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Abstract: The correlation between dysfunction in the glutamatergic system and neuropsychiatric
disorders, including schizophrenia and autism spectrum disorder, is undisputed. Both disorders
are associated with molecular and ultrastructural alterations that affect synaptic plasticity and
thus the molecular and physiological basis of learning and memory. Altered synaptic plasticity,
accompanied by changes in protein synthesis and trafficking of postsynaptic proteins, as well as
structural modifications of excitatory synapses, are critically involved in the postnatal development
of the mammalian nervous system. In this review, we summarize glutamatergic alterations and
ultrastructural changes in synapses in schizophrenia and autism spectrum disorder of genetic or
drug-related origin, and briefly comment on the possible reversibility of these neuropsychiatric
disorders in the light of findings in regular synaptic physiology.
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1. The Glutamatergic System

Excitatory neurotransmission in the brain is primarily glutamatergic; glutamater-
gic neurons in the non-stimulated cerebral cortex consume up to 80% of the total brain
metabolic activity [1–3]. For the fast glutamatergic transmission, ionotropic glutamate-
gated channels (iGluRs) are recruited. iGluRs are tetrameric, and each of the four subunits
has four distinct structural protein domains: an extracellular N-terminal domain, an extra-
cellular ligand-binding domain, a transmembrane channel, and an intracellular C-terminal
domain [4]. In total, multiple subunits encoded by 18 different genes can contribute to the
formation of iGluRs. Most of these subunits derive from different mRNA splice or pre-
mRNA edited variants of genes coding for iGluR subunits, which increase the complexity
of the ionotropic glutamatergic neurotransmission system. Based on their main agonist,
iGluRs are divided into α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors
(AMPARs), N-methyl-D-aspartate receptors (NMDARs), and kainate receptors (KARs). All
members of these three receptor families are hetero- or homo-tetramers that are permeable
to cations. With the exception of KARs that are only permeable to Na+, other glutamate-
gated ion channels are also permeable to Ca2+. Thus, in response to glutamate activation,
they increase the intracellular Ca2+ levels, thereby activating Ca2+-dependent intracellular
responses upon glutamate stimulation. In the AMPAR family, the Na+ and Ca2+ permeabil-
ity is usually strictly determined by their subunit composition; only AMPARs that lack the
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GluA2 subunit are permeable to Ca2+ (CP+AMPARs). CP+AMPARs can contribute to some
forms of synaptic plasticity. For the induction of activity-induced synaptic transmission,
CP+AMPARs are translocated from extra-postsynaptic to postsynaptic sites in response
to intense presynaptic glutamate stimulation. Subsequently, activity-induced incorpo-
rated (CP+AMPARs) are replaced by Ca2+-impermeable AMPARs (CP-AMPARs) [5]. In
NMDARs, the Ca2+ influx is blocked during regular glutamatergic signal transmission at
resting membrane potential by a Mg2+ ion but is possible after repetitive stimulations that
largely depolarize the synaptic membrane and displace the Mg2+ ion [6].

The interplay of synaptic iGluR subtypes is thus specialized to regulate the activity-
dependent Ca2+ influx into the postsynapse, which can lead to either a transient or a
long-term alteration of the synaptic efficacy. Glutamate sensing in the synaptic cleft
is modified further by the presence of the G-protein-coupled metabotropic glutamate
receptors (mGluRs), for slower responses to increased glutamate levels in the synaptic
cleft. The mGluRs are classified into three groups based on the receptor structure and
ligand sensitivity [7]. Group I (mGluR 1 and 5) is mainly postsynaptic, while groups II
(mGluR 2 and 3) and III (mGluR 4, 6, 7, and 8) are primarily presynaptic and modulate the
neurotransmitter release [2,8]. Group I works through the activation of phospholipase C,
while group II and III mainly operate by decreasing cyclic AMP levels [8]. Their functions
are also different: group I potentiates presynaptic glutamate release and postsynaptic
NMDAR currents, and groups II and III inhibit presynaptic glutamate release [7].

This molecular complexity of the glutamate sensing system suggests that the glu-
tamate receptors play a major role in the experience-dependent modulation of the CNS.
This view was supported by the dependence of the expression of iGluRs and mGluRs
on development. Thus, for example, the NMDAR subunit (GluN2A) reaches its adult
expression level at postnatal day 12 (P12), while GluN2B mRNA levels fall after P12 in
rats [9]; and in young mice, the hippocampal long-term potentiation (LTP), induced by
1 × 100 Hz tetanic stimulation of CA3 to CA1 synapses, is in part independent of the
AMPAR GluA1 subunit [10], which is required for the induction of this LTP form in adult
mice [11]. Similarly, the structural organization and numbers of synapses are modified
postnatally, demonstrating that the maturation of synaptic transmission and plasticity is
accompanied by a structural reorganization of synapses (see below). In this process, gluta-
matergic postsynaptic scaffolding proteins such as the SH3 and multiple ankyrin domain
proteins (SHANKs) appear to play a central role. Similar to the complex glutamatergic
receptor system, in mammals, the SHANKs form a huge family of scaffolding proteins
encoded by three genes (SHANK1, 2, and 3) that can express multiple isoforms.

The glutamatergic system plays a central role in neurotransmission and synaptic
plasticity and its modulation during development, and it is not surprising that over the
past 25 years, substantial pharmacological, genetic, and experimental evidence using ge-
netically modified mice has highlighted the importance of glutamate not only in learning
and memory but also in neuropsychiatric disorders such as schizophrenia (SZ). In par-
ticular, the numerous iGluR and SHANK genes and their isoforms suggested that the
sensitivity to fast signaling of extracellular glutamate is central in neurodevelopment and
learning. Mutations introduced by gene targeting verified this hypothesis and provided
strong experimental evidence that gene mutations in Gria1 and the NMDAR subunit 1,
Grin1, are associated with SZ phenotypes. Mutations that disturb this glutamate-gated
NMDAR and AMPAR Ca2+ signaling ultimately lead to a dysfunction of neuron-to-neuron
communication, neuronal network dynamics, and thus responses to environmental stimuli,
as detailed below.

