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Abstract: In eukaryotic cells, DNA replication licensing is precisely regulated to ensure that the
initiation of genomic DNA replication in S phase occurs once and only once for each mitotic cell
division. A key regulatory mechanism by which DNA re-replication is suppressed is the S phase-
dependent proteolysis of Cdt1, an essential replication protein for licensing DNA replication origins
by loading the Mcm2-7 replication helicase for DNA duplication in S phase. Cdt1 degradation is
mediated by CRL4Cdt2 ubiquitin E3 ligase, which further requires Cdt1 binding to proliferating
cell nuclear antigen (PCNA) through a PIP box domain in Cdt1 during DNA synthesis. Recent
studies found that Cdt2, the specific subunit of CRL4Cdt2 ubiquitin E3 ligase that targets Cdt1
for degradation, also contains an evolutionarily conserved PIP box-like domain that mediates the
interaction with PCNA. These findings suggest that the initiation and elongation of DNA replication
or DNA damage-induced repair synthesis provide a novel mechanism by which Cdt1 and CRL4Cdt2

are both recruited onto the trimeric PCNA clamp encircling the replicating DNA strands to promote
the interaction between Cdt1 and CRL4Cdt2. The proximity of PCNA-bound Cdt1 to CRL4Cdt2

facilitates the destruction of Cdt1 in response to DNA damage or after DNA replication initiation
to prevent DNA re-replication in the cell cycle. CRL4Cdt2 ubiquitin E3 ligase may also regulate the
degradation of other PIP box-containing proteins, such as CDK inhibitor p21 and histone methylase
Set8, to regulate DNA replication licensing, cell cycle progression, DNA repair, and genome stability
by directly interacting with PCNA during DNA replication and repair synthesis.

Keywords: DNA replication; DNA repair synthesis; Cdt1; Replication licensing; Cdt2; PCNA;
CRL4Cdt2; DNA re-replication; genome instability

1. Introduction

DNA replication licensing is tightly controlled to prevent re-replication of the genome
during cell cycle progression in eukaryotic cells [1–3]. In metazoans, a major regulatory
mechanism by which only one round of DNA replication occurs in S phase is the control
of the activity or protein levels of the replication licensing protein Cdt1 [1,4–7] in the cell
cycle. Recently, progress revealed that Cdt1 and DNA replication licensing are regulated
at multiple levels during cell cycle progression [7–11], providing new insights into the
mechanism by which the fidelity of DNA replication and genome stability are controlled in
the cell cycle.

In single cell eukaryotic organisms such as budding yeast Saccharomyces cerevisiae,
DNA replication initiates at multiple autonomously replicating sequences (ARSs) in the S
phase of a mitotic cell cycle [12]. These ARSs are specifically recognized by a replication
initiator protein complex, the Origin Recognition Complex (ORC) consisting of six proteins
(Orc1-Orc6), in an ATP-dependent binding process to initiate the bidirectional DNA repli-
cation [13]. In addition, Cdc6 and the Mcm2-7 helicase proteins are also found essential for
the initiation of DNA replication in the budding yeast [3,14]. While the Orc1-6, Cdc6, and
Mcm2-7 proteins are essential for DNA replication initiation and highly conserved from
yeast to human [14], Cdt1 is initially identified in fission yeast Schizosacharomyces pombe [15],
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which is also required for DNA replication initiation [3]. The budding orthologue of Cdt1,
encoded by Tah11/Sid2, is subsequently identified as the tah11/sid2 mutants that fail to
load Mcm2-7 to ARS to initiate DNA replication but not the DNA replication elongation,
resulting in the loss of minichromosomes in an ARS-number-dependent manner [16].

