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Abstract: Identification of the protein targets of hit molecules is essential in the drug discovery
process. Target prediction with machine learning algorithms can help accelerate this search, limiting
the number of required experiments. However, Drug-Target Interactions databases used for training
present high statistical bias, leading to a high number of false positives, thus increasing time and cost
of experimental validation campaigns. To minimize the number of false positives among predicted
targets, we propose a new scheme for choosing negative examples, so that each protein and each
drug appears an equal number of times in positive and negative examples. We artificially reproduce
the process of target identification for three specific drugs, and more globally for 200 approved drugs.
For the detailed three drug examples, and for the larger set of 200 drugs, training with the proposed
scheme for the choice of negative examples improved target prediction results: the average number
of false positives among the top ranked predicted targets decreased, and overall, the rank of the true
targets was improved.Our method corrects databases’ statistical bias and reduces the number of false
positive predictions, and therefore the number of useless experiments potentially undertaken.

Keywords: chemogenomic; drug discovery; target identification; false positive predictions; negative
examples; machine learning; support vector machines; random forests; learning bias

1. Introduction

Drug discovery often relies on the identification of a therapeutic target, usually a pro-
tein playing a role in a disease. Then, small molecular drugs that interact with the protein
target to alter disease development are designed or searched for among large molecular
databases. However, there has been a renewed interest in recent years for phenotypic drug
discovery, which does not rely on prior knowledge of the target. In particular, the phar-
maceutical industry has invested more efforts in poorly understood rare diseases, and for
which therapeutic targets have not been discovered yet. While phenotypic drug discovery
has made possible the identification of a few first-in class drugs [1], once a phenotypic
hit is identified, not knowing its mechanism of action is a strong limitation to fill the gap
between the hit and a drug that can reach the market [2]. More fundamentally, the target
points at key biological pathways involved in the disease, helping to better understand its
molecular basis.

Our work aims at helping determination of the protein targets for hit molecules dis-
covered in phenotypic screens. Identification of a drug target based solely on experiments
is out of reach because it would require to design biological assays for all possible proteins.
In that context, in silico approaches can reduce number of experimental tests by focusing
on a limited number of high probable protein targets. Among them, Quantitative Structure-
Activity Relationship (QSAR) methods were developed for that purpose [3]. They are
efficient methods for the inverse problem of finding new molecules against a given target,
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when ligands are already known for this target. However, using them to identify the
targets of a given molecule would require training a model for each protein across the
protein space, which is not possible because many proteins have only few, or even no,
known ligand.

Docking approaches can address this question [4], but they are restricted to proteins
with known 3D structures, which is far from covering the human proteome.

In the present paper, we tackle target identification in the form of Drug-Target Interac-
tion (DTI) prediction based on machine learning (ML) chemogenomic algorithms [5]. These
approaches can be viewed as an attempt to complete a large matrix of binary interactions
relating molecules to proteins (1 if the protein and molecule interact, 0 otherwise). This
matrix is partially filled with known interactions reported in the literature and gathered
in large databases such as the PubChem database at NCBI [6]. They can be used to train
ML chemogenomic algorithms by formulating the problem of DTIs prediction as a binary
classification task, where the goal is predict the probability for pairs (m, p) of molecules
and proteins to interact. They can be used both to predict drugs against protein targets,
or protein targets for a drug, the latter being relevant to our topic.

Various ML algorithms have been proposed for DTI predictions. They include
similarity-based (or kernel-based) methods such as kernel ridge linear regression, Support
Vector Machines [7], or Neighborhood Regularized Logistic Matrix Factorization (NRLMF)
that decompose the interaction matrix into the product of two matrices of lower ranks
that operate in two latent spaces of proteins and molecules [8]. Other ML algorithms
are featured-based, which means that they rely on explicit descriptors for molecules and
proteins, such as Random Forests (RF) [9], or Sparse Canonical Correspondence Analy-
sis (SCCA) [10]. Their prediction performances are usually very high when the training
data are not too “far” from the (m, p) pairs in the test set [11]. Deep learning approaches
relying on protein and molecule descriptors have also been proposed, but their prediction
performances outperforms those of shallow learning methods only when the training data
are very abundant, or when various heterogeneous sources of information are used in the
context of transfer learning [12].