2. The Glutamatergic System in Neuropsychiatric Disorders
2.1. Schizophrenia (SZ)

In humans, SZ is a complex mental disorder characterized by a combination of symp-
toms including delusions, hallucinations, disorganized speech or behavior, lack of mo-
tivation, and cognitive deficits with a severe impact on patients’ quality of life and so-
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ciability [12–14]. The prevalence of SZ is approximately 1% of the population, and the
heritability was calculated to be 79% [15]. As summarized in a recent review, several phar-
macological, clinical, and genetic studies could correlate (i) glutamatergic dysfunction in
SZ and NMDAR hypofunction in humans, (ii) the schizophrenia-like symptoms due to the
autoimmune response against the extracellular domain of NMDARs, (iii) the exacerbation
of SZ symptoms in patients administered with glutamatergic receptor antagonists, and (IV)
de novo copy number variation (CNV) encoding NMDAR subunits and other proteins in
the postsynaptic density (PSD) in patients with increased risk of SZ (for a review, see [15]).
As summarized in that review, a meta-analytic study reported a significant elevation of
glutamate + glutamine (Glx) in glutamatergic transmission in the limbic system, but no
significant difference in glutathione—a tripeptide synthesized from glutamate, cysteine,
and glycine in proton magnetic resonance spectroscopic imaging (1H-MRSI) studies. Brain
imaging and EEG recordings supported the involvement of the glutamatergic system,
NMDARs in particular, in SZ (for a review, see [15]). Several studies using postmortem
brain tissues from SZ patients showed variable changes in mRNA and protein levels for
iGluRs and mGluRs in different brain regions (for reviews, see [15–17]), and in 2012, a
study of the Korean population identified GRIA1 variants, the gene for the AMPAR subunit
GluA1, as a SZ risk gene [18].

This strong correlation between genetically based impairments of the fast glutamater-
gic system and SZ led to several neurocircuitry hypotheses. One main experimentally
based hypothesis is that the hypofunction of NMDARs in cortical fast-spiking parvalbumin
interneurons leads to changes in cortical network oscillations [19–21], pointing to a commu-
nication impairment in the inhibitory and excitatory systems as an underlying mechanism
for neuropsychiatric disorders; this was experimentally verified for NMDAR hypomorphic,
NMDAR knockout mice [22] and conditional NMDAR mutant mice. In mice lacking the
NMDAR, specifically in parvalbumin-expressing neurons, the hippocampal–prefrontal
coherence was altered, indicating a disturbed excitatory-inhibitory balance [19,23,24]. In
mice with genetic depleted CP+AMPARs, the SZ-like phenotype was consistently con-
firmed in several studies [25–27] and the SZ phenotype was correlated with the loss of
NMDAR-dependent LTP in hippocampal CA1 cells in adults [11,28] (for a review of genetic
SZ mouse models with glutamate receptor deficiencies, see [29]).

In summary, data from clinical, pharmacological, and genetic studies strongly im-
plicate the glutamatergic system, and in particular the Ca2+ signaling of NMDARs and
CP+AMPARs, as the site of many of the abnormalities of brain processes that typically
occur in SZ.

2.2. Autism Spectrum Disorder (ASD)

Another prominent neuropsychiatric disorder that is genetically inherited or caused
by a de novo gene variant is ASD. Unlike SZ, ASD has a clear neurodevelopmental com-
ponent. The symptoms typically appear before 3 years of age and are characterized by
reduced social interactions, limited interest in communication, and repetitive patterns of
behavior [30]. ASD is usually associated with other neuropsychiatric disorders, includ-
ing, but not limited to, intellectual disability, anxiety, and attention-deficit hyperactivity
disorder [31]. The heritability is between 70–90%, with a prevalence of around 1.5% in
developed countries [32–34]. The high burden of ASD on society is further increased by
the fact that its pathophysiology is largely unclear, and that effective therapies for the core
symptoms of the disorder are not yet available [35].

The dysfunction of the glutamatergic system has been central to studies of neurotrans-
mitter involvement in ASD. Both hyper- and hypo-glutamate models have been proposed
on the basis of a variety of factors, such as ASD phenotypes, patient populations, experi-
mental methods, and the brain regions studied [36–38]. The hyperglutamate theory was
supported by the increased level of serum and plasma glutamate in children and adults
with ASD [39–46] (for a review and meta-analysis, see [47,48]). Moreover, in the valproic
acid (VPA)-induced ASD animal model, an upregulation of the GluN2A and GluN2B sub-
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units of the NMDARs was observed with a corresponding activity-dependent long-term
enhancement of synaptic transmission (LTP) [49], and an AMPAR antagonist restored the
social behavior [50]. Several other studies confirmed the therapeutic effectiveness of iGluR
antagonists, including topiramate (an antagonist of AMPARs/KARs) [51,52], memantine
and amantadine (NMDAR antagonists) [53–56], and acamprosate (antagonist of NMDARs
and mGluR5 [57,58]) in patients with ASD.

The alternative hypoglutamate theory was based on the dysfunction of the glutamate
receptors in ASD and on the pharmacological effects of glutamatergic agonists in rescuing
some ASD symptoms. Further evidence for a hypoglutamatergic state in ASD is provided
by the therapeutic effects of piracetam, a positive AMPAR modulator [59]. Additionally, in
several animal models of ASD, NMDAR signaling appears disrupted, mainly through a
hypofunction mediated by the downregulation of the principal NMDAR subunit GluN1 (for
a review, see [38]). Interestingly, the NMDAR agonists, e.g., D-cycloserine, which is known
to modulate glutamatergic transmission [60], have been shown to improve sociability in
patients with ASD [61–63] and in mouse models with an ASD-like phenotype [64–68]. In
addition to the rescue of social behavior, D-cycloserine was also reported to be effective in
attenuating stereotypic symptoms in adolescents and young adults with ASD [69]. AMPAR-
positive allosteric modulators were able to rescue social impairment in Cntnap2 knockout
mice [50]. Various animal models of ASD have revealed alterations in the expression of
glutamatergic receptors, along with their functions (for a review, see [38]).

In patients with fragile X syndrome (FXR), a leading genetic cause of autism, a hypo-
function of synaptic AMPARs is postulated to be responsible for the intellectual disability
(ID) and social–affective symptomatology of FXR patients. Numerous studies of Fmr1
mouse models showed that AMPAR trafficking to the synapse is impaired in the absence
of fragile X mental retardation 1 protein in Fmr1 KO mice (for reviews, see [70,71]).