2. The Assembly of the Pre-Replicative Complex (Pre-RC) for DNA Replication Licensing

In multi-cellular organisms, DNA replication initiation also occurs at multiple repli-
cation origins along the chromatin DNA in cells undergoing replication and mitotic cell
divisions, although the number and exact locations of many DNA replication origins vary
in different cells [17–19]. The firing of various DNA replication origins is further regulated
in time and space during S phase progression, affected by chromatin structure, DNA and
histone modifications, and transcriptional activities [17,18,20,21]. The early replication
origin regions typically replicate the genomic region in the early S phase, whereas late
replication regions usually synthesize their DNA in the late S phase [18]. However, all
DNA replication origins are fired once and only once in a mitotic cell cycle to ensure that
fully replicated DNA at the end of S phase is strictly followed by a G2 phase and a mitotic
cell division to produce two daughter cells with the same genome DNA contents as the
mother cell [1,3]. The competence for the next round of DNA replication, also called DNA
replication licensing, is established in late mitosis and early G1 [3,22–24]. This replication
licensing process requires the assembly of pre-RC on the ORC protein-bound replication
origins, including the recruitment of Cdc6, Cdt1, and the Mcm2-7 helicase complex onto
the replication origin-ORC complexes. However, the assembled Mcm2-7 complex in the
pre-RC does not have the replication helicase activity at this stage. Subsequent activation
of the Mcm2-7 helicase complex requires the activities of two kinases: the cyclin-dependent
kinase (cyclin/CDKs) and Dbf4-dependent kinase (DDK) at the onset of the S phase,
leading to the unwinding of DNA replication origins to initiate DNA replication in the S
phase [1,3,17].

Analyses of step-wise in vitro biochemical assembly of replication initiation complexes
using purified replication initiation proteins, and the establishment of yeast replication
initiation process, reveal that the Orc1-5 and Cdc6 protein complex forms a ring-clamp
structure to encircle the double-stranded replication origin DNA in an ATP-dependent
process [3,25,26]. The tertiary ORC-Cdc6 complex next loads the pre-existing Cdt1-Mcm2-7
protein complex onto the DNA replication origin DNA to form the pre-RC [7]. In budding
yeast, Orc6, the only ORC protein not required for DNA binding, interacts with Cdt1 to
load Mcm2-7 helicase onto the origin-containing DNA [27]. The ORC complex lacking Orc6
fails to interact with Cdt1 and is defective to load the Mcm2-7 helicase, consistent with
the observation that in vivo depletion of Orc6 inhibits pre-RC assembly and maintenance.
CDK phosphorylation of Orc6 blocks Cdt1 binding and the Mcm2-7 helicase loading.
Recent studies showed that replication licensing requires multiple Cdt1 proteins at each
DNA replication origin to repeatedly load the single Mcm2-7 hexameric complex onto the
origin-bound ORC-Cdc6 complex to eventually form the head-to-head double hexameric
Mcm2-7 helicase complexes. The active double hexameric Mcm2-7 helicase complexes
encircle the DNA double helix to unwind the DNA duplex [27–29]. The loading of Mcm2-7
onto the DNA requires the entry of the DNA into the ring-like Mcm2-7 clamp and this
process is gated by a gap between Mcm2 and Mcm5 [28]. Cdt1 is required for the loading
of the hexameric Mcm2-7 complex because it can overcome the block conferred by an
auto-inhibitory domain in Mcm6 that prevents the recruitment of Mcm2-7 to the ORC-Cdc6
complex [27]. In addition, Cdt1 interacts with Mcm2, 6, and 7 to destabilize the interface
between Mcm2 and Mcm5 to maintain the Mcm2-7 in an open ring structure for Mcm2-7
helicase loading onto the duplex DNA [28]. The Cdt1-Mcm2-7 complex further activates
the Orc1-Cdc6 ATPase activities to hydrolyze ATP to promote Mcm2-7 helicase loading [30].
The Cdc6 ATPase activity is also required to release Cdt1 to form the ORC-Cdc6-Mcm2-7
complex, which functions to serve as the platform for the assembly of the Mcm2-7 double
hexameric complex [31]. The ORC-Cdc6-Mcm2-7 complex is negatively regulated by
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cyclin/CDK-mediated phosphorylation of the ORC proteins, such as Orc2 and Orc6, to
prevent premature activation of Mcm2-7 helicase [27]. The activation of the helicase activity
of the Mcm2-7 complex also requires the association with Cdc45 and Gins proteins, as well
as Mcm10, to form the Cdc45-Mcm2-7-Gins (CMG) complex that unwinds the duplex DNA
during DNA replication [3,32,33].