However, whatever the algorithm used, training a good ML chemogenomic model
is hindered by biases in the DTI databases, such as whether the molecule for which one
wishes to make predictions has known interactions or not [13]. An additional issue arises
when the databases only contain positive examples of (m, p) pairs known to interact, but no
negative examples of (m, p) known not to interact. In this context, it is classical to assume
that most unlabeled interactions are negatives, and to randomly sample negative examples
among them [11]. In this work, we explore how to best choose negative examples to
correct the statistical bias of databases, and reduce the number of false positive predictions,
which is essential to reduce the number of biological experiments required for validation
of the true protein targets. While the goal of the present paper was not to compare the
prediction performances of various ML algorithms, we first compared the performances of
two algorithms, namely SVM and RF, on the DrugBank dataset considered in the present
study. We found that overall, SVM displayed the best results, and therefore, this algorithm
was further kept to study how to correct learning bias.

2. Materials and Methods
2.1. Datasets

ML algorithms for DTI predictions need to be trained on datasets of known DTIs in
which proteins and molecules are similar to those for which predictions will be performed.
Hit molecules in phenotypic screens for drug discovery are mostly drug-like molecules [14],
and proteins will be human proteins. We used the DrugBank database (version 5.1.5) [15]
to build our training dataset, because although much smaller than other databases like Pub-
Chem or ChEMBL, it provides high quality bio-activity information regarding approved
and experimental drugs, including their targets, and contains around 17,000 curated Drug-
Target Interactions (DTIs). Therefore, we built a dataset called DB-Database hereafter,
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that comprises all (m, p) DTIs reported in DrugBank involving a human protein and a
small molecular drug. Overall, the DB-Database comprises 14,637 interactions between
2670 human proteins and 5070 drug-like molecules, which make up our positive DTIs.
Because training a ML algorithm also requires negative examples, we added an equal
number of negative DTIs to the DB-Database following two strategies:

• Random sampling: Negative examples were randomly chosen among the pairs (m, p)
that are not labeled as a DTI but such that both m and p are in the DB-Database, un-
der the assumption that most of the unlabeled interactions are expected to be negative.
This process was repeated 5 times, leading to 5 training datasets called RN-datasets
(for Random Negatives-datasets) hereafter, differing only by their negative examples.

• Balanced sampling: To avoid biasing our algorithms towards proteins with many
interactions, negative examples were randomly chosen among unlabeled DTIs, al-
though in such a way that each protein and each drug appeared an equal number of
times in positive and negative interactions. This process was also repeated 5 times,
leading to 5 training datasets again differing only by their negative examples called
hereafter BN-datasets (for Balanced Negatives-datasets). Building this set of negative
DTIs is not trivial, and we propose the following algorithm:

1. Each protein and molecule in the DB-Database has a counter corresponding
initially to its number of known ligands or targets, respectively;

2. For each protein, starting from those with the highest counter to those with a
counter equal to 1, molecules are randomly chosen among those not known to
interact with this protein and whose counter is greater or equal to 1;

3. Each time a negative DTI is chosen, the counter of the corresponding protein
and of the molecule is decreased by one unit;

4. The process is repeated until all proteins and molecules counters are equal to 0.

Overall, the RN-datasets and the BN-datasets share the same set of positive DTIs,
which are those in the DB-Database, and their total number of negative DTIs are the same
and equal to that of positive DTIs. The construction of one RN-dataset (or one BN-dataset)
is summarized in Figure 1.

Figure 1. Method for building one RN-dataset (or one BN-dataset).

Finally, to compare the performance of the algorithm trained on the RN-datasets
or the BN-datasets when predicting targets for “difficult” molecules (hit molecules will
generally be “difficult” molecules, in the sense that they will have no or few known targets),
we considered a small dataset of DTIs involving 200 drugs that have few known targets.
We built this dataset as follows: from the 5070 molecules in the DB-Database, we kept
approved drugs that do not have more than 4 targets. This leads to 560 drugs involved in
851 interactions, among which we randomly selected 200 of these positive DTIs, involving
200 different drugs, defining the so-called 200-positive-dataset. 200 negative DTIs were
also randomly chosen among all unlabeled DTIs involving theses drugs and not belonging
to the training RN- or BN-datasets, defining the so-called 200-negative-dataset.

