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Abstract: Identification of pancreatic ductal adenocarcinoma (PDAC) and precursor lesions in
histological tissue slides can be challenging and elaborate, especially due to tumor heterogeneity.
Thus, supportive tools for the identification of anatomical and pathological tissue structures are
desired. Deep learning methods recently emerged, which classify histological structures into image
categories with high accuracy. However, to date, only a limited number of classes and patients have
been included in histopathological studies. In this study, scanned histopathological tissue slides
from tissue microarrays of PDAC patients (n = 201, image patches n = 81.165) were extracted and
assigned to a training, validation, and test set. With these patches, we implemented a convolutional
neuronal network, established quality control measures and a method to interpret the model, and
implemented a workflow for whole tissue slides. An optimized EfficientNet algorithm achieved
high accuracies that allowed automatically localizing and quantifying tissue categories including
pancreatic intraepithelial neoplasia and PDAC in whole tissue slides. SmoothGrad heatmaps allowed
explaining image classification results. This is the first study that utilizes deep learning for automatic
identification of different anatomical tissue structures and diseases on histopathological images of
pancreatic tissue specimens. The proposed approach is a valuable tool to support routine diagnostic
review and pancreatic cancer research.

Keywords: pancreatic cancer; convolutional neuronal networks; artificial intelligence; deep learning

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related
deaths, with about 47,050 deaths and currently 57,600 estimated new cases in the United
States according to the SEER database [1]. It is predicted that PDAC will rise to the second
cause of cancer-related deaths in 2030 [2]. Due to non-specific symptoms and late diagnosis,
only 15-20% of patients are suitable for potential curative surgery [3]. Depending on the
localization of the tumor, a Whipple procedure, left pancreatectomy, or total pancreatec-
tomy is performed [4]. The tissue of the resection specimens needs mandatory pathological
evaluation to determine the extent of the adenocarcinoma, histological grade of differen-
tiation, lymph node metastases, resection margins, preinvasive pancreatic intraepithelial
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neoplasia, and non-neoplastic tissue. The pathological findings will then determine further
therapeutic management. To obtain a detailed picture of the tumor, the neoplastic cells
have to be distinguished from benign or inflammatory lesions. This can be challenging due
to the enormous inter- and intratumor heterogeneity in terms of growth pattern, cytological
characteristics, and stromal properties. The heterogeneity and complex growth pattern are
mainly due to an inflammatory and fibrotic microenvironment, the latter accounting for
the vast majority of the tumor mass and being a hallmark of disease [5]. Microscopically,
PDAC shows a predominantly glandular growth pattern with an extensive desmoplastic
stroma reaction; however, also (micro-)papillary, solid nest-like, cribriform, or single-cell
dissociated tumor growth can be detected [6]. Various molecular factors, such as a mes-
enchymal tumor phenotype, proteases, or dense infiltrates of neutrophils, are associated
with a non-glandular, histologically poorly differentiated tumor growth pattern [7,8]. For
PDAC, a dispersed growth pattern is typical. Here, the tumor cells often do not grow as a
coherent tumor mass but rather as cellular clusters with a considerable distance from the
main tumor mass, infiltrating the surrounding tissue, nerve sheaths, and vessels [9]. The
precursor lesions of PDAC are called pancreatic intraepithelial neoplasia (PanIN), com-
parable to the adenoma-carcinoma sequence in colon cancer, where the ductal epithelial
cells progress from intraductal atypical proliferations to invasive carcinoma [10]. In healthy
pancreatic tissue and in chronic pancreatitis, the glandular and ductal structures are found
in an organoid, lobular arrangement, whereas in PDAC, the tumor glands are arranged
diffusely within the stroma, are deformed, and have incomplete lumina or show single-cell
growth [11]. Chronic pancreatitis, which is a major risk factor for the development of inva-
sive carcinoma, is histologically characterized by loss of acinar tissue, pancreatic fibrosis,
and ductal changes and is often found as an accompanying component in the surrounding
of PDAC [12]. Based on the very complex histological microarchitecture of PDAC, its
dispersed growth, its heterogeneous microenvironment, preinvasive lesions, inflamed
tissue, and sealed anatomical tissue, a common review time in diagnostics of 1-2 min per
slide can be estimated [13]. Beyond diagnostic accuracy, time is also an important variable
in diagnostics and will play a more important role as the overall number of specialized
pathologists is currently decreasing, while the overall requirements in knowledge and
specialization and the number of cases are increasing [14,15]. Thus, methods that support
and facilitate morphological-based review of tissue slides and highlight critical areas for
deeper investigation by expert pathologists are desirable. Digital pathology has emerged
as a method not only to evaluate histopathological slides but also to support routine
diagnostics and research, and to ensure quality control. Especially spatial-based tissue
research needs reproducible tissue classifications. It has previously been reported that deep
leaning techniques may be used to identify lymph node metastases and to classify tumor
subtypes [16].