In yeast, the ORC complex is essential for marking the specific replication origins
(the ARS sequences) and loading the Cdt1-Mcm2-7 complex onto the origins for DNA
unwinding at the onset of DNA replication [13]. Whether the ORC complex and Cdc6 can
assemble the functional pre-RCs without the specific origin DNA sequences has been tested
by expressing and tethering GAL4-fusion proteins with individual Orc protein or Cdc6
to GAL4 binding sites in human cells [34]. These tethering experiments showed that the
recruitment of GAL4-Orc or Cdc6 fusion proteins to the GAL4 binding sites is sufficient to
create artificial replication origins for DNA replication. These studies indicate that binding
of the ORC complex or Cdc6 protein to DNA is sufficient to recruit the Cdt1-Mcm2-7
helicase complex for replication licensing.

However, recent studies revealed that not all conserved ORC proteins are essential in
human cells. Biallelic deletions of two human ATPase ORC protein encoding genes, Orc1
or Orc2, indicate that human Orc1 or Orc2 are dispensable for proliferation [35]. The Orc1
or Orc2 deletion mutant cells have reduced Mcm2-7 helicase loading and their proliferation
is critically dependent on Cdc6, an ATPase that is essential to form the ORC ring structure
that encircles the duplex DNA. It remains unclear whether the ORC ring lacking Orc1 or
Orc2 can still partner with Cdc6 to load enough Cdt1-Mcm2-7 complex for DNA replication
or whether cells have ORC-independent and Cdc6-dependent alternative mechanisms to
load the Cdt1-Mcm2-7 complex on DNA replication origins for replication licensing.

3. The Activity of Cdt1 Plays a Key Role in DNA Replication Licensing or Relicensing
in Metazoans

Many studies reveal that Cdt1 acts as the loader of the Mcm2-7 replication helicase
complex for pre-RC assembly to license DNA replication origins [3,36,37]. Among the
replication initiation proteins involved in the pre-RC assembly, regulation of Cdt1 activity
appears to be most critical for DNA replication licensing that ensures DNA replication
occurs once and only once in a single cell cycle [1]. The Cdt1 activity is inhibited by binding
to a specific inhibitory protein, Geminin [38], a protein initially identified as a protein
substrate targeted for degradation by the Anaphase-promoting complex (APC/C) [39],
a ubiquitin E3 ligase that targets mitotic proteins for ubiquitin-dependent degradation
during the exit of mitosis and early G1. Replication licensing can occur in late M phase
and early G1 when the protein level of Geminin is kept low by APC/C. During S phase
to mitosis, the high level of Geminin protein inhibits Cdt1 replication licensing [40]. In
metazoans, removal of Geminin is sufficient to induce the activation of Cdt1, promoting
re-licensing and re-replication of genomes [41,42]. Crystal structure analysis revealed
that the Cdt1-Geminin complex forms a hetero-hexamer, with the coiled-coil domain of
Geminin interacting with Cdt1 so that the Cdt1 residues important for replication licensing
are buried in the Cdt1-Geminin hexamer, preventing Cdt1 interaction with the Mcm2-7
helicase [43]. However, the Cdt1-Geminin complex appears to be dynamically regulated
during DNA replication licensing. In Xenopus replication egg extract, depletion of Cdt1
inactivates the replication licensing activity. Notably, the addition of recombinant Cdt1-
Geminin protein complex can activate replication licensing by recruiting the Cdt1-Geminin
complex to chromatin to facilitate the interaction with the Mcm2-7 helicase even in the
excessive amount of Geminin, whereas the addition of the recombinant Cdt1 protein
alone without Geminin induces a checkpoint response that significantly slows down DNA
replication [44]. These observations suggest that the Cdt1- Geminin complex may exist in
the “permissive” or “inhibitory” conformations to regulate DNA replication licensing, as a
recent crystal structure analysis revealed [45]. Further studies are required to understand
the dynamic nature of the Cdt1-Geminin complex during DNA replication licensing and in
S phase.