Due to the low availability of postmortem human tissues, only a few postmortem
studies investigated the expression of iGluRs and mGluRs in ASD patients. These studies
revealed several alterations in the expression of glutamatergic receptors in multiple brain
regions [72–75] (for a review, see [47]). Genetic studies clearly implicate glutamate receptors
in ASD, including NMDARs [76–79], KARs [80–82], AMPARs [83,84], and mGluRs [85]
(for a review, see [47]). Many genes expressing molecular components related to the
glutamatergic system have been associated with ASD, including NRXN1, 2, and 3 [86–89],
NLGN1, 3, and 4 [90–93], CNTNAP2 [94,95] and SHANK1, 2, and 3 [88,96–100] (for a review,
see [101]).

Concerning the glutamate level, several in vivo neuroimaging studies have revealed
inconsistent alterations in the levels of glutamate and glutamine in various brain regions,
including the cortex and basal ganglia of ASD patients [102–110]. For example, in vivo
single-voxel and 1H-MRSI detected hyperglutamatergia (increased glutamatergic metabo-
lites) in the pregenual anterior cingulate cortex in children and adolescents with ASD [102].
1H-MRSI studies of non-clinical samples found that an increased glutamate/GABA+ ratio
in the right hemisphere superior temporal region was correlated with a higher expression
of the social disorganization, a shared phenotype within the autistic and schizotypal spec-
trum [111]. On the other hand, patients with ASD showed significantly lower glutamate
concentration in the right anterior cingulate cortex (ACC) [103]. Additionally, translational
1H-MRSI showed a reduced glutamate concentration in the striatum of ASD patients, which
was correlated with the severity of social dysfunction, implying that this endophenotype is
clinically significant [35]. This reduction was also found in a VPA mouse model of ASD
and mice and rats carrying Nlgn3 mutations, but not in other ASD rodent models [35].
These translational data support the involvement of glutamatergic dysfunction in the
corticostriatal pathway in the pathophysiology of ASD.

In summary, studies on humans and rodent models indicate that the glutamatergic
system dysfunction via alterations in glutamatergic receptor expression, trafficking, and
their synaptic/extrasynaptic localization leads to imbalanced excitatory transmission and
alterations in both NMDAR-mediated synaptic development and plasticity and mGluR-
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mediated signal transduction. All these amendments appear to play a significant role in
the pathophysiology of ASD [112].

3. Activity-Induced Modulation of Synaptic Ultrastructure

The study of neurotransmission has led to the conclusion that physiological properties
can have a structural correlate, and that different morphological parameters modify the
synaptic signal. The main physiological factors altering the structure of synaptic transmis-
sion are synaptic plasticity (for reviews, see [113,114]), development [115,116] (for reviews,
see [117–119]), and aging [120,121], but other elements such as drug administration have
also been shown to affect the synaptic structure [122] (Figure 1). The morphological changes
can be directly related to synapses, such as modifications in their density and structure,
or affect other organelles involved in synaptic transmission such as mitochondria and
the endoplasmic reticulum. Here, we will focus on the changes happening at the level of
synapses, briefly describing the changes occurring in the presynaptic side, and focusing
on the postsynaptic modifications of the glutamatergic system as well as on the density of
synapses. Later, we will describe the relevance of mitochondria in synaptic transmission.
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Figure 1. Factors affecting synaptic transmission. Physiological factors that affect synaptic transmission such as synaptic
plasticity, development, and aging, and other non-physiological factors such as drug administration, have a synaptic
ultrastructural correlate. Morphological changes include the density, size and shape of synapses, or affect organelles
involved in synaptic transmision such as mitochondria. The proteins affected in the different animal models that are
discussed in this review are colored according to the disorder, yellow for schizophrenia (see Table 1), and blue for autism
spectrum disorder (see Table 2). Important key players in ASD and SZ are encircled in purple.
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Table 1. Synaptic ultrastructural alterations in schizophrenia. Different studies have assessed the
synaptic ultrastructural changes of synaptic transmission in schizophrenia in postmortem human
tissues and rodent models (either chemical or genetic). The affected proteins are shown in Figure 1.
↑ stands for increased, ↓ stands for decreased. CA1: Cornu ammonis area 1, CA3: Cornu ammonis
area 3, PSD: postsynaptic density.

Schizophrenia

Humans

Brain Region Ultrastructure Modifications

Anterior cingulate cortex ↓ density of axospinous synapses and axonal
mitochondria [123].

Anterior limbic cortex
↑ density of axospinous and convex synapses;
↓ density of synapses on shafts, flat and concave

synapses [124].

Hippocampus CA3 ↓ density of axospinous synapses [125,126].

Caudate and putamen ↑ density of in axospinous synapses the caudate
matrix and putamen patches [127–129].

Nucleus accumbens ↑ density and ↓ size of axospinous synapses in
the core [130].

Rodents

Rodent Models Ultrastructure Modifications

Ketamine

In posterior cingulate cortex,
↑ thickness and curvature of the synaptic

interface;
↑ synaptic cleft width [131].

Dtnbp1−/−

In CA1,
↑ vesicle size and thickness of PSD;

↓ vesicles of reserve pool and width of synaptic
cleft [132].
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Table 2. Synaptic ultrastructural alterations in autism spectrum disorder. Different studies have assessed the synaptic ultrastructural
changes of synaptic transmission in autism spectrum disorder. Only one has been done in postmortem human tissue. Rodent models
are either chemical or genetic. The affected proteins are shown in Figure 1. ↑stands for increased, ↓stands for decreased. Full names of
brain regions, genes, proteins, and drugs are as in the main text and abbreviation list. Cx: cortex, HC: hippocampus, MPFC: medial
prefrontal cortex, CA1: Cornu ammonis area 1, PSD: postsynaptic density.

Autism Spectrum Disorder

Humans

Brain Region Ultrastructure Modifications

Anterior cingulate
cortex

↑ large axons in deep white matter,
↑ small axons in superficial white matter [133].

