Supplementary Material

Extended interactions between HIV-1 viral RNA and tRNA^{Lys3} are important to maintain viral RNA integrity

Thomas Gremminger †, Zhenwei Song †, Juan Ji, Avery Foster, Kexin Weng, and Xiao Heng

Department of Biochemistry, University of Missouri, Columbia, 65211

* Correspondence: hengx@missouri.edu

† These authors contributed equally to this work.

Keywords: HIV-1 PBS, tRNA, reverse transcription, degradation, genome integrity.

Figure S1: A-rich loop hairpin exhibits similar NOE patterns in all RNA constructs used in this study. (a) Secondary structure of A-rich loop hairpin control with non-native bases highlighted in gray. (b) Similar NOE patterns were observed in the hairpin control (left), PBS-segment (middle) and the 5'UTR (right). NOESY walk is labeled in purple dashed lines. (c) Sequential NOESY walk used for assignment of A-rich loop hairpin control. Red dashed lines indicate walk of H6/H8/H1' from U152 to A177. Purple dashed lines indicate adenosine H2 resonances.

Figure S2. Annealing of tRNA^{Lys3} to PBS-segment disrupted folding of A-rich loop hairpin. Portion of the aromatic region of 2D ¹H-¹H NOESY spectra with PBS-segment shown in black and PBS-segment: tRNA^{Lys3} complex shown in orange. Resonances of A-rich loop hairpin nucleotides are shown with blue dashed lines.

Figure S3. The structure of the MAL vRNA: tRNA^{Lys3} complex is not sensitive to annealing conditions. (a) PBS-segment was annealed to tRNA^{Lys3} using NC or heat annealing. Complexes were analyzed using a native polyacrylamide gel. (b) The 5'UTR and 5'UTR-MutA were annealed to tRNA^{Lys3} using NC or heat annealing and the complexes were resolved in a native polyacrylamide gel.

Figure S4. The intensity of A147.H8 decreased upon NC annealing. Portions of 2D ¹H-¹H NOESY NMR spectra of PBS-NL4.3, heat annealed complex, 1 NC annealed complex (NC: RNA=1:1), and 12 NC annealed complex (NC: RNA=12:1) are shown. The NC proteins were removed by high salt washes prior to NMR data collection. Peak intensities are quantified in table S1.

Table S1: Quantification of peak intensities of 147.H8 and 157.H2 in 2D NOESY spectra of complexes annealed under different conditions.

	147.H8	157.H2	147.H8/157.H2
Heat-annealed complex	1.87	1.78	105%
1NC-annealed complex	1.90	1.77	107%
12NC-annealed complex	1.10	1.88	59%

Table S2. Table of primers used in this study. Notes list which experiment primers were used for.

Primer	Sequence (5'-3')	Notes
MAL5UTRNL4-	CTTTTTGCCTGTACTGGTCTCTTGTTA	Construction of chimeric
3ChimeraUTRF	GACCAGGTCGAG	virus plasmid
MAL5UTRNL4-	AGTACAGGCAAAAAGCAGCTGCTTATA	Construction of chimeric
3ChimeraBackboneR	TGTAGCATCTGAGGG	virus plasmid
MAL5UTRNL4-	GGTGCGAGAGCGTCGGTATTAAGCGGG	Construction of chimeric
3ChimeraBackboneF		virus plasmid
MAL5UTRNL4-	CGACGCTCTCGCACCCATCTCTCTCTT	Construction of chimeric
3ChimeraUTRR		virus plasmid
MAL-TAR-F	GCATCTAATACGACTCACTATAGGTCTC	Production of template for
	TCTTGTTAGAC	transcription
MAL-358-R	CGCACCCATCTCTCTCTCTAGC	Production of template for
		transcription
MAL-MutA-F	GTCTTCGGATCTCTAGCAGTGGCGCCCG	Mutagenesis of MAL
	AACAG	plasmid
MAL-MutA-R	TAGAGATCCGAAGACCGTCTAGAGTGG	Mutagenesis of MAL
	TCTGAGGGATCTCTAGTTACCAG	plasmid
3'-ori-R	CTCAAGTCAGAGGTGGCGAAACCCGAC	Mutagenesis of MAL
	AG	plasmid
5'-ori-F	CACCTCTGACTTGAGCGTCGATTTTTGT	Mutagenesis of MAL
	GATGC	plasmid
MAL-PBS-F	GCTAGTAATACGACTCACTATAGGCTCT	Production of template for
	GGTAACTAGAGA	transcription
MAL-PBS-R	GGCTCTGGAACTTCCGCTTTCGAGTC	Production of template for
		transcription
BstZ17I-F	CCTTCACCTGAAATGTGTGTATACAAAA	Introducing PBS-M mutant
	TCTAGGCCAGTC	into pNJ4-3 plasmid
BstZ17I-R	CTAGGTATGGTAAATGCAGTATACTTCC	Introducing PBS-M mutant
	TGAAGTCTTTATC	into pNJ4-3 plasmid
NL4-3-PBSM-F	AGACCCTTTTAGTCAGTGTGGTTATCTC	Introducing PBS-M mutant
	TAGCAGTGGCGCCCGAACAG	into pNJ4-3 plasmid
NL4-3-PBSM-R	CACACTGACTAAAAGGGTCTGAGTTATC	Introducing PBS-M mutant
	TCTAGTTACCAGAGTCACAC	into pNJ4-3 plasmid
RT-E478Q-F	CTCAGTTACAAGCAATTCATCTAGCTTT	Introducing E478Q mutant
•	GCAGGATTCG	into the pRT-Dual plasmid
RT-E478Q-R	ATGAATTGCTTGTAACTGAGTCTTCTGA	Introducing E478Q mutant
`	TTTGTTGTC	into the pRT-Dual plasmid
pRT-Dual-F	GGCAACGCCAATCAGCAACGACTGTTT	Introducing E478Q mutant
	GC	into the pRT-Dual plasmid
pRT-Dual-R	GCTGATTGGCGTTGCCACCTCCAGTCTG	Introducing E478Q mutant
•		into the pRT-Dual plasmid
hRU5-F2bb	GCCTCAATAAAGCTTGCCTTGA	Quantification of cDNA/
		RNA integrity assay
MAL-hRU5-R3	TAGAGTGGTCTGAGGGATCT	Quantification of cDNA/
		RNA integrity assay
MAL-hRU5-probe	AGAGTCACACACAGATGGGCACACAC	Quantification of cDNA/
- 1	Т	RNA integrity assay

Gag-F1b	CTAGAACGATTCGCAGTTAATCCT	RNA integrity assay
Gag-R1b	CTATCCTTTGATGCACACAATAGAG	RNA integrity assay
P-HUS-103 (probe)	CATCAGAAGGCTGTAGACAAATACTGG	RNA integrity assay
	GA	