Int. J. Mol. Sci. 2021, 22, 5195 4 of 12

In addition to the removal of Geminin, artificial over-expression of Cdt1 protein is
also sufficient to induce re-replication of the genome in mammalian cells [42]. Similarly,
the addition of recombinant Cdt1 in Xenopus DNA replication egg extracts leads to the
re-replication of DNA even in the G2 nuclei, which normally are refractory to DNA
replication [46]. These induced DNA re-replications are usually accompanied with DNA
damage-induced cell cycle checkpoint responses [41,42,47]. The critical replication licensing
function of Cdt1 is also demonstrated in a mouse spontaneous 129 strain, in which a six-
amino acid deletion in the PEST domain (amino acid residues 69–113) of the Cdt1 gene
causes the increased re-replication and transformation activities [48]. The expression of
Cdt1 is frequently elevated in aggressive human hepatocellular carcinomas and in various
breast and gastric carcinomas, suggesting aberrantly elevated levels of Cdt1 may contribute
to these malignancies [40,49,50]. Conversely, hypomorphic mutations of the Cdt1 encoding
gene are associated with the Meier–Gorlin syndrome (MGS), a rare autosomal recessive
primordial dwarfism disorder with microtia, patellar aplasia/hypoplasia, microcephaly,
and short stature, similar to the mutational phenotypes of the Orc1, Orc4, Orc6, and Cdc6
encoded proteins for the formation of the pre-RC complex for DNA replication [51–53].

Why is Cdt1 so unique among replication initiation proteins to promote DNA re-
replication when it is over-expressed or aberrantly activated after the removal of Geminin?
Recent studies revealed that there is a vast excess of Mcm2-7 helicase proteins relative
to the ORC proteins assembled onto chromatin in G1 during the formation of pre-RC,
although the loading of the Mcm2-7 helicase to the replication origins are dependent on the
prior binding of the ORC-Cdc6 complex [54–57]. However, only a fraction of these Mcm2-7
proteins form the productive CMG helicase complexes for DNA replication unwinding at
the onset of S phase [17]. Studies show that while the Cdt1-Mcm2-7 heptameric complex
is loaded onto DNA cooperatively to form a double hexamer, Cdt1 interacts with Mcm6
and Mcm2 to stabilize the Mcm2-7 double hexamer helicase complex [7,26]. Since Cdt1 is
required throughout the S phase, Cdt1 may act as a limiting step that stabilizes a fraction
of large excessive Mcm2-7 proteins to load onto DNA for DNA replication.

Cdt1 also appears to modulate chromatin structure for replication licensing. In human
cells, Hbo1 is a H4-specific histone acetylase (HAT) that interacts directly with Cdt1 for
DNA replication licensing [58]. Hbo1 specifically interacts with replication origins in the
G1 phase of the cell cycle and this association is dependent on the direct binding of Hbo1 to
Cdt1 to enhance Cdt1-dependent DNA re-replication. Histone H4 acetylation at replication
origins is cell cycle regulated, with maximal activity at the G1/S transition. The HAT-
defective mutant of Hbo1 can bind to replication origins but the mutant is unable to load
the Mcm2-7 helicase [9,58,59]. The requirement of Hbo1-mediated chromatin architecture
for Mcm2-7 loading may be related to another recent finding that Grwd1, a glutamate-rich
WD40 repeat protein that regulates chromatin openness by binding to histones, specifically
interacts with several replication origins in G1 phase [60,61]. Grwd1 also specifically
binds to Cdt1 to facilitate Mcm2-7 loading onto DNA. Genome-wide chromatin association
analyses revealed that Grwd1 significantly colocalizes with Cdc6 in the genome [60,61].
Thus, Cdt1 may coordinate several important processes, including chromatin structural
dynamics, to promote the loading of the double Mcm2-7 replication helicase hexamer
complex onto chromatin DNA template for replication licensing in the cell cycle.