Rodents

Rodent Model Ultrastructure Modifications

VPA
In Cx and HC,

blurred and thickened synaptic cleft;
↓ synaptic vesicles; altered mitochondrial morphology [134].

Propionic acid
In CA1,

few atypically enlarged presynaptic terminals;
↓ density of synaptic vesicles and short active zone [135].

15q11-13 duplication

In somatosensory Cx,
↓size of PSD, spine head volume
↓width, spine neck width

↓density of shaft synapses and mushroom spines;
↑ density of axospinous synapses and filopodial spines [136].

Shank1−/− In CA1,
↓smaller spines and thinner PSD [137].

Shank3B−/− In striatum,
↓ thickness and length of PSD and spine density [138].

Lrfn2−/−
In CA1,

↑perforated synapses and synaptic cleft width;
↓PSD length; oddly shaped and spinule-like spines [139].

Cttnbp2−/− In dorsal HC,
↓PSD length and thickness and synaptic vesicle count [140].

Dip2a−/− In Cx,
a stubby postsynaptic structure and flattened PSD; defect in spine morphology [141].

Clstn2−/−

In MPFC,
↑ density of inhibitory synapses, ↑ negative curved PSD.

In ADD,
↑ size of perforated PSD; ↑ density of synaptic vesicles.

In HC,
↓ density of synaptic vesicles [142].

Vrk3−/− In CA1,
↓ PSD length and thickness [143].

Fmr1−/−

For a review reporting the spine phenotypes in different brain regions, see [144].
In CA1,

↑ diameter of secondary dendrites and dendritic spine density; ↑mature dendritic spines and
↑mature postsynaptic densities [145].

In the primary motor Cx, normal density but ↑ turnover rate of dendritic spines [146].
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3.1. The Presynapse

Regarding the presynaptic ultrastructure, it was shown in early studies on Aplysia that
the presynaptic compartment of synapses could be remodeled, leading to an increase in
the number, size, and vesicle complement of the active zones during long-term memory
formation [147]. Later studies have revealed similar mechanisms in other species, such
as Drosophila, where the readily releasable pool of vesicles can be dynamically modulated
during plasticity [148,149], or in rodents, where the regulation of presynaptic scaffold
proteins affects the availability of vesicles [150], and these can be replenished at different
rates [151].

3.2. The Synaptic Cleft

It has been proposed, based on computer simulations, that changes in the width of the
synaptic cleft alter synaptic function [152]. However, very little experimental research has
been done to date on this matter. Glebov et al. (2016) showed a slight reduction in the width
of the synaptic cleft after silencing neurons [153], and similar changes have been described
in a disease model in which synaptic function is altered [132]. On the other hand, other
models of synaptic malfunction exhibited opposite effects [131,139], and further research is
needed.

3.3. The Postsynapse

Structural changes have been widely described in mammalian postsynapses, mainly
in the glutamatergic system, in both the neocortex and hippocampus.

3.3.1. Synaptic Size

The size of the synaptic junction has been described as a structural correlate of its
function. The amplitude of synaptic currents correlates with the volume of dendritic
spines [154,155]. In turn, dendritic spine volume strongly correlates with synaptic size [156].
Release probability also scales with synaptic size [157], as well as synapse stability over time,
thus, larger synapses survive longer than smaller ones irrespective of synaptic activity [158].
It has been proposed that large synapses represent physical traces of long-term memory,
while smaller synapses would be preferential sites for LTP induction [159,160], which
has been also supported by simulation studies [160,161]. However, the size of synapses
undergoes significant spontaneous changes [162], challenging the notion that they could
be stable traces. Thus, new theories have arisen moving the focus of memory storage from
individual synapses to network connections [163,164]. In fact, synapses are not distributed
in two groups with clearly different sizes. Instead, the sizes of synaptic junctions follow a
continuous distribution with a single peak and a long tail to the right, which fits a log-normal
distribution both in the neocortex and hippocampus [165–168]. If, as commented above,
different functions are performed by synapses of different sizes, there would be a continuous
transition between the two types. It is interesting to note that other synaptic parameters,
such as the amplitude of unitary excitatory postsynaptic potentials (EPSPs) [169,170] and
spike transmission probability [171], also follow log-normal distributions (for a review,
see [172]). Model experiments also suggest that larger synapses would not only evoke larger
responses but would also be more homogeneous and reliable than smaller ones (i.e., their
stochastic variability is reduced when compared to smaller synapses) [173,174].

In any case, the amplitude of postsynaptic response does not depend only on the
size of the synapse but also the morphology of dendritic spines [175,176], as well as the
geometry of postsynaptic dendrites [177,178]. Another important factor is the concentration
of postsynaptic receptors. In the somatosensory cortex of rats, synapses of different sizes
express a constant density of AMPARs, so the larger the surface of the PSD, the higher
the absolute number of AMPARs [179]. In the hippocampus, however, different types
of synapses have different AMPAR content, and the number of AMPARs scales with
the synaptic size with different slopes [180]. The fact that NMDARs tend to be more
concentrated in smaller synapses [179,181] increases the complexity of the relationship
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between synaptic size and function. Therefore, although it is clear that the synaptic size
plays an important role in synaptic behavior, other factors, including dendritic spine
volume, the geometry of the postsynaptic element, or the density of postsynaptic receptors,
must also be considered.

3.3.2. Shape of Synapses

Another morphological trace related to synaptic transmission is the shape of the
synaptic junctions. Synapses can show a wide range of morphologies that have been
classified into four main types: macular (when they are disk-shaped), perforated (with
one or more holes in the PSD), horseshoe (when the perimeter is tortuous and horseshoe-
shaped with an indentation), and fragmented (when the PSD is divided into two or more
fragments) [182–185]. The different shapes also imply differences in the size of synapses:
macular synapses have a smaller mean area than more complex morphologies, although
their distributions greatly overlap [168].