Commonly, convolutional neuronal networks (CNNs), a class of deep neural networks,
are used for image classification tasks. In brief, these are made up of an input layer (image),
multiple hidden layers that perform operations such as convolutions or pooling, and an
output layer. Each layer is composed of neurons containing learnable weights and biases.
For a detailed in-depth review of the CNN architecture and methodology, see [17].

While several reports on the identification of pancreatic cancer on computed tomogra-
phy (CT) images supported by artificial intelligence exist, to our knowledge, no studies
are available which show the potential of this technique in pancreatic histopathological
tissue sections. There are notable differences between a well-recognized CT study using
artificial intelligence in clinical imaging and the analyses at the histological level planned
and performed in the present study [18]. First, clinical CT imaging captures a black-and-
white image of whole body parts, which is a very different image format compared to
scanned histological slides, a technology used in surgical pathology, where colored images
are acquired from biopsy or resection specimens after staining. Whole slide images after
scanning are about 100 x larger compared to CT images. CT scans deliver images in lower
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magnification (anatomical structure level) compared to the technology used here, which
delivers pictures at the cellular level.

In the present study, we set out to investigate if the identification of specific tissue-
associated anatomical structures, pancreatic intraepithelial neoplasia, and pancreatic ductal
adenocarcinoma is possible via a CNN on scanned histopathological slides.

2. Results
2.1. Patient Characteristics

Clinicopathological information was available for the tissue microarray (TMA) used
in this study. The cohort consisted of 56 male and 55 female patients (n.a.: 2 patients),
with a median age of 66.9 years and a median tumor size of 3.4 cm. A basic summary of
the clinicopathological characteristics of the pancreatic cancer TMA cohort is provided in
Table 1.

Table 1. Characteristics of included PDAC/PanIN patients.

Gender, Female/Male 56:55
Median Age, Years (Range) 69.9 (37-82)
Tumor Stage
pT (n=107) pT1 10
pT2 67
pT3 29
pT4 1
n.a. 6
pN (n =111) pNO 37
pN1 41
pN2 33
n.a. 2
Grade (n =111) Gl
G2 62
G3 43
G4 1
n.a. 2
Tumor size (n = 107) <1 0
>1, <2 10
>2, <4 68
>4 29
n.a. 6

2.2. Image Patch Extraction

Identification of representative regions resulted in a total of 81.165 extracted
100 x 100 um (11.125 with 395 x 395 px and 70.040 with 219 x 219 px) image patches. The
number of extracted image patches is displayed in Table 2.

Table 2. Number of extracted image patches per group.

Set

Class . .
Training Validation Test
Endocrine Islands 593 202 1990
Exocrine Islands 11,384 4828 5548
Fatty Tissue 2526 1241 1058
Lymph Node Metastasis 2017 743 502
Non-Tumor Fibrosis 3455 1111 2111
Normal Ducts 878 293 467
Pancreatic Adenocarcinoma 8169 3396 4950
PanIN High-Grade 1350 437 598
PanIN Low-Grade 1410 365 837
Tumor-Associated Stroma 3981 1753 1847

Tumor-Free Pancreatic Lymph Node 7840 1950 1335
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2.3. Convolutional Neuronal Network Selection and Hyperparameter Optimization

Figure 1 shows the training and validation accuracies of the model with the highest
validation accuracy per EfficientNet architecture type (B0, B1, B2). For the tuned models in
Figure 1, Table 3 displays the chosen learning rate, batch size, and training and validation
accuracies. Regarding the overall accuracies, the Bl and B2 models are almost on par,
though the B2 model exhibits slightly less overfitting. Thus, we decided to use the B2
model to classify the test set.