4. Regulation of Cdt1 Proteolysis by the CRL1 Ubiquitin Ligase Complex

The protein level of Cdt1 is dynamically regulated in the cell cycle [62]. It is high in
G1 phase and low in S phase, although its mRNA level stays relatively constant in the
cell cycle [62]. In the presence of 26S proteasome inhibitors, Cdt1 protein accumulates
in S phase, suggesting that proteasome and ubiquitin-dependent proteolysis regulate the
downregulation of Cdt1 protein levels in S phase [62]. Cdt1 was found to interact with the F-
box protein, Skp2, a substrate-specific subunit of the cullin RING-based ubiquitin E3 ligase
CRL1Skp2 (also called SCFSkp2) complex, and this interaction promotes the degradation of
Cdt1 protein by CRL1Skp2 in the cell cycle [62–64]. The degradation of CRL1SKP2 substrates
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is usually phosphorylated and these site-specific phosphorylations are recognized by
Skp2 [65,66]. Indeed, subsequent studies revealed that Cdt1 is phosphorylated by Cdk2 at
threonine 29 (T29) and the phosphorylated T29 specifically binds to Skp2 to target Cdt1
for degradation by the CRL1Spk2 ubiquitin E3 ligase complex in the cell cycle. Although
the T29-phosphorylated Cdt1 is degraded in S phase, several observations suggest that
CRL1Skp2 is likely not to be the primary ubiquitin E3 ligase that critically regulates Cdt1
protein levels in S phase. First, the Cdt1 mutation that converts T29 to alanine (T29A),
which cannot be phosphorylated by Cdk2 and fails to bind to Skp2, is still degraded
normally in S phase [67]. There is no significant accumulation of the T29 mutant protein,
as compared to the wild type Cdt1 protein, in S phase. Furthermore, the protein level of
Cdt1 is not altered in fibroblasts lacking Skp2 (Skp2-/-) [64]. These findings indicate that
CRL1Skp2 may contribute to the degradation of Cdt1 in S phase but it is not critical for the
control of Cdt1 levels in S phase. Additional ubiquitin E3 ligase mechanism(s) exist that
regulates Cdt1 protein degradation in the S phase of mammalian cells.

5. The CRL4 Ubiquitin Ligase Serves as the Primary E3 Ligase for Cdt1 Degradation in
S Phase

Cullin 1 belongs to a large cullin protein family that also includes Cullin 2, 3, 4A and 4B,
5, and 7, all of which act as the critical scaffold proteins as the cullin RING-based ubiquitin
E3 ligases (CRLs) [68]. Two original findings revealed that cullin 4 (CRL4) ubiquitin E3
ligase serves as the primary ubiquitin E3 ligase for the degradation of Cdt1 protein in S
phase of the cell cycle. In Caenorhabditis elegans, loss of the single Cul4 orthologue leads
to massive DNA re-replication, resulting in cells containing up to 100C DNA content [6].
While highly conserved Cdt1 orthologue protein is present in G1 cells, it disappears in S
phase cells. Loss of Cul4 stabilizes Cdt1 protein in S phase. Removal of one genomic copy
of Cdt1 gene suppresses the DNA re-replication phenotype caused by the loss of Cul4 [6],
suggesting that Cul4-based ubiquitin E3 ligase may serve as the primary ubiquitin E3 ligase
for Cdt1 degradation in S phase. Independently, in both human cancer cells and Drosophila
S2 cells, UV- or gamma-irradiation was found to induce the rapid degradation of Cdt1
protein regardless of cell cycle [69], but not its associated inhibitory protein, Geminin.
Screening of the cullin family proteins revealed that this DNA damage-induced Cdt1
degradation is prevented if Drosophila CUL4 is eliminated in response to DNA damage,
while the loss of any other cullin E3 ligases does not suppress the degradation of Cdt1
after irradiation [69]. In human cells, loss of both Cul4A and Cul4B, two paralogues of
Cul4, prevents Cdt1 degradation in response to UV or gamma irradiation [69]. These
studies establish that CRL4 ubiquitin E3 ligase regulates Cdt1 degradation in S phase
and in response to DNA damage. Stabilization of Cdt1 protein after the loss of Cul4 in S
phase promotes DNA re-replication. Notably, the DNA damage induced Cdt1 degradation
occurs even when the ATM/ATR-mediated DNA damage checkpoint control is inhibited,
suggesting the presence of an alternative DNA damage mechanism for the degradation of
Cdt1 [69].

