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Mesenchymal stem cells (MSCs) are multipotent cells derived from various tissues
including bone marrow and adipose tissues. MSCs have the capacity to differentiate into
mesodermal lineages, including chondroblasts, osteoblasts, and adipocytes. In addition to
bone marrow and adipose tissues, Wharton’s jelly, umbilical cord, fetal/neonatal tissues [1],
dental pulp [2], and placenta [3] have been studied as sources of MSCs that can differentiate
into various cell types with therapeutic properties. The clinical applications of MSCs are
based on their unique stem cell properties, including the secretion of trophic factors and
their proangiogenic, anti-inflammatory, immune-modulatory, and anti-oxidative stress
activities. However, large-scale expansion of these cells for allogeneic therapies requires
minimization of donor-dependent and bioprocess variabilities [4]. This Special Issue,
entitled “New Sources, Differentiation, and Therapeutic Uses of Mesenchymal Stem Cells”,
includes eight articles, four of which are review papers that discuss novel sources of MSCs
and recent advances in the characterization and applications of MSCs. The articles in
this issue provide insight into the therapeutic uses of MSCs and their derivatives, such as
extracellular vesicles (EVs) and MSC spheroids.

Menstrual blood [5], tonsils [6], and induced pluripotent stem cells (iPSCs) [7] are also
attracting attention as novel tissue sources for MSCs and are expected to be suitable as cell
therapy products. The iPSC-derived MSCs have been applied to skin regeneration and skin
rejuvenation [8,9], and menstrual blood-derived MSCs (MB-MSCs) have shown angiogenic
potential similar to that of bone marrow-derived MSCs (BM-MSCs) [5,10]. Tonsil-derived
stem cells have excellent proliferation and differentiation capabilities, and their clinical
applications as therapeutic agents have been studied [6,11,12].

Over the past decade, MSCs have been proposed as a promising therapeutic treatment
for various diseases. Many preclinical and clinical studies have described various strategies
for effective MSC therapy, including decisions about the most (1) satisfactory cell type
for each therapeutic application, (2) satisfactory culture conditions to ensure therapeutic
effects, (3) suitable and effective methods for the mass production of these cells, and (4)
appropriate functional tests for determining whether these biological products for each
therapeutic indication have been developed to overcome the limitations of MSCs, such as
heterogeneity and safety and handling issues [4].

To optimize the clinical applications, the approaches used to develop biological prod-
ucts based on the molecular properties of MSCs and their mechanisms of action are being
studied. Among these approaches, the paracrine function of MSCs via the secretome,
which involves conditioned media (CM), EVs, and exosomes, is considered to be represen-
tative [5,9,13–17]. The CM derived from BM-MSCs and MB-MSCs have been shown to be
capable of stimulating tube-like formation of human umbilical vein endothelial cells [5].
CM derived from BM-MSCs, amniotic membrane MSCs, umbilical cord blood MSCs, and
umbilical cord tissue MSCs (UC-MSCs) have been shown to be effective treatments in
rodent models of bronchopulmonary dysplasia (BPD) [15]. Ramalingam et al. reported
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the therapeutic role of CM derived from neural-induced adipose tissue-derived MSCs
(AD-MSCs) against rotenone-induced Parkinson’s disease-like impairments [14].

EVs of the MSC secretome can generate an encouraging alternative for exploiting MSC
properties and can be classified as exosomes (30–120 nm in diameter), which originate
within endosomal compartments called multivesicular bodies in the cell [4]. EVs from
AD-MSCs have anti-photoaging potential and have been used in subcutaneous injections
in mouse models of photoaging [9,17]. In addition, the capacity to inhibit inflammation,
which is consistent with the main actions described for EVs in general [15,18], has been
observed in animal BPD models. Transmission of cellular senescence and proinflammatory
activation between MSCs and their EVs are involved in the development of inflamm-
aging, which is associated with the degeneration of organs and tissues during aging [16].
Mato-Basalo et al. reported that treatment of senescent UC-MSCs with small inhibitors
(e.g., JSH-23, MG-132, or curcumin) prevented cellular senescence and proinflammatory
activation in MSCs, and paracrine and proinflammatory transmission by EVs through
inhibition of the p65 pathway [16].

To advance the development of innovative stem cell therapies, priming [15–19] or ge-
netic engineering of MSCs and biomaterial-based physical/structural modification [5,13,15]
of MSCs have been studied. Treatment of AD-MSCs with fibronectin-derived peptide has
been shown to improve their proliferation and differentiation into osteoblasts [19]. An im-
proved therapeutic effect of BM-MSCs treated with recombinant erythropoietin in a rodent
BPD model has also been reported [15,20]. In addition, genetic engineering techniques have
been applied to induce insufficient endogenous factors or new proteins directly within
MSCs [21]. Various MSCs have been used with genetic modification technology using
RNA viruses, such as lentiviruses and retroviruses, and DNA viruses, including aden-
oviruses or adeno-associated viruses, and the preclinical results of these studies have been
published [4]. The formation of spheroids that recover cell communication and provide a
concertation gradient of external factors depending on the location, as observed in vivo,
has been reported. These spheroids exhibit superior viability, self-renewal capacity, and
differentiation potential compared with two-dimensional cells [13].

As presented in this issue, several biotechnology techniques have been developed to
overcome the limitations noted in previous reports on the clinical applications of MSCs
and to produce high-efficiency MSCs. MSCs and their products applied using these
biotechnology techniques should focus on standardization to ensure the safety verification
and cell quality control needed for practical clinical applications. The accumulated results of
these studies will ultimately accelerate the development and practical clinical applications
of high-efficiency MSCs and their product therapeutics.
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