All datasets are provided in the github repository mentioned under “Data Availability
Statement”.
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2.2. Machine Learning Algorithms

Throughout the paper, the main algorithm we use to address target identification
through a chemogenomics approach for DTI prediction is based on the Support Vector
Machines (SVM) ML algorithm [16]. Briefly, the SVM is trained on a dataset of known
DTIs and learns the optimal hyperplane that separates the (m, p) pairs that interact from
those that do not. While SVM can use vector representations of the data (i.e., descriptors
for proteins and molecules), thanks to the so-called “kernel trick” [17], they can also find
this hyperplane based on particular similarity measures between (m, p) pairs of training
dataset, and called kernel functions K, without requiring explicit representation of the data.

A general method to build a kernel on (m, p) pairs is to use the Kronecker product of
molecule and protein kernels [18]. Given a molecule kernel Kmolecule and a protein kernel
Kprotein, the Kronecker kernel Kpair is defined by:

Kpair((m, p), (m′, p′)) = Kmolecule(m, m′)× Kprotein(p, p′)

For proteins, we used a centered and normalized Local Alignment kernel (LAkernel),
which mimics the Smith–Waterman alignment score between two proteins [19]. For the
molecules, we used a centered and Tanimoto kernel, that uses molecular descriptors based
on the number of fragments of a given length on the molecular graph [20].

The LAkernel has three hyperparameters: the penalties for opening (o) and extending (e)
a gap, and the β parameter which controls the contribution of non-optimal local alignments
to the final score. The Tanimoto kernel has one hyperparameter: the length d of the paths
up to which paths on the molecule structure are considered. According to [11], we used
the following values for these hyperparameters: o = 20, e = 1, and β = 1 for the LAkernel,
and d = 14 for the Tanimoto kernel. The SVM also requires a regularisation parameter
classically called C, which controls the trade-off between maximising the margin (i.e., the
distance separating the hyperplane and the two classes distributions) and minimizing
classification error on the training points. This parameter was set to C = 10 for both
RN- and BN-datasets, based on the nested cross-validation (CV) scheme, as described in
Section 2.3.

SVM is a kernel-based ML algorithm. In the context of chemogenomics, it relies on
similarity (or kernel) matrices between (m, p) pairs. Other algorithms, such as RF, are
feature-based, and rely on explicit descriptors of proteins and ligands. To compare the
performance of the kernel-based SVM to a feature-based approach, we compared our SVM
to a RF on the RN-datasets. For the RF algorithm, we considered Extended-Connectivity
Fingerprints (ECFP) [21] as molecular descriptors, and 1920-dimensional feature vectors
summarizing physicochemical properties as protein descriptors, as in [22]. We considered
four hyperparameters for RF: the number of trees; the minimum number of samples
required at a leaf node; the minimum number of samples required to split an internal node;
and the maximum depth of a tree. These hyperparameters were optimized based on a
nested cross-validation scheme, as described in Section 2.3.

2.3. Performance Evaluation and Hyperparameters Optimisation

We used a nested cross-validation (CV), which allows to combine model selection and
model evaluation without overfitting the dataset, as classically observed with a simple
CV scheme [23,24]. In the nested CV scheme, the CV procedure for hyperparameter
optimization (called “the inner CV”) is nested inside the CV procedure for performance
evaluation (called “the outer CV”). The dataset is split into N folds: in each outer split,
one fold is separated to form a test set. The N-1 remaining folds define an inner split.
The hyperparameters are optimized on this inner split, based on a simple CV scheme.
The set of hyperparameters providing the best inner CV prediction performance is then
used on the test set of the corresponding outer split to evaluate the prediction scores. Thus,
the model is tuned on the inner split, and performance of the model is evaluated on the test
set of the outer split that was never used for model tuning. This procedure is repeated N
times for each of the N outer splits, providing a mean and a variance for the performance
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scores. Figure S1 in Supplementary file presents a workflow chart describing a 5-fold
nested CV used in the present study.

We used the following scores to quantify prediction performance of the classifiers:

• the Area Under the Receiver Operating Characteristic curve (ROC-AUC) [25]. The ROC
curve represents true positive rate as a function of false positive rate, for all thresholds
on the prediction score. Intuitively, the ROC-AUC score can be interpreted as the
probability that the classifier assigns a higher score to a positive interaction than to a
negative interaction.

• the Area Under the Precision-Recall curve (AUPR) [26], which indicates how far the
scores of true positives are from those of true negatives, on average;

• the Recall, representing the fraction of positive examples that are retrieved;
• the Precision, representing the fraction of true positives retrieved among predicted pos-

itives;
• the False Positive Rate (FPR), representing the fraction of true negatives among

predicted positives.