0.81
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0.29 ---- Validaton
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Figure 1. Training and validation accuracies of the model with the highest validation accuracy per EfficientNet.

Table 3. Trained EfficientNet models with training and validation accuracies.

Model Accuracy
Arch. Learning Rate Batch Size Training Validation
B2 0.00001 64 0.83 0.82
B1 0.00001 64 0.83 0.81
BO 0.000005 128 0.77 0.80

2.4. Evaluation of the Test Set

Figure 2 displays the normalized confusion matrix of the selected B2 model in terms
of the image patches for the test set. For these matrices, image patches are assigned to the
predicted class which has the highest probability. We used the balanced accuracy (BACC)
instead of the plain accuracy to account for the unequal distribution of classes.
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Figure 2. Non-aggregated (A) and aggregated (B) confusion matrices for all classes for the B2 EfficientNet model and no
quality control limit.



Int. J. Mol. Sci. 2021, 22, 5385

50f 14

The model shows a high recall rate of >90% for exocrine parenchyma, fatty tissue,
tumor-free, and lymph nodes. Misclassified cases mainly (>5%) occurred (i) in the group
of normal pancreatic ducts, which were classified as exocrine islands or adenocarcinoma,
(ii) in the group of endocrine islands, which were classified as exocrine parenchyma,
(iii) in the group of non-tumor fibrosis, which was classified as tumor-associated stroma,
(iv) in the group of tumor-associated stroma, which was classified as non-tumor fibrosis
or adenocarcinoma, (v) in the group of PanIN low- and high-grade and adenocarcinoma,
which were mainly misclassified within these three groups and normal ducts, and (vi) in
the group of lymph node metastases, which were classified as pancreatic adenocarcinoma.
Many of these misclassifications can be explained (see Discussion).

2.5. Introduction of Quality Control Threshold

Figure 3 features the optimal BACC and quality control threshold on our data at
the image patch level (BACC = 73% for non-aggregated and 92% for aggregated data).
Any patch with a predicted probability (in terms of the highest prediction probability) of
less than the patch-based quality control (PQC) threshold was filtered out. Image patch
confusion matrices for QC of 0.5, 0.6, 0.7, 0.8, and 0.9 can be found in Figure S1, which
show an improved BACC at the patch level from 67 to 73% in non-aggregated and from 79
to 92% in aggregated data in the test set.
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Figure 3. Non-aggregated (A) and aggregated (B) confusion matrices for all classes for the B2 EfficientNet model and

quality control limit of 0.9.

As many images may show more than one class (e.g., normal pancreatic ducts sur-
rounded by exocrine parenchyma, or endocrine islands within exocrine parenchyma), a
non-aggregated accuracy may actually underestimate the overall power of our model.
Thus, we aggregated all benign, both PanIN, and all malignant classes into three categories:
benign, PanIN, and malignant. The highest aggregated BACC of our best model was
92.12%, with a PQC threshold of 0.9 for the test set. However, it should be noted that a
high proportion of cases (53.59%) are excluded in this case, as they do not pass the PQC
(Table 4).

Table 4. BACC for various PQC thresholds and non-aggregated as well as aggregated classes.

(Values in %) 0 0.5 0.6 0.7 0.8 0.9
BACC non-aggregated 65.63 67.21 68.78 70.62 71.87 73.2
BACC aggregated 76.69 78.88 80.77 82.85 86.39 92.12
Below threshold 0 8.98 18.66 29.3 40.67 53.59
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2.6. Explainability of the Model

We observed high class-specific activity in cellular and non-cellular structures using
SmoothGrad (Figure 4). For example, in normal non-dysplastic pancreatic ducts, nuclei
are particularly important for the algorithm to detect ducts and to classify the ducts as
normal/non-dysplastic. Thus, we conclude that our model predicts the respective class
based on morphological features and not on technical characteristics.

Fatty Tissue Tumor-free Pancreatic

Stroma

: 2 . . Tumor-associated
Exocrine Islands Endocrine Islands Nontumor Fibrosis

SmoothGrad

High

e
@
—

o

<

=
o]
o
=
O]

Low

Figure 4. SmoothGrad heatmaps of exemplary image patches that have been classified correctly and highlight cellular
structures. For each class, the upper plot shows the original image patch, while the lower plot shows the patch overlaid with
the SmothGrad heatmap in respect to the class of the image patch. High SmoothGrad activity scores can be seen in areas

overlaid with cells or nuclei. This confirms that the algorithm classified the image patches based on cellular morphology.
Scale: each image 100 x 100 pm (219 x 219 px).