6. Cdt1 Interacts with Proliferation Cell Nuclear Antigen (PCNA) for Degradation

If Cdt1 is degraded in S phase cells or in response to DNA damage, what might be
the common mechanism by which Cdt1 is targeted for degradation under these different
conditions? Cdt1 was found to contain a highly conserved PCNA-interacting peptide box
(PIP) at its extreme amino terminus (Figure 1A) [5,70,71]. This PIP box indeed mediates
the direct interaction between Cdt1 and PCNA (proliferation cell nuclear antigen) [5]. In
the in vitro Xenopus activated egg DNA replication system, the CRL4-dependent Cdt1
degradation is recapitulated by the in vitro DNA replication or DNA damage-induced
repair replication process. Antibody-based depletion of PCNA from the extract is sufficient
to inactivate Cdt1 degradation induced by damaged DNA in the extract [5]. In mammalian
cells, mutation or deletion of this PIP box in Cdt1 prevents its degradation in response
to DNA damage [70,71]. Since PCNA encircles DNA as a trimeric ring that serves as
a clamp to facilitate the processivity of DNA polymerases during DNA replication and
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damage-induced repair DNA synthesis [1], these studies provide a common mechanism by
which DNA replication and DNA damage trigger the degradation of Cdt1 protein through
its direct interaction with PCNA [1].
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7. Cdt2 Serves as the Substrate-Specific Receptor for CRL4-Mediated Degradation of Cdt1

The CRL4 complex, like other cullin family ubiquitin E3 ligases such as CRL1Skp2,
employs a modular mechanism using one of many substrate-specific receptor proteins to in-
teract with specific protein substrates for ubiquitin-dependent degradation [68]. While the
carboxy terminal regions of Cul4A or its paralogue Cul4B binds to the RING protein Rbx1
or Rbx2 (also called Roc1 or Roc2) for the binding of ubiquitin conjugating E2 enzyme for
substrate ubiquitination, the amino terminal region of Cul4A or Cul4B binds to the adaptor
protein, DNA damage binding protein 1 (Ddb1), to form the CRL4 core complex [72]. Loss
of Ddb1, similar to Cul4A and Cul4B, also blocks the DNA damage-induced Cdt1 prote-
olysis [73]. It was found that a set of WD40 repeat domain proteins, DCAFs (also called
CDWs/DWDs), serve as the substrate-specific receptor subunits that interact with DDB1
to form various CRL4Dcaf ubiquitin E3 ligase complex to target specific substrates for poly-
ubiquitination and subsequent degradation [74–79]. Cdt2 (also called L2dtl/Dtl/Dcaf2)
was isolated as a WD40 domain-containing protein associated with the purified CRL4
core proteins Cul4B or Ddb1 in human cancer cells [74,75,78]. Loss of Cdt2, but not other
Dcaf proteins, specifically blocked the degradation of Cdt1 induced by DNA replication or
DNA damage, and induced re-replication associated with an increased nuclear volume,
a cell population with >4N DNA content, and altered DNA sedimentation [74,75]. Cdt2
is evolutionarily conserved from yeast, C. elegans, Drosophila, and humans to regulate
Cdt1 degradation by directly interacting with Cdt1 [1,74]. These studies indicate that
Cdt2 is the substrate-specific subunit of the CRL4Cdt2 ubiquitin E3 ligase complex for Cdt1
degradation [1,79]. In addition to preventing Cdt1-mediated DNA re-replication, CRL4Cdt2

ubiquitin E3 ligase complex also controls Drosophila endocycle DNA replication, a variant
cell cycle with only S and G2 but not mitosis in certain Drosophila cells [80].