More precisely, we used a N = 5 fold nested CV scheme to select the hyperparameter
C of the SVM algorithm: RN-datasets (or BN-datasets) are split into N = 5 folds. Each
fold comprises the same number of positive and negative DTIs. For the BN datasets, all
molecules and all proteins appear in the same number of positive and negative DTIs,
in each fold, as described in Section 2.1. Among the values {0.1, 1, 10, 100, 1000}, C = 10
consistently leads to the best performance across folds, both in terms of ROC-AUC and
AUPR, and both on the RN- and BN-datasets.

We used the same nested CV scheme to optimize the hyperparameters of the RF algo-
rithm (listed in Section 2.2) and to evaluate its performance on the RN-datasets. The number
of trees was selected to be 600, chosen from {200, 400, 600}; the minimum number of sam-
ples required to be at a leaf node was selected to be 1, chosen from {1, 2, 5, 10}; the minimum
number of samples required to split an internal node was selected to be 5, chosen from
{2, 5}; and the maximum depth of the tree was selected to be 20, chosen from {10, 20}.
The prediction scores were determined as for the SVM algorithm.

2.4. Flowcharts of DTI Prediction and Target Identification

In the present paper, we discuss two types of problems that we solve using ML
algorithms: first, the prediction of new pairs (m, p) of interacting molecules and proteins,
which we call DTI (Drug-Target Interaction) prediction, and second, the identification
of new targets for a given drug. The former is only discussed in Section 3.1, where DTI
prediction is used to evaluate the overall prediction capabilities of ML algorithms, and to
determine the distribution of the prediction scores of positive and negative DTI, respectively.
We used these distributions to determine thresholds for the latter problem, i.e., target
identification for a given drug, which is the central topic of the paper. Figure 2 illustrates the
pipeline for DTI prediction: 5 ML models are trained on 5 RN-datasets (or 5 BN-datasets),
providing 5 interaction scores for each new (m, p) pair. These 5 scores are averaged to
provide a final score. Figure 3 illustrates the pipeline for target identification: for each
new drug d, 2670 (d, p) pairs are formed between this drug and each of the 2670 proteins p
present in the DB-Database. DTI prediction is performed for each pair, as described above
and illustrated on Figure 2. This provides a mean score of interaction with this drug for
each of the 2670 proteins, which are then ranked accordingly. The candidate targets for this
drug are the top ranked proteins with a score above a given threshold.
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Figure 2. Flowchart of the Drug-Target Interaction (DTI) prediction pipeline.

Figure 3. Flowchart of the target identification pipeline.

3. Results
3.1. Performance of the SVM and RF Algorithms on the RN-Datasets

In the present paper, we focus on using ML chemogenomics approaches to identify
target candidates for phenotypic hit molecules. The first step is to train the ML algorithms.
More precisely, training a ML chemogenomics algorithm from a large DTIs database
is an example of Positive-Unlabelled (PU) learning problem. Indeed, in practice, most
databases only contain positive examples (that is to say, known DTIs), while all other
possible interactions between molecules and proteins present in the data are unlabeled,
whether because they have never been tested, or because they are negative interactions that
have not been published or included in the database. Most of the unlabeled interactions are
usually considered as true negatives. Therefore, in chemogenomics, the classical approach
is to label as negatives a randomly chosen subset of the unlabeled interactions. This allows
to convert a PU learning problem a into Positive-Negative (PN) learning problem for which
many efficient ML algorithms are available.

We considered a ML algorithm based on SVM, with the LAkernel [27] and the Tanimoto
kernel [20] for proteins and molecules, respectively, because these methods displayed
good prediction performances in previous chemogenomic studies, on average [11,28,29].
The LAkernel is related to the Smith–Waterman score [19], but while the latter only keeps the
contribution of the best local alignment between two sequences to quantify their similarity,
the LAkernel sums up the contributions of all possible local alignments, which proved to be
efficient for detecting remote homology.

While the purpose of this paper is not to discuss the choice of the ML algorithm,
but rather to study how best to train it for the particular task of target identification, we
also include a comparison of the SVM with a feature-based ML algorithm, i.e., Random
Forests (RF) [30,31].

The two algorithms were trained on the 5 RN-datasets described in Section 2.1, using a
5-fold nested cross-validation scheme, as detailed in Sections 2.2 and 2.3. A threshold of 0.5
on the output score was chosen to discriminate between positive and negative predictions.