The role that the shape of synapses plays in synaptic transmission is still under debate.
Some findings support the notion that complex morphologies correspond to more active
synapses; for example, it has been shown that in the hippocampus, there is an increase in
the proportion of fragmented synapses after the induction of LTP [186,187]. It has also been
shown that the shape of synapses might affect the proportion of postsynaptic receptors;
for example, in the stratum radiatum of the hippocampal CA1 of adult rats, perforated
synapses show a higher amount of AMPARs and NMDARs than nonperforated ones. This
suggests that perforated synapses may evoke larger postsynaptic responses, and hence
contribute to the enhancement of synaptic transmission associated with some forms of
synaptic plasticity [188]. However, these differences may only correspond to the different
sizes and might be independent of the shape of the synaptic junction.

3.3.3. Curvature of the Synaptic Apposition Surfaces

In the early 1980s, synapses were classified, based on the curvature of their synaptic
junction, as positive (when it was curved into the presynaptic terminal, in posterior studies
referred to as convex), flat, and negative (when it was curved towards the postsynaptic
side—later referred to as concave) [189]. This study described a shift towards more positive
junctions as an indication of the increasing maturity of the synapses, but they also related
the degree of curvature to the use of the synapse: junctions with pronounced negative
curvatures would be non-functional, while flat synapses would be more active [189]. This
theory was supported by the fact that the administration of barbiturates changed the
curvature of synapses towards more curved shapes [190]. Later studies have shown that
not only a variety of anesthetics [191] but also other parameters influence the curvature
of synapses in healthy individuals, such as age [185,192] and nutrition [193], making it
difficult to draw a conclusion about its relevance. The latest studies performed in rodent
hippocampus suggested that changes in synaptic curvature may influence synaptic efficacy
associated with long-term depression and LTP [194]. These changes could be due to the
increased fusion of vesicles that would result in a growth of the postsynaptic membrane,
or to changes in the cytoskeleton caused by the Ca2+ influx (for a detailed description of
the possible mechanisms responsible for the changes in curvature, see [195]). Furthermore,
another study showed that synaptic stimulation increased the curvature of the PSD, making
it more convex [196], however, the characterization of synaptic curvature in this study (as
in [189,190,193]) was performed in single sections instead of 3D reconstructions, which
could be misleading, since the curvature of a single synapse can change from one section
to another [195].

3.4. Synaptic Density

In the cortex, most synapses (90–98%) are established in the neuropil [197], which is
composed of dendrites, axons, and glial processes. Of these, most are excitatory synapses
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mainly located on dendritic spines, while the rest correspond to inhibitory synapses, mainly
established on the dendritic shafts [167,198,199].

The general view is that each spine establishes one synapse. However, some spines
present multiple synapses [167,200–203], while others show a clear lack of them [204]. The
presence of multiple synapses per dendritic spine [205–207], as well as a general increase
in the total number of synapses [201], has been proposed to be linked to long-term memory
formation. The fact that analyzing spines is much easier, due to their larger size, than
studying synapses, and the correspondence between the volume of spines and excitatory
synaptic strength have led to spines being considered a good structural criterion for
excitatory synapses. Different studies have shown an increase in spine number in a variety
of conditions, for example, in the mammalian cortex after the exposure to an enriched
environment [208]; in the hippocampus after spatial training [209], running [210], and
learning [211]; and in the brain of chicks after passive avoidance training [212]. Although
an increase in spine density seems to be a trend after brain stimulation, its significance
for activity must be considered carefully since, as stated above, changes in spines do not
necessarily reflect changes in synapses.

3.5. Mitochondria

Mitochondria play an important role in synaptic transmission by providing most
of the energy required by neurons and by acting as Ca2+ buffers [213–216]. The ATP
provided by mitochondria at the synapse is used for maintaining the resting membrane
potential, reversing the ion gradient after action and postsynaptic potentials, and for G-
protein signaling, neurotransmitter recycling, and vesicle cycling [217]. Mitochondria are
closely associated with synapses [218] and are transported along dendrites and axons to
the regions of the cell that require a high energetic supply [219–225]. In the somatosensory
cortex, the volume fraction of mitochondria located in axons and dendrites correlates
with the local density of synapses, while the volume fraction of mitochondria located in
non-synaptic processes does not [226]. The highest density of synapses is found in layer IV,
a recipient of thalamic afferents [167]. Interestingly, layer IV also shows the highest density
of mitochondria [226], which is associated with the synaptic vesicle pools to ensure the
efficacy of the thalamic transmission [227]. This recruitment occurs through variations in
the ADP/ATP ratio, but also other factors such as the activation of glutamate receptors [228]
and changes in the concentration of Ca2+ affect mitochondrial mobility [214,215,222]. As
Ca2+ buffers, mitochondria play a fundamental role in protecting the terminals by taking
up cytosolic Ca2+ during repetitive stimulation [229,230]. Synapses and mitochondria are
connected even further since there are proteins that regulate the mitochondrial distribution
and also influence the formation and maintenance of spines and synapses, e.g., B-cell
lymphoma extra large (Bcl-xL), which leads to more mitochondria at synapses and an
increase in the synapse number and size when overexpressed [231] (for a review, see [216]).

4. Excitatory Synaptic Ultrastructure Alterations in Neuropsychiatric Disorders

The ultrastructural plastic organization of synapses affects the transmission, thus
determining the mechanisms of adaptive or pathological behavior [124]. For example, as
discussed before, the size of the active zone and the form of synaptic contacts correlate
with the functional activity and maturity of the synapse. Therefore, the analysis of the
synaptic ultrastructural alterations is important for the assessment of the functional state
of synapses in different neuropsychiatric disorders.

4.1. Schizophrenia

Several studies identified synaptic ultrastructural alterations as evidence for gluta-
matergic dysfunctions in SZ patients (Table 1 and Figure 1) (for a recent review, see [232]).
These alterations may depend on differences in the stage of illness, medication status,
and brain regions. In the ACC, which plays a vital role in attention, executive functions
and cognitive tasks [233], response conflict [234,235], error rate [236,237], and emotional
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processing [238], the total synaptic density was found to be decreased by 28% in individuals
with SZ compared to healthy controls [123]. However, different types of synapses showed
different alterations. The density of the glutamatergic axospinous synapses was reduced
by 30%, while synapses on shafts showed no difference in SZ patients. The same study
also revealed a selective decrease in the density of mitochondria in axon terminals forming
excitatory axospinous synapses, specifically in layer III of the ACC [123], suggesting a
decrease in cortical synaptic efficiency which can impact the cognitive functions controlled
by the ACC activity.