2.7. Application on Whole Slides

Prediction heatmaps show the localization of automatically classified image patches
within whole slides after eliminating image patches with a low optical density in order
to save computational resources. The different anatomical structures can easily be identi-
fied. Additionally, the identification of areas with a high tumor cell content is facilitated
(Figure 5). The number of classified image patches is displayed in Table S1.
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Scaled by prediction

Slide 1

Slide 2

Slide 3

Slide 4

B Fatty Tissue © Tumor-associated Stroma B | ymphnode Metastasis
B Tumor-free Pancreatic Lymphnode Normal Ducts Empty

B Exocrine Islands = Panin Low-grade = Multiple predictions

B Endocrine Islands B Panln High-grade B QC Failed

= Nontumor Fibrosis B Pancreatic Adenocarcinoma

Figure 5. The first column shows the original slides, the second column shows the patch classification heatmaps with a QC
of 0.5, and in the last column, the patch color is mixed with white depending on the prediction probability (1 results in
no mixing with white). Non-tumor pancreatic tissue (first row), areas with a high content of pancreatic adenocarcinoma
(second to fourth rows), and lymph node metastases (fourth row) can be easily identified.

3. Discussion

The aim of the present study was to generate a deep learning approach which can
distinguish pancreatic cancer tissue into distinct pathological and anatomical structures.
For this, we classified 11 different tissue structures that occur within the tissue of pancreatic
resection specimens by a CNN with high accuracy. We further established a method to
enhance the explainability and interpretability for single image patches and, moreover, a
technique to automatically visualize different anatomical tissue structures on whole slides.

Deep learning techniques and particularly CNNs have been previously applied to
different types of scanned histopathological images [19-22]. Application of these techniques
to histopathological slides is particularly complex, due to the enormous file size, which
is about 100 times larger compared to clinical CT scans. On the other hand, these large
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datasets contain large amounts of information, which can be used to differentiate various
tissue types, disease patterns, and even tissue-based molecular alterations. In contrast to
other histopathological studies, we not only included singular or a few but more than 10
structure classes in our algorithm [23,24]. Beyond the technical side, our study is, to our
knowledge, the first in which deep learning techniques are applied to a large cohort of
pancreatic tissue specimens and thus is of potential interest for clinical pathologists and
researchers in the field of PDAC.

Technically, our study applies an up-to-date workflow regarding the study design, the
image patch size, the use of a recent model architecture, the use of quality control measures,
the application of a method to explain and interpret the model, and the application of the
generated tools on whole tissue slides.

To obtain the highest accuracy, we used a training, a validation, and a test set, where
all images from each individual patient were grouped only in one cohort, in order to
ensure the most reliable results. The best results were obtained when using three datasets,
compared to investigations with limited numbers of patients, which only use two sets
for training and validation [23]. This is suboptimal, as very high accuracy values may be
achieved by tuning the algorithm to the training and validation sets [25].

Our image patch size of 100 x 100 um that was chosen arbitrarily, but it is in the range
of the reported and well-accepted image patch sizes of 16 x 16 px and 800 x 800 px [24].
Some of the differences can be explained by the fact that investigators have previously
extracted images at 200 x magnification [21,26]. However, most studies have extracted the
image patches at 400 x magnification, as in our study, to ensure the highest resolution of pic-
ture information [27,28]. With about 81.165 extracted image patches from 201 patients, our
study belongs to the largest and can be compared with other studies on histopathological
images [29].

To obtain the highest accuracy, we trained our model with the EfficientNet frame-
work because it has achieved high top 1 and top 5 accuracies on the ImageNet reference
dataset, while being smaller and significantly faster than network architectures achieving
comparably high accuracy rates on the same dataset [30]. The EfficientNet architecture has
been recently developed and uses a compound scaling method to balance the width, depth,
and resolution of a network. It has been successfully applied to histopathological image
classification tasks previously [31].