Table 1 shows the mean performance scores of the SVM and RF algorithms, when
cross-validated on the RN-datasets. In the context of target identification, it is important
to limit the FPR, to avoid unnecessary experimental validation. However, a threshold of
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0.5 over the probability scores was used to separate predicted positive interactions from
predicted negative interactions, as classically, although in practical cases, a higher threshold
would be chosen to select target candidates, in order to reduce the number of experimental
tests to the predictions with the highest confidence. The results in Table 1 show that the
SVM clearly outperforms RF across all performance scores, including FPR. We therefore
retained the SVM for the rest of the paper.

Table 1. Performance of the SVM and RF algorithms for DTI predictions on the RN-datasets.

Algorithm AUPR ROC-AUC Recall Precision FPR

SVM 85.5± 0.2 88.0± 0.1 82.0± 0.4 93.3± 0.4 5.9± 0.4
RF 73.5± 0.8 79.1± 0.7 76.8± 1.0 80.6± 0.8 18.5± 1.0

We studied the distributions of the probability scores for positive and unlabeled (pre-
sumably, mainly negative) interactions for the SVM algorithm, according to the nested
CV scheme. Figure 4 shows that these two distributions are well separated, and also
suggests that on the RN-dataset, a threshold of 0.7 over the prediction score can be used
to predict positive interactions with high confidence. In addition, the rank of a predicted
interaction is also an important criterion to consider, because the goal of virtual screens
is to drastically reduce the number of experiments to perform. When the goal is to iden-
tify hit molecules against a given therapeutic target, typically, the top 5% percent of the
best-ranked molecules are screened [32]. Usually, an experimental assay with a simple
readout has been set up for the target of interest, which allows to evaluate relatively high
numbers of candidate molecules selected in the virtual screen. The inverse problem of
target identification is more difficult because validation requires to test the phenotypic
hit molecule in a different biological assay for each predicted target considered for exper-
imental evaluation. This obviously requires much more time and effort, because these
assays may not all be available, and therefore, may have to be designed. This can be a real
challenge if the function of a candidate target is not suitable to design a simple biological
test. Therefore, we added the stringent but realistic threshold of top 1% in rank. In other
words, in the following, we will consider as candidate targets proteins with a predicted
score above 0.7 and ranked among the top 1% of the tested proteins, to simulate a realistic
experimental setting. We discuss how to best train the algorithm in order to minimize
the number of useless biological experiments that would be undertaken for false positive
targets satisfying these two criteria, because this represents a real bottleneck for real-case
studies. Consequently, in what follows, since the DB-Database comprises 2 670 proteins,
we will consider as candidate targets only proteins with a probability score above 0.7 and
rank smaller than or equal to 27.

3.2. Statistical Analysis of the DrugBank Database

The DrugBank database [15] is a widely used bio-activity database. While much
smaller than PubChem or ChEMBL, it provides high-quality information for approved
and experimental drugs along with their targets. It contains around 15,000 curated DTIs
involving 2670 human proteins (this set of proteins can be viewed as the “druggable” hu-
man proteome), and 5070 druglike molecules, corresponding to the DB-Database described
in Section 2.1. This database is relevant for training of ML models for DTI predictions
involving human proteins and drug-like molecules. However, Figure 5 shows that there is
a strong discrepancy between the number of known ligands per protein, or known protein
targets per molecule.
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Figure 4. Distribution of the probability scores predicted for known positive DTIs and randomly
chosen negative DTIs among unlabeled DTIs.

(a)

(b)
Figure 5. Statistical bias in the DB-Database. (a) Distribution of the molecules according to their
number of targets in the DB-Database. (b) Distribution of the proteins according to their number of
ligands in the DB-Database.

Indeed, the majority of proteins have 4 or fewer known ligands, while around 140 pro-
teins have more than 21 ligands. We defined categories of proteins, depending on their
number of known ligands (1, 2 to 4, 5 to 10, 11 to 20, 21 to 30, more than 30), and calculated
the number of DTIs in the DB-Database in each category. Overall, according to Table 2,
5.2% of the proteins are involved in 44% of DB-Database DTIs.