In layer II of the anterior limbic cortex, a 128% increase in the density of total ax-
ospinous synapses and a decrease of 40% of synapses on the dendritic shaft were identified
in SZ subjects without determining whether the decreased numbers are in excitatory or
inhibitory synapses. These results suggest a disruption in the formation of connections
in the neuronal assemblages of the anterior limbic cortex or a defective elimination of
synapses during early adolescence, when synaptic pruning occurs by discarding weak
and redundant synaptic connections, and strengthening the remaining synapses [239,240].
Regarding the structure of synapses, the same study revealed an increase of 14% in the
convex synapses in SZ cases with a decrease in flat and concave synapses by 11% and 3%,
respectively [124].

In the hippocampus, two electron microscopy (EM) studies morphometric studies
reported a decreased number of glutamatergic axospinous synapses between the mossy
fiber axon terminals and branched dendritic spines of pyramidal neurons in the CA3 region
in SZ subjects. These results reflect a decrease in the efficacy of mossy fiber synapses in the
CA3 hippocampal region, which can impair cognitive maintenance [125,126].

In the caudate nucleus and putamen, as parts of the dorsal striatum that process
motor, cognitive, and limbic functions, a selective increase in the glutamatergic synaptic
density was reported in SZ patients, suggesting an enhanced cortical excitatory input, as
the striatum receives mainly excitatory inputs from the cortex and shows major GABAergic
output [127]. The caudate nucleus and putamen are composed of patches embedded in a
larger matrix [241]. The matrix compartment preferentially receives inputs from the motor
and somatosensory cortices [242], as well as from the dorsolateral prefrontal cortex [243]
which processes cognition, including working memory [244]. On the other hand, the patch
compartment receives input from the limbic system [128].

The glutamatergic axospinous synaptic density was elevated in both the caudate
matrix and the putamen patches in SZ cases on typical antipsychotic drugs [128]. However,
the increase in total and excitatory synapses in the patch (but not the matrix) was confined
to the treatment-resistant group, while the treatment respondent group had normal levels
of synapses except for an increase in the density of glutamatergic axodendritic synapses in
both the patch and matrix [129]. There is therefore evidence of altered glutamatergic activity
in SZ with an association between striatal function, structure, and treatment response.

The nucleus accumbens acts as a central hub for integrating signals from several
regions associated with SZ, including the prefrontal cortex, hippocampus, amygdala,
and thalamus [245]. It can be divided into the core and shell. In SZ patients, the core
showed an increased density of excitatory axospinous synapses, although they have smaller
PSDs. In contrast, the shell did not present any difference from healthy brains. Similarly,
mitochondrial density in the nucleus accumbens did not show any alterations in SZ. The
frequency of large elaborate multi-perforated synapses was equally found in axospinous
synapses and synapses on dendritic shafts and was not altered in SZ [130]. These large
synapses play a role in the complex interconnectivity of the nucleus accumbens, which
makes it a unique feature of the human brain [130,232].

Despite the presence of genetic rodent models with iGluR or mGluR depletions or
mutations described as having an SZ-like phenotype, these studies mainly focused on the
electrophysiological alterations (for a review, see [246]) with no synaptic ultrastructural
details available except for one pharmacological and one genetic-induced rodent model of
SZ. In a ketamine-induced SZ rat model, a reduction in the thickness and curvature of the
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synaptic interface and an increase in the synaptic cleft width in the posterior cingulate cortex
were found, which could be rescued by the administration of vinpocetine, a nootropic
phosphodiesterase-1 inhibitor [131]. In the sandy mouse line that harbors a spontaneously
occurring deletion in the Dtnbp1 gene and expresses no dysbindin protein, although
the overall appearance of presynaptic terminals and spines in the hippocampal CA1
glutamatergic synapses was normal, quantitative analysis revealed a shift of the vesicle
distribution to a ~10% larger size, with a normal count of docked vesicles, a reduced count
of reserve pool vesicles, and a decreased width of the synaptic cleft [132]. The glutamatergic
synapses in sandy mice also exhibited an increase in the thickness of PSDs.

The inconsistent synaptic ultrastructural alterations between human patients and
rodent models as well as between the different rodent models of SZ point to the severe
heterogeneity of this complex disorder. Moreover, it may indicate the limitation of the
rodents to modulate such complex disorders. Indeed, on the behavioral level, some of the
symptoms of SZ, such as auditory hallucinations and delusions, have not yet been modeled
due to the difficulty of finding a correlate in animals. In contrast, deficits in sensory pro-
cessing have proven more amenable to modeling in rodents, including sensorimotor gating.
Therefore, face validity is vital to signify that a rodent model can recapitulate important
anatomical, biochemical, neuropathological, or behavioral features of a neuropsychiatric
disorder. Additionally, before generating a new rodent model, it is important to achieve
a construct validation by recreating the same mutation in the gene that was found in the
patient to dissect the heterogeneous state of these disorders.

In summary, human postmortem and rodent studies have revealed several glutamater-
gic synaptic ultrastructural alterations related to SZ, confirming the notion of synaptic
involvement in SZ (for a summary of synaptic ultrastructural alterations in SZ, see Table 1
and Figure 1).

4.2. Autism Spectrum Disorder

In ASD, efforts to carry out comparative postmortem brain studies in patients were
hindered by poor tissue preservation and small sample sizes. To our knowledge, only one
EM study investigating the brains of ASD patients was performed, with a small sample
size of adult brains from five ASD patients and four controls. This study did not investigate
the synaptic structure but rather focused on the connectivity of myelinated axons in the
prefrontal cortex, revealing significantly fewer large axons in the deep white matter below
the ACC and much smaller axons in the superficial white matter of the same region,
suggesting increased local connectivity and decreased long-range connectivity [133].

