◦C and then incubated with a secondary antibody, and the chromogenic
reaction was conducted with 3,3-diaminobenzidine and counterstained with hematoxylin.

4.9. Statistical Analysis

A two-tailed Student’s paired t-test and one-way ANOVA were used for statistical
analysis of experimental data and data were expressed as mean ± SEM of at least three
independent experiments. A value of p < 0.05 was considered statistically significant.

5. Conclusions

In summary, our results indicate that TDA may be a promising anticancer drug for
the treatment of colon cancer, and excessive endoplasmic reticulum stress may be a key
molecular event in the anticancer effect of TDA. TDA-induced ER stress leads to apoptosis
through the IRE1/XBP1 pathway and the PERK/CHOP pathway. Interestingly, TDA-
induced ER stress also triggered autophagy, which plays a protective role in response to
ER stress, while the combination of autophagy inhibitors can significantly enhance the
anticancer effect of TDA on colon cancer cells. These findings provide new insights into
the mechanisms by which TDA inhibits colon cancer and support clinical studies targeting
endoplasmic reticulum stress pathways, and highlighting the role of autophagy inhibitors
in optimizing cancer treatment.
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Abbreviations

CRC Colorectal cancer
ER Endoplasmic Reticulum
UPR Unfolded protein response
HSPA5 Heat shock protein A5
IRE1α Inositol-requiring enzyme 1α
PERK Protein kinase R-like ER kinase
ATF6 Activating transcription factor 6
XBP1 X-box binding protein 1
CHOP C/EBP homologous protein
ATF4 Activating transcription factor 4
eIF2α Eukaryotic translation initiation factor 2α
PARP1 Poly (ADP-ribose) polymerase family, member 1
Caspase9/3 Cysteinyl aspartate specific proteinase 9/3
JNK The c-Jun N-terminal kinases
TRAF2 Tumor necrosis factor alpha (TNFa) receptor associated factor 2
mTOR The mammalian target of rapamycin
PI3K Phosphatidylinositol 3 kinase
AKT Protein kinase B
MET Hepatocyte growth factor receptor
LC3B Microtubule-associated protein 1 light chain 3
ATG5 Autophagy related 5
P62 Sequestosome 1
4-PBA 4-phenylbutyrate
CQ Chloroquine
3-MA 3-methyladenine
CCK-8 Cell Counting Kit-8
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