This bias arises from the fact that a few diseases like cancer or inflammatory dis-
eases have attracted most research efforts, and many ligands have been identified against
related therapeutic targets, compared to other less studied human proteins. For exam-
ple, Prostaglandin G/H synthase 2, a well-known protein involved in inflammation, has
109 drugs reported at DrugBank. This statistical bias affects training of the SVM and is
expected to perturb identification of targets for hit molecules, potentially by enriching top
ranked proteins in false positive targets that have many known ligands.
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Table 2. Distribution in the DB-Database of the number of DTIs involving proteins from various
categories, according to their number on known ligands.

Protein nb of Ligands nb of Interactions

1 1106
2 to 4 2527
5 to 10 2404

11 to 20 1920
21 to 30 1238

>30 5442

3.3. Examples Illustrating the Impact of Learning Bias for Target Identification

Once trained, a ML algorithm identifies targets for a hit molecule by providing a list
of proteins ranked by decreasing order of the estimated probability score of all (protein,
hit) pairs. Candidate targets are chosen based on their probability score, their rank, and on
potential prior biological knowledge that would highlight their relation to the considered
disease. For example, a top ranked protein involved in cell cycle would be considered
as a realistic candidate target for a hit identified in a cell proliferation screen in cancer
research. The presence of many false positive targets among the top ranked proteins
will not only lead to undertake useless experiments, but also potentially to discard true
predicted targets pushed further down the list. Let us illustrate this problem in the case
of 3 molecules, randomly chosen among marketed drugs with only one known target in
DrugBank. Assuming that their targets have been well characterized because they are
marketed molecules, most of the other top ranked predicted targets will be false positive
predictions. The 3 considered molecules are: alectinib (DrugBank ID DB11363, target:
ALK), lasmiditan (DrugBank ID DB11732, target: HTR1F), and doxapram also known as
angiotensin II (DrugBank ID DB11842, target: AGTR1). We orphanized these 3 molecules
(i.e., we suppressed their single known target from the train set), as if they were hits
from phenotypic screens, and used the SVM algorithm presented in Section 2.2 on the
RN-datasets to predict their targets. For each molecule, the results consist in a list of the
2670 proteins in the DB-Database, ranked by decreasing order of score.

As shown in the RN-datasets columns of Table 3, none of the known targets for those
drugs are among the candidate targets as defined in Section 3.1. More precisely, for DB11363
and DB11842, although the probability scores of their known targets are above 0.7 (values
of 0.8 and 0.76 respectively), their rank is 31 in both cases, above the threshold of 27. For
DB11732, the probability score of HTR1F is 0.67, with a rank of 107, and HTR1F would not
either have been classified among the candidate targets for testing.

Analysis of the results highlighted that some of the best ranked candidate targets
are frequent targets. For example, prothrombin F2 (120 ligands), cyclin dependant kisase
CDK2 (137 ligands), and dopamine receptor 2 DRD2 (109 ligands) are top ranked predicted
targets respectively for DB11842 (score of 0.97, rank 2), DB11732 (score 0.98, rank 1) and
DB11363 (score 0.94, rank 5). The three ranked lists are provided in full in the github
repository mentioned under “Data Availability Statement”.

Table 3. DTI prediction results for 3 marketed drugs, when the algorithm is trained on the RN-
datasets or the BN-datasets: number of False Positive predicted targets, score and rank of the
true target.

RN-Datasets BN-Datasets

Drug FP Target Score Target Rank FP Target Score Target Rank

DB11363 27 0.8 31 16 0.8 3
DB11842 27 0.76 31 26 0.85 18
DB11732 27 0.67 107 26 0.83 17
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These examples illustrate the impact of false positive predictions for target identi-
fication, because they can lead to discard even high-scoring true targets as for DB11363
and DB11842.

3.4. Choice of Negative Examples to Correct Statistical Bias

Our observation that high-scoring false positives tend to have a large number of
known ligands led us to make the assumption that the model trained using randomly
sampled negative interactions is biased towards proteins with many known ligands, as well
as possibly drugs with many known targets. This suggested us to choose negative DTIs
in such a way that the training dataset contains, for each molecule and for each protein,
as many positive than negative DTIs. The corresponding so-called BN-datasets (for Bal-
anced Negatives-datasets) are detailed in Section 2.1. Note that what we mean by “balanced”
in the BN-dataset is that negative examples present the same bias as the positive examples:
all molecules and all proteins appear in the same number of positive and negative DTIs.
As shown in Figure 6: (1) in the positive examples, the distribution of known protein
targets per molecule is similar to that of proteins known (chosen, in fact) not to interact per
molecule in the negative examples; (2) in the positive examples, the distribution of known
ligands per protein is similar to that of molecules known (chosen, in fact) not to interact
per protein in the negative examples. This prevents proteins with many known ligands to
be viewed by the algorithm as statistically much more probable targets, leading to many
false positive predictions among this category of proteins. We recall that the BN-datasets
contains the same positive DTIs as the RN-datasets, the former differing from the latter
only by the negative DTIs.