Data on synaptic ultrastructure changes are available only for several pharmacological
and genetic-induced rodent models of ASD, which document the heterogeneity of ASD
(Table 2 and Figure 1). The synaptic ultrastructural alterations in two examples of the
pharmacologically induced rodent models of ASD will be described in detail. An ASD
rat model of prenatal exposure to VPA exhibited a blurred and thickened structure of the
synaptic cleft without clearly marked pre-and postsynaptic membranes. Synaptic vesicles
were found to be greatly reduced or completely absent in the presynaptic terminals in
the cerebral cortex and hippocampus, with altered mitochondrial shapes and fused mito-
chondrial cristae and membrane [134]. In a propionic acid mouse model of ASD, multiple
synaptic alterations were observed in the CA1 region of the hippocampus, including the
presence of some atypically enlarged presynaptic terminals with a reduced density of
synaptic vesicles and short active zones [135].

For the genetic-associated ASD rodent models, studying a mouse model with a human
15q11-13 chromosomal duplication revealed that the size of the PSD, the spine head volume,
and spine head and spine neck widths were reduced in layer II/III of the somatosensory
cortex, indicating a poor maturation of spines. The reported tendencies towards the
increased density of spine synapses, reduced densities of shaft synapses with a trend
towards increased fractions of filopodia, thin spines, and reduced fractions of mushroom
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spines support the idea of an altered balance between excitatory and inhibitory synapses
in this model [136].

The SHANK protein family comprises a group of postsynaptic scaffolding proteins
that play a vital role in the formation, organization, and signaling of glutamatergic
synapses [64], acting as the central organizer of the postsynaptic proteins. Since mu-
tations of all three members of the SHANK gene family are associated with ASD, the
ultrastructural alteration in Shank mutant mice was expected to give information on the
functional impairment of the network and to provide a link to the alterations found in SZ,
in particular SHANK2 variants associated with SZ [247]. The deletion of Shank1 in mice dis-
playing an ASD-like phenotype leads to smaller spines, thinner PSDs, and a weak synaptic
transmission in the hippocampal CA1 region [137]. In Shank3B−/− mice revealing an ASD-
like phenotype, the thickness and length of the PSD in the striatum were decreased, with a
reduction in the spine density accompanied by a reduced excitatory synaptic transmission,
pointing to the disruption of glutamatergic signaling [138]. In another ultrastructural study
in the hippocampal CA1 field in Shank3-deficient mice, the presence of synaptic pathology
at different developmental stages (5 weeks and 3 months of age) was assessed. Shank3+/–

heterozygote mice had significantly more perforated synapses at 5 weeks than at 3 months
of age and significantly more than 5-week-old controls, indicating that the ultrastructural
morphological alterations affecting synaptic structure may occur in an age-dependent
manner in Shank3-deficient mice [248].

LRFN2/SALM1 is a PSD-95-interacting synapse adhesion molecule [249]. In the Lrfn2-
deficient mouse model of ASD, the CA1 stratum radiatum of the dorsal hippocampus
revealed an increased ratio of perforated synapses to total excitatory synapses. Moreover,
the synapses had a shorter PSD length but a similar thickness and a wider synaptic cleft.
Furthermore, an unstable spine structure was suggested by the presence of oddly shaped,
spinule-like spines and perforated PSDs [139].

The ASD-associated cortactin binding protein 2 (CTTNBP2) is known to regulate
the subcellular distribution of synaptic proteins, such as cortactin, thereby controlling
dendritic spine formation and maintenance [250]. In the Cttnbp2−/− mouse model of ASD,
in all regions of the dorsal hippocampus, these mice showed a reduction in the length and
thickness of PSDs, the count of presynaptic vesicles, and the ratio of vesicle number to PSD
length [140].

The ASD candidate gene DIP2A (disconnected-interacting protein homolog 2 A)
encodes for a protein that is localized to dendritic spines in excitatory neurons [141]. The
deletion of Dip2a in mice exhibited a postsynaptic structure with a stubby appearance
and flattened PSD compared to an enlarged postsynaptic terminal with a distinct neck
and abundant PSDs in control mice [141]. These results were accompanied by a defect in
spine morphology and synaptic transmission, which may be mediated by PSD size and
glutamate receptor dysfunction.

Calsyntenin-2 (CLSTN2) is a synaptic protein that belongs to the superfamily of cad-
herins and has an important function in learning and memory [251]. In the Clstn2−/−

mouse model of ASD, the synaptic ultrastructural analysis revealed a reduction in the
density of inhibitory synapses both in the medial prefrontal cortex (MPFC) and the hip-
pocampus, as well as a general increase in negatively curved PSDs. The MPFC also showed
a reduction in the length of perforated synapses as well as in the width of the synaptic
cleft PSD, presenting a surprisingly increased number of synaptic vesicles. In contrast, the
presynaptic area of the hippocampal neurons was not changed in Clstn2 knockout mice,
but the number of synaptic vesicles was significantly reduced [142].

In addition to the aforementioned synaptic proteins, nuclear proteins associated
with ASD can also affect the synaptic ultrastructure, e.g., vaccinia-related kinases (VRKs)
that play a major role in cell signaling, cell cycle progression, apoptosis, and neuronal
development. In the hippocampal CA1 region of a VRK3-deficient mouse model of ASD,
prominent reductions in PSD length and thickness were revealed [143].
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Adding another layer of complexity, a mouse model of Phelan–McDermid syndrome
causing autistic phenotypes with a deficiency of mitogen-activated protein kinase 8 in-
teracting protein 2 (MAPK8IP2/IB2), which plays an important role in regulating the
ratio of AMPARs to NMDARs at glutamate synapses, revealed no synaptic ultrastructure
alterations of cerebellar glutamatergic synapses and featured normal synaptic clefts and
postsynaptic densities and abundant presynaptic vesicles [252]. However, despite the nor-
mal ultrastructure, a larger NMDAR-mediated current and enhanced intrinsic excitability
and LTP were revealed in this mouse model [253].

Although altered dendritic spine morphology is a hallmark of FXS, the degree of spine
abnormalities observed in the Fmr1 KO mouse model is variable (for a review reporting the
spine phenotypes in different brain regions of Fmr1 KO, see [144]). Additionally, in more
recent studies, a significant increase in the diameter of secondary dendrites, an increase in
dendritic spine density, a decrease in mature dendritic spines and less mature postsynaptic
densities were revealed in the hippocampal CA1 region of adult Fmr1−/− mice [145]. In
the primary motor cortex of Fmr1−/− mice, a normal density but higher turnover rate of
dendritic spines were shown [146].