The interpretability and explainability of trained models are important, as non-
explainable results of a “black box” algorithm are not acceptable in the medical field,
specifically in the diagnostic context for patients or interpretation of research data. In
this regard, SmoothGrad is a very innovative and state-of-the-art technique and has an
advantage over older methods that take a gradient of a class prediction neuron with respect
to the input pixels, because it has much less background noise [32]. Thus, it can be appre-
ciated that single cells or even specific cellular structures such as nuclei or the cytoplasm
are important for the algorithmic classification decision. However, this is not a definite
proof that the identified features are causally linked to a specific class, but it provides
strong evidence that morphological patterns, and not unrelated image characteristics (e.g.,
a specific type of scanner, or staining characteristics), are the major reason for a particular
classification result. Indeed, we could demonstrate that cells and nuclear size and shape
are the key features for our model to separate the different histological classes. In this
regard, our approach is well in line with the currently applied histomorphological criteria,
e.g., to separate normal pancreatic ducts from PanIN based on cellular size and cellular
shape, as well as the size and localization of the nuclei.

The application of our model to whole slides allows rapidly identifying anatomical tissue
structures in pancreatic tissue and to localize areas with a high tumor content. This may
result in a faster and focused review of tissue sections in the routine diagnostic, as regions of
special interest are already highlighted. In addition, this approach provides a second control
mechanism, as the tissue areas of interest are tagged. Moreover, tissue slides and areas with a
high tumor cell content are automatically selected for further analysis and research.
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Since we had established the algorithm on punch cores of a tissue microarray, with
a core diameter of 1 mm, applications are not only limited to full HE sections but may
also include small clinical fine needle biopsies, generated by ultrasound (EUS-FNBs). An
EUS-FNB of PDAC often contains only a tiny amount of tumor cells, intermixed with large
amounts of stroma and other tissue components and thus represents a diagnostic challenge
for pathologists. In these cases, the proposed algorithm may help to solidify the diagnosis.
Due to the good performance in discriminating exocrine from endocrine cells, also a value
for tumor typing is possible, especially in cases where, due to a lack of enough tumor cells,
immunohistochemistry for further characterization is not possible. However, the latter will
require further adaptations to the algorithm.

Our model achieved high classification accuracies but had weaknesses in several
classes. However, most of the misclassifications can be explained. Firstly, in many cases,
more than one class is represented in one image (e.g., endocrine parenchyma adjacent to
exocrine parenchyma, normal pancreatic ducts surrounded by exocrine parenchyma, or
single tumor cells in tumor-associated fibrosis). Secondly, the group of non-tumor fibrosis,
found in chronic pancreatitis or as scaffold tissue, and tumor-associated fibrosis is poorly
defined and sometimes hard to distinguish. As pancreatic adenocarcinoma has a prominent
stromal component, which may be important to understand the particularly aggressive
nature of this cancer type, we labeled the fibrotic stroma as a separate class in addition
to non-tumor fibrosis, knowing that both classes morphologically exhibit overlapping
features. Thirdly, the group of PanIN low-grade and PanIN high-grade is prone to some
degree of subjectivity, and it is possible that other observers may have labeled single images
differently. Fourthly, PanIN high-grade and adenocarcinoma can only be distinguished
by the identification of stromal invasion and loss of the lobular tissue architecture. When
tilting the images, although great care was taken with the annotations, some images may
not exhibit stroma. Thus, the differentiation feature might not always be represented, and
it is impossible to distinguish both classes in these images. Last, lymph node metastases
of pancreatic adenocarcinoma may induce a prominent stromal reaction and consume
the non-neoplastic lymph node tissue. Therefore, adjacent non-infiltrated lymph node
tissue might not be well represented on the images, which may explain the higher degree
of misclassifications in the classes “lymph node metastasis” compared to “pancreatic
adenocarcinoma”. All these issues, however, can be solved by individual cross-checking of
the images by a pathologist.