The SVM algorithm presented in Section 2.2 was trained on the BN-datasets. As dis-
cussed above, for the problem of target identification, reducing the number of false positives
among the top-ranked proteins is critical. Table 4 reports, for prediction score thresholds
of 0.5 (usually considered) and 0.7 (considered in the present paper), the cross-validated
FPR scores on these two training sets. It shows a strong statistical bias in FPR for the
RN-datasets between proteins with few or with many known ligands, and it illustrates that
training on the BN-datasets greatly reduced this bias.

(a)
Figure 6. Cont.
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(b)
Figure 6. Balancing the BN-datasets. (a) Distribution of the proteins according to the number of
positive examples or negative examples in which they are involved. (b) Distribution of the molecules
according to the number of positive examples or negative examples in which they are involved.

Table 4. Rate of false positives for proteins with various numbers of known ligands.

FPR (Threshold = 0.5) FPR (Threshold = 0.7)
Prot in Category RN-Datasets BN-Datasets RN-Datasets BN-Datasets

0 2.2± 0.4 3.1± 0.5 0.5± 0.4 0.7± 0.5
1 3.7± 0.5 3.1± 0.8 1.5± 0.1 1.1± 0.7

2 to 4 5.1± 0.9 6.4± 0.8 2.4± 0.8 2.2± 0.8
5 to 10 9.9± 0.9 8.3± 0.6 4.4± 0.9 3.3± 0.5

11 to 20 13.8± 1.7 10.6± 0.5 7.3± 1.9 3.9± 1.1
21 to 30 23.0± 4.9 12.0± 3.0 11.4± 2.7 5.6± 2.0

>30 18.6± 2.8 9.0± 0.4 11.0± 2.1 4.5± 0.3

To highlight the impact of this bias correction in terms of target prediction, we show
in Table 3 the prediction results for the 3 molecules discussed in Section 3.3, when the
algorithm is trained with the RN-datasets or with the BN-datasets. When trained on the
RN-datasets, none of the true targets would have been considered as a positive candidate
target for testing, because of a score below 0.7 or a rank above 27, as discussed above.
Training on the BN-datasets greatly improved the ranks and scores of the three true targets,
and reduced the number of false positives, allowing the 3 corresponding true targets
to fulfill the rank and score criteria defined in Section 3.1 to become candidate target
for testing.

To better illustrate the interest of the proposed scheme for the choice of negative DTIs
on a larger number of drugs we considered the 200-positive-dataset consisting of 200 DTIs
involving 200 marketed drugs with 4 of less known targets, as described in Section 2.1. This
“difficult” test set was chosen because the aim was to mimic newly identified phenotypic
hits, for which known targets are expected to be scarce. For each drug, we artificially
reproduced the process of target identification: the corresponding DTI was removed from
the train set, a new SVM classifier was trained and used to score 2670 DTIs involving this
drug and all proteins of the DB-Database. We compared the top-ranked predicted targets
obtained when the algorithm is trained on the RN-datasets versus on the BN-datasets,
as well as the number of removed false positive DTIs that would have been retrieved as
candidates for testing (i.e., with a score above 0.7 and a rank lower or equal to 27).

Overall, training with the BN-datasets improved the predictions: the number of false
positive DTIs decreased for 106 drugs, remained unchanged in 85 drugs, and increased in
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9 drugs, as compared to training with the RN-datasets. In particular, this improvement
allowed one additional true positive interaction to reach a score above 0.7 and a rank below
27: 104 true targets were retrieved as candidates when training with BN-datasets, compared
to 103 when training with RN-datasets. For the corresponding 104 drugs, the number of
false positives decreased by 2.9 in average, and the rank of the true interactions decreased
by 1.8 in average, bringing them even closer to the top ranked predicted proteins, and more
likely to be chosen for experimental validation. Consistent with the results in Section 3.3
for the 3 example molecules, on average over the 200 considered molecules, the number of
useless experiments potentially undertaken would have decreased when training with the
BN-datasets.