In summary, several pieces of evidence from rodent studies have revealed hetero-
geneous synaptic ultrastructural alterations related to ASD, supporting the hypothesis
that ASD is, in part, the consequence of a developmental synaptopathy (for a summary of
synaptic ultrastructural alterations in ASD, see Table 2 and Figure 1). Improving the quality
of postmortem tissue preparation from ASD patients by the development of advanced
methods can confirm the synaptic ultrastructural changes revealed in rodent models of
ASD and pave the way for dissecting the heterogeneity of the disorder. Moreover, it will
facilitate finding ultrastructural alterations that are common with other neuropsychiatric
disorders and contribute to their pathophysiology.

5. Conclusions

Numerous experimental and EM-imaging methods have shown that in genetically and
pharmacologically caused SZ and ASD, glutamate concentration, glutamatergic receptor
expression, and the ultrastructure of glutamatergic synapses are differentially affected
in different brain regions, leading to alterations in synaptic signal transmission. Various
molecular, physiological, and structural changes of synapses have already been shown to
occur during brain development or learning. Those studies identified the glutamatergic
neurotransmission as an essential mechanism for an activity-dependent modulation of
synapses and the formation (learning) or stabilization (memory) of neural networks. For
those network changes, the Ca2+ influx at postsynaptic NMDARs and AMPARs and the
release of intracellular Ca2+ at the activated synapse are essential to initiate the required
modification of the synapses that experienced activation through depolarization of the
postsynaptic membrane. If the intracellular Ca2+ level rises too far, neuronal death will
result [254]. Thus, the amount and type of Ca2+ increase after glutamate stimulation
determines whether and which molecular changes will be activated in the neuron. This
could be associated with structural changes in the synapse(s) and increased/decreased
excitability. In SZ and ASD, the glutamatergic signal transduction in neuronal networks that
controls social and other behaviors is dysregulated. These structural alterations can have a
clear impact on synaptic neurotransmission and plasticity, which lead to neuronal circuit
defects. The maintenance of cognition and normal behaviors is heavily dependent on the
precise formation of mature neuronal circuits. For example, the increase in glutamatergic
synaptic density can cause hyper-excitability of cortical circuits consistent with multiple
lines of evidence that implicate imbalances in excitatory and inhibitory activity as a shared
pathophysiological mechanism in SZ and ASD. Additionally, as synaptic size and shape
can have an effect on the number of AMPARs and NMDARs, key components of learning
and memory, the alteration of these factors can explain the cognition impairment and
memory dysfunction in these neuropsychiatric disorders. However, to understand the
different features of both neuropsychiatric disorders and their individual heterogeneity,
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a more detailed picture of the neuronal network and more comparative ultrastructural
information are required. Importantly, structural and functional studies on SZ and ASD
also show that the glutamatergic synapses do not appear to lose their plasticity during
maturation and learning. In rodent models and human patients, the impaired glutamatergic
synaptic plasticity and social behavior can be at least partially normalized genetically or
by compensatory medication, as indicated by the rescue of the social impairment via
restoration of Shank3 expression in adult Shank3 KO mice [255] and by the treatment of
adult Shank2 KO mice with an NMDAR agonist, D-cycloserine [65]. Additionally, both
experimental and medical interventions were associated with normalized social behavior
but also improved learning abilities in adult animals and patients. Detailed synaptic
ultrastructural analysis of AMPAR and NMDAR KO mice are necessary to demonstrate
that changes in synaptic structures are associated with SZ and ASD phenotypes recognized
in AMPAR and NMDAR KO mice, as noticed in patients and the other mouse models
for ASD and SZ; in particular, the loss of NMDAR in hippocampal CA3 to CA1 synapses
and GluA1 receptor plasticity is associated with impairments in decision making, which
depends on the recognition and correct evaluation of environmental stimuli but is not
involved in the long-term memory formation [256,257].

Since astrocytes in tripartite synapses also influence synaptic transmission and react
to inflowing and intracellularly released Ca2+ signals, the role of astrocytes and their
mitochondria in neuropsychiatric diseases should be investigated.
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Mouse lines
Clstn2−/−, global depletion Clstn2—not listed—a CRISPR-Cas9-edited KO mouse line is

available at MMRRC: Clstn2em1(IMPC)J (MGI:5766210);
Cttnbp2−/−, global depletion of Cttnbp2—not listed—a CRISPR-Cas9-edited KO mouse line is

available: Cttnbp2tm1a(KOMP)Wtsi (MGI:4455588);
Dip2a−/−, global depletion of Dip3a—not listed—a CRISPR-Cas9-edited KO mouse line is

available: Dip2aem#Ywz (MGI:5787957);
Dtnbp1−/−, DtnbP1 (floxed mice B6(Cg)-Dtnbp1tm1c(EUCOMM)Hmgu/DtlJ are available at

Jackson labs Stock 030840);
Fmr−/−, global Fmr depletion: Fmr1tm1Cgr (MGI:1857169) or Fmr1tm2Cgr (MGI:245108); Gria1−/−,

global GluA1 depletion: Gria1tm1Rsp (MGI:2178057);
Grin1neo/neo, hypomorophic GluN1 expression: Grin1tm1Bhk (MGI:1928280);
Grin1f/f/PV-Cre−/−, GluN1 depletion in parvalbumin-positive neurons: Grin1tm1Rsp (MGI:3611337)/Pvalbtm1(cre)Arbr

(MGI:3590684);
IB2−/−, global depletion of Mapk81P/Ib2: Mapk8ip2tm1.1Gol (MGI:4867721);
Lrfn2−/−, global depletion of Lrfn2/Salami—not listed—a similar 2lox mouse strain is available

from Jackson labs: B6J(Cg)-Lrfn2tm1.2Csbd/Mmjax (MMRRC Stock No: 50502-JAX);
Shank1−/−, global Shank1 depletion: Shank1tm1Shng (MGI:3762757); Shank3B−/−, global de-

pletion of the Shank3B isoform: Shank3tm2Gfng (MGI:4949738);
Vrk3−/−, global depletion of Vrk3—not listed—a CRISPR-Cas9-edited KO mouse line is avail-

able at MMRRC: VRK3em1(IMPC)MBP/MmUCD (MGI: 63152674).
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