The limitations of our study are mainly due to the number of included classes and
the process for hyperparameter tuning. Herein, we trained our model on 201 cases and
a total of 11 classes. In this regard, it is clear that only a fraction of the entire possible
morphological spectrum with all inter- and even intra-individual variations of normal
tissue structures, PanIN, and different growth patterns of PDAC will be included. Our
model was trained to detect only one malignant pancreatic tumor (PDAC). Therefore, it
cannot be expected that the algorithm will reliably identify intrapancreatic metastases from
other primary tumors, neuroendocrine neoplasms, solid pseudopapillary neoplasms, the
different cystic neoplasms of the pancreas, or the rare pancreatic tumors, which all were not
trained in the current study. As already mentioned, PDAC is characterized by a prominent
stromal component and may grow in a single-cell fashion. Thus, the small number of
tumor cells per image patch may be a limiting factor for training, and the minimal number
of tumor cells per image patch which is needed for the best reliable results is currently
not clear. Based on the abovementioned statements, the application of deep learning
approaches to classify pancreatic tissue must always be conducted under the supervision
of a trained pathologist to avoid misclassifications and potentially harmful consequences
for patients, although it represents a useful supplement.
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4. Materials and Methods
4.1. Patient Cohorts, TMA Construction, and Scanning of Tissue Slides

We used a TMA consisting of a total of 113 patients (Institute of Pathology, University
Medical Center of Mainz). TMA construction was conducted as described previously [33,34].
Diagnoses were made according to the 2019 World Health Organization Classification of Tu-
mors of the digestive system [35]. Pancreatic TMA slides were scanned at 400 x magnification
using a slide scanner (NanoZoomer 2.0-HT, Hamamatsu Photonics K.K., Hamamatsu, Japan)
as previously described [36].

Moreover, image patches were available from 88 patients acquired from other TMAs
derived from the Tissue Biobank of the National Center for Tumor Diseases Heidelberg
(NCT Heidelberg) with a different slide scanner (Aperio SC2, Leica Biosystems, Nussloch,
Germany). The same slide scanner was used to scan representative whole slides from four
other patients. The study was approved by the Institutional Review Board of Heidelberg
University (IRB; #5315/20). The tissues of both cohorts were taken from resection specimens
of patients who underwent primary surgery for pancreatic cancer.

To ensure reliable results, patients from the TMAs were randomly separated into
training (120, 60%), validation (41, 20%), and test sets (40, 20%). All image patches from
a patient were used in the respective set. These subsets were not changed during the
analyses. The general workflow of the study is outlined in Figure 6.

Collection of tissue cohort Scanning and review Annotation of tissue classes

>R -

A
L el
—_——

Transfer to whole slides

/
Validation of algorithm and Training and optimization
Quality control of algorithm

= || <
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11
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Figure 6. General workflow of the study. After collection of the tissue cohort, slides were scanned and reviewed. Tissue

classes (A, B, C in this example) were annotated, and an algorithm was trained and optimized to classify these categories.

The algorithm was validated, quality control was implemented, and the algorithm was applied to whole slides.

4.2. Annotation of Regions of Interest and Image Patch Extraction

Scanned slides were imported into QuPath (v.0.1.2, University of Edinburgh,
Edinburgh, UK). Areas of interest were annotated by a pathologist (A.K. and M.K.).
Patches 100 x 100 um (219 x 219 px) in size were generated within QuPath, and the
tumor-associated image patches were exported to the local hard drive. Representative
areas of interest and generated /extracted image patches are displayed in Figures 7 and 8.
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Figure 7. Annotation and generation of image patches. Representative tissue microarray core of a pancreatic specimen

without (A) and with annotation of exocrine parenchyma ((B), yellow outline), as well as after image patches’ creation

((C), red squares). The image patches were subsequently saved as.png files. Scale bars: 100 pum.

..,,no%@ 00

Figure 8. Examples of image patches from annotated areas. One representative image patch from fat (A), lymph node (B),

exocrine (C) and endocrine parenchyma (D), stroma (E), tumor-associated stroma (F), normal pancreatic ducts (G), pancreatic

intraepithelial neoplasia low-grade (H) and high-grade (I), and pancreatic ductal adenocarcinoma (J) is shown. Lymph node

metastasis from pancreatic adenocarcinoma is not displayed. Magnification: each image 100 x 100 um (219 x 219 px).