Since Cdt1 contains a PIP box, which serves as a degron motif for its degradation by
PCNA- and CRL4Cdt2-dependent proteolysis, subsequent studies reveal that many PIP box-
containing proteins, including CDK inhibitor p21 (CDN1A or CIP1/WAF1) or its Xenopus
orthologue Xic1 [81–83], Set8 (also called KMT5A, PR-SET7/9, SETD8) histone methyl-
transferase [84–87], thymine DNA glycosylase TDG [88,89], Drosophila E2F1 [90], the p12
subunit of DNA polymerase δ [91], Xeroderma pigmentosa group G (XPG) [92], and F-box
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DNA helicase 1 (FBH1) [93], are the proteolytic substrates of CRL4Cdt2 in response to DNA
damage or in S phase for the PCNA-dependent proteolysis (Figure 1A). The C. elegans
DNA polymerase η contains a conserved PIP box and is also regulated by CRL4Cdt2 [94].
While the degradation of Cdt1 prevents the re-licensing of replication origins to ensure DNA
replication occurs only once in the cell cycle, the significance of other CRL4Cdt2-mediated
substrate degradation has emerged. For example, the PCNA-dependent degradation of
Cdk inhibitor p21 by CRL4Cdt2 is important because the presence of p21 impairs DNA
damage-induced replication, which is associated with a deficiency for recruitment of DNA
polymerases from the Y family members involved in translesion DNA synthesis, resulted in
the accumulation of DNA damage markers and genome instability [95]. Set8 is a histone
methyltransferase that methylates lysine 20 in histone H4 (H4K20), which further regulates
chromatin compaction and replication licensing of replication origins [87,96]. Recent studies
showed that a chromatin compaction threshold exists in cells exiting mitosis to ensure
genome integrity by limiting DNA licensing in G1 phase [97]. Upon mitotic exit, Set8
regulates chromatin relaxation. Loss of Set8 leads to substantial genome-wide chromatin
decompaction and allows excessive loading of the ORC complex to replication origins in
daughter cells. ORC overloading to replication origins stimulates aberrant recruitment
of Mcm2-7 helicase complex that promotes single-strand DNA formation and DNA dam-
age [97]. Thus, the CRL4Cdt2 ubiquitin E3 ligase regulates multiple processes important for
replication licensing, DNA replication, and cell cycle progression by targeting PIP-containing
protein substrates, including Cdt1, p21, and Set8 for ubiquitin-dependent degradation.

However, many other PIP box-containing proteins, such as DNA ligases, Fen1 (Flap
endonuclease 1), and other DNA polymerases, are not substrates for CRL4Cdt2 [1]. Compar-
ison between various PIP boxes in CRL4Cdt2 substrates and non-substrate proteins suggest
that the presence of positively charged amino acid residues near the PIP box may help
define the PIP box degron motif in CRL4Cdt2 substrates [1,98,99]. It was proposed that
Cdt1 and other CRL4Cdt2 substrates are recruited onto chromatin through their interaction
with the DNA-bound trimeric PCNA clamp on replicating DNA in S phase or during
DNA damage repair to be targeted for degradation by the chromatin bound CRL4Cdt2 [5],
although how CRL4Cdt2 is recruited onto the replicating chromatin to target Cdt1 and other
PIP box-containing substrates for degradation remains unclear at the time (see below).