We also made predictions for the 200 negative DTIs of the corresponding 200-negative-
dataset, involving the same molecules as the 200-positive-dataset. Predictions were made
by the classifier trained on the RN- or BN- datasets. Overall the distributions of the
prediction scores were very similar in both cases, centered around 0.2, and similar to that
shown for the RN-dataset in Figure 4. Among the 200 negative pairs, only 2 pairs were
predicted as positives, for the two RN- and BN- datasets. This can be viewed as a sanity
check indicating that the proposed method did not introduce bias in the prediction of
negative DTIs, while it globally improved the predictions of positive DTIs.

4. Discussion

The goal of the present paper was to tackle the question of protein target identification
for new drug candidates, using ML-based chemogenomics. Indeed, these approaches can
be run at a large scale in the protein space, including in their scope proteins with no known
3D structures, or proteins for which few, or even no ligands are known. Another key asset
is that they can be applied to drugs with few, or even no known targets, as illustrated on
the 200-positive-dataset. This is of particular importance because new phenotypic drugs
are often orphan (i.e., have no known protein target) when they are identified. No other
computational method presents these advantages. However, before making predictions,
ML chemogenomic algorithms need to be trained on a database of known DTIs, which
raises a few issues.

First, these databases are biased in terms of the number of protein targets per molecule,
or of ligand molecules per protein, as shown for the DrugBank database used in our study.
While we are aware that other and larger DTIs databases could have been used, the purpose
of our study was not to discuss the choice of training set, in particular because other
databases will also present the same type of bias as the DrugBank, for the same reasons.
This point is rarely discussed in ML chemogenomic studies.

Second, the performance of ML algorithms in chemogenomics are usually evaluated
based on AUPR and ROC-AUC scores in cross-validation procedures. However, the identi-
fication of true protein targets for phenotypic hit molecules in real case studies may become
a challenge when the algorithm is trained on a biased dataset. Indeed, despite very high
AUPR and ROC-AUC scores, false positive targets can be found among top-ranked pro-
teins, and correspond to proteins with many known ligands. In target identification studies,
biological experiments are guided by the predicted scores and ranks of candidate proteins.
Training on a biased dataset may lead not only to conduct useless experiments, but also
to discard true positive targets because their scores are below the considered threshold,
or because their rank is too high due to the presence of false positives among the top-ranked
proteins. This point is also rarely discussed in ML chemogenomic studies, usually focusing
on cross-validation schemes that does not correspond to real case applications.

Third, training databases such as the DrugBank only contain positive examples,
and therefore, negative examples are usually randomly chosen among unlabeled DTIs in
order to train the ML algorithms. It is however unclear that this is an optimal choice for
target identification.

The key result of the present paper was to show that choosing an equal number of
positive and negative DTIs per molecule and per protein helps decrease the FPR in biased
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datasets, and improves the identification of true targets for a given drug. Three striking
examples are given for the case study of three drugs (DB11363, DB11842, and DB11732) that
were “orphanized” (all their known DTIs were removed from the training set) to illustrate
the most difficult situation encountered in the case of new phenotypic drugs: training with
the BN-datasets allowed to recover the true target in all cases, while none of them would
have been retrieved when training with the RN-datasets. To illustrate the advantage of the
proposed scheme for the choice of negative interactions, we used a threshold of 0.7 over the
probability scores to identify candidate targets for experimental testing, although proteins
with scores above 0.5 are classified as positives. This threshold of 0.7 was guided by the
results in Figure 4, in order to select highly probable positive targets. It can be adjusted
to a different value if the algorithm is trained with other databases, whether through the
same kind of plot, or through a ROC-curve in order to correspond to a predefined false
positive rate.

We added the stringent threshold of 1% on the ranks of proteins to define which
targets would be tested. This threshold could also be adjusted depending on available
resources for experimental validation. The issue we identified and addressed in this paper
does not depend on the scores and rank thresholds used, and choosing equal numbers of
positive and negative DTIs per molecule and per protein for the training set will limit the
number of false positives independently of the choice of thresholds, as shown in Table 4 in
the case of the threshold on the prediction score. Finally, while the proposed scheme for the
choice of negative examples was presented here in the context of target identification for hit
molecules, it is of general interest and should be applicable to other types of PU learning
problems when bias is present in the training set, which is a very common situation,
in particular in many biological databases.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/10/5118/s1, Figure S1: Nested Cross Validation Workflow with N = 5 outer splits.
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