4.3. Hardware and Software

For training and predicting with our models, we used the BwForCluster MLS&WISO
Production nodes that feature the Nvidia GeForce RTX 2080Ti. We used a single GPU.
Further, we applied singularity to adopt (v.3.6.4) and run (v.3.0.1) the TensorFlow 2.3.1-gpu
docker container for training and predicting with our models. We added R (v.4.0.3) with
packages dplyr (v.1.0.4), tidyr (v.1.1.2), tibble (v.3.0.6), config (v.0.3.1), readbitmap (v.0.1.5),
data.tree (v.1.0.0), jsonlite (v.1.7.2), and jpeg (v.0.1.8.1), as well as the python packages
pandas (v.1.1.5), Pillow (v.8.1.0), scipy (v.1.5.4), tabulate (v.0.8.7), and tensorflow_addons
(v.0.12.1), to the container. The SmoothGrad and whole slide heatmaps were generated on
a Lenovo P1 Gen 2 running Windows 10 with a conda (v.4.9.1) environment containing
tensorflow (v.2.3.1), albumentations (v.0.5.2), and tf-explain (v.0.3.0). We adopted the tf-
explain package code such that the resulting heatmaps were normalized to (0,1), and the
maximum gradient per channel was used as described [37].

4.4. Model Training and Optimization

We used models from the EfficientNet family for our analysis. The EfficientNet family
is composed of multiple models (from B0 to B7) that are each a scaled version of the
baseline model BO. The models are scaled by the compound scaling method introduced
in [31]. With compound scaling, each consecutive model increases in network width, depth,
and image resolution by a set of fixed scaling coefficients. This form of scaling utilizes
the idea that the network width, depth, and image resolution seem to exhibit a certain
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relationship [31]. A model with fewer trainable weights can be trained using less resources,
and its inference is faster [31]. In this study, we investigated the performance of the B0, B1,
and B2 architectures. The non-trainable model parameters (such as dropout) provided in
the tensorflow implementation of EfficientNet models were used without modification.
The batch size was chosen as the maximal allowed valued (in the sequence of 2", n € N)
given the available GPU memory. This batch size usually becomes smaller when scaling
up an EfficientNet: the image resolution increases and the model itself becomes bigger
due to the additional weights. We used the Adam optimizer with a learning rate that was
selected for each model as follows: Models were trained for 50 epochs (each a pass of
the full training data) with various learning rates roughly in the range of 1e-05 to 1e-06.
Then, the best performing learning rate was chosen, and the respective model was trained
further until there seemed to be no performance gain. Performance was visually evaluated
by the achieved validation and training accuracies, the amount of overfitting (difference
between training and validation accuracies), and the smoothness of the accuracy curves.
The models with the highest validation accuracy for each class of EfficientNet models (B0,
B1, B2) were compared, and the overall best performing one was used to classify the test
set. Image augmentation was applied as described [38]. We used the basic, morphology,
brightness and contrast, and hue/saturation/value augmentations. We adjusted some
parameters by visually inspecting the generated augmented patches as follows. We used
fixed instead of variable values for the elastic transform (o = 80, o = 9); however, we applied
the transformation with 50% chance only. We increased the range of sigma of the Gaussian
blur from (0, 0.1) to (0, 1). For hue and saturation, we used a middle ground between the
two settings HSV-light and HSV-strong: (—0.3, 0.3).

4.5. Model Explainability and Classification of Whole Slide Images

To further investigate if the network was learning the correct features, we applied
SmoothGrad [32] to a selection of image patches. SmoothGrad produced heatmaps within
an image patch that indicate the importance of certain pixels towards the prediction of a
certain class. We used a noise level of 0.5% and a sample size of 50.

Moreover, we applied the model with the highest BACC to novel whole slide images.
For the whole slide, image patches (395 x 395 px) with information on their localization
were produced, extracted, classified, and reassembled to create heatmaps with information
on the localization of the respective classes. To reduce the computational resources, empty
(containing no tissue) vs. non-empty patches were classified as follows: An overview
image of the whole slide was produced (largest dimension 1024 px) which was segmented
into foreground and background using Otsu’s method [39]. If more than half of the pixels
in the area of a patch of the overview image were considered background, the patch was
classified as empty.

5. Conclusions

We used a CNN to automatically classify different anatomical structures including
PDAC in pancreatic tissue specimens. This approach can be used as a supplementary
method in the routine diagnostic setting to highlight worrisome structures which may
need further review by pathologists. Moreover, it is a very helpful tool for tissue-based
molecular research, especially for studying tumor heterogeneity and inflammation.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/1jms22105385/s1, Figure S1: Validation and test non-aggregated confusion matrices for all
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