8. Cdt2 Also Contains a PIP Box-Like Motif That Mediates the Direct Interaction with
PCNA to Target Cdt1 Degradation in S Phase or in Response to DNA Damage

Although the CRL4Cdt2 E3 ligase complex regulates the degradation of the PIP box-
containing proteins such as Cdt1, p21, or Set8, several lines of emerging evidence indicate
that this ubiquitin E3 ligase is also recruited onto the replicating chromatin by PCNA. First,
during the affinity purification of the Cdt2 protein complex from human cancer cells, a
small number of PCNA protein fragments were found in the Cdt2 complex [74]. Conversely,
affinity-purified PCNA complex also reveals the presence of Cdt2-derived peptides among
other known PCNA-associated proteins such as RFC1 [100]. These reciprocal studies
indicate that Cdt2 may interact with PCNA. Subsequent biochemical studies reveal that
recombinant Cdt2 and PCNA proteins can directly interact with each other via a highly
conserved PIP box-like motif at the carboxy-terminus of Cdt2 (Figure 1B). Mutation of this
PIP box-like motif in Cdt2 abolishes the interaction between CDT2 and PCNA both in vitro
and in vivo. While the introduction of wildtype Cdt2 can rescue the Cdt1 degradation
defects in Cdt2 knockdown cells, the PIP-box mutant of Cdt2 cannot substitute the normal
Cdt2 function for Cdt1 degradation in S phase or in response to DNA damage [100].
These studies are consistent with a previous report that the carboxy half of Xenopus Cdt2
homologue is required for Xenopus Cdk inhibitor Xic1 protein degradation in Xenopus
egg extract and this requirement is associated with the ability of this region to interact with
PCNA [83]. Independently, the C-terminal region of Cdt2 is found to help recruit Cdt2
to the DNA damage sites in mammalian cells and the same PIP box-like region in Cdt2
is found to mediate the high affinity interaction between Cdt2 and PCNA [101]. These
studies suggest a model by which both the PIP box-containing substrate proteins, such as
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Cdt1, and the CRL4Cdt2 ubiquitin E3 ligase are recruited to the replicating DNA by directly
interacting with different monomeric subunits of the trimeric PCNA clamp during DNA
replication. By binding to the same trimeric PCNA clamp, the proximity of Cdt2 and its
substrates leads the substrate degradation during DNA replication in S phase or during
DNA damage-induced DNA repair synthesis (Figure 2) [100].
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Figure 2. A model for DNA synthesis and PCNA-dependent Cdt1 degradation by CRL4CDT2. (A) Dur-
ing DNA replication or DNA damage-induced repair synthesis, Cdt1 and Cdt2 are recruited onto
different subunits of the trimeric PCNA clamp encircling the replicating DNA strands. (B) The
binding of Cdt1 and Cdt2 to the same trimeric PCNA clamp during DNA synthesis promotes the
specific interaction between Cdt1 and CRL4Cdt2 for the ubiquitin-dependent proteolysis of Cdt1 to
prevent DNA re-replication and genome instability.

9. Regulation of the CRL4Cdt2 Ubiquitin E3 Ligase

The protein levels of Cdt2 are dynamically regulated in the cell cycle. For example,
Cdt2 is found to be phosphorylated by Cdks on threonine 464 (T464) and this phos-
phorylation event prevents the ubiquitin-dependent proteolysis of Cdt2. A CRL1-based
ubiquitin E3 ligase, CRL1FBXO11, was identified, which targets the unphosphorylated Cdt2
for degradation during the control of the cell cycle exit [102,103]. However, it remains to be
investigated whether additional mechanisms exist to regulate CRL4Cdt2 ubiquitin E3 ligase
for the degradation of Cdt1 and many other substrates in the cell cycle.

10. Conclusions

The CRL4Cdt2-mediated proteolysis of replication licensing protein Cdt1 after replica-
tion initiation has emerged as the key mechanism that prevents DNA re-replication and
genome instability in a single cell cycle. Recent studies indicate that the trimeric PCNA
clamp that encircles replicating DNA strands recruits both Cdt1 and Cdt2-associated CRL4
ubiquitin E3 ligase complex to target Cdt1 for ubiquitin-dependent degradation in the S
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phase or during DNA damage-induced repair synthesis. Further studies are required to
determine how the PCNA-bound Cdt2 selectively interacts with Cdt1 and other substrates
of CRL4Cdt2 for PCNA-dependent proteolysis.
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