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Abstract: Our laboratory and others have previously shown that cannabinoid receptor type-1 (CB1r)
activity is neuroprotective and a modulator of brain ageing; a genetic disruption of CB1r signaling
accelerates brain ageing, whereas the pharmacological stimulation of CB1r activity had the opposite
effect. In this study, we have investigated if the lack of CB1r affects noradrenergic neurons in the
locus coeruleus (LC), which are vulnerable to age-related changes; their numbers are reduced in
patients with neurodegenerative diseases and probably also in healthy aged individuals. Thus, we
compared LC neuronal numbers between cannabinoid 1 receptor knockout (Cnr1−/−) mice and their
wild-type littermates. Our results reveal that old Cnr1−/− mice have less noradrenergic neurons
compared to their age-matched wild-type controls. This result was also confirmed by the analysis of
the density of noradrenergic terminals which proved that Cnr1−/− mice had less compared to the
wild-type controls. Additionally, we assessed pro-inflammatory glial activity in the LC. Although
the density of microglia in Cnr1−/− mice was enhanced, they did not show enhanced inflammatory
profile. We hypothesize that CB1r activity is necessary for the protection of noradrenergic neurons,
but its anti-inflammatory effect probably only plays a minor role in it.
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1. Introduction

The locus coeruleus (LC), or “blue spot”, is a small nucleus located in the pons of the
brainstem, lateral to the IVth ventricle. It projects throughout the neuroaxis and represents
the major source of noradrenaline (NE) in the central nervous system. Although the LC
consists of a relatively low number of noradrenergic neurons (45–50 thousand in a normal
healthy young adult human [1] and approximately 1500 in adult mice [2]), its projecting
area is extremely wide; noradrenergic terminals are abundantly present in the cortex,
mainly in the somatosensory and motor cortex [3], hippocampus and amygdala [3–5],
hypothalamus [6] and in the brainstem itself [7]. The LC also receives a large number of
afferents, mainly from the cortex, amygdala [8,9] and from the spinal cord [10].

Electrophysiological studies revealed that LC noradrenergic neurons have a peculiar
double firing mode; they are able to switch between tonic or phasic mode, regulating differ-
ent behavioral states. A tonic firing is related to a “low attention” mode, while the switch to
the phasic firing happens in response to a relevant “focus-demanding” stimuli [11]. These
studies suggested that LC may play a role in modulating numerous cognitive functions,
including attention, memory as well as in the regulation of sleep–wake states and stress
response [12]. Under physiological conditions, LC neurons respond to external and internal
sensory stimuli and this response influences learning and memory processes [13]. Electro-
physiological recording studies showed that LC activation induced hippocampal long-term
depression, which was dependent on adrenergic receptor activation [14,15]. Moreover,
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a depletion of LC neurons impairs working memory and hippocampal neurogenesis, also
suggesting a direct link between LC functionality and hippocampal-related control of
cognition [16]. Besides lesion, pharmacological manipulation of LC can also significantly
affect cognitive processes [17,18].

Interest related to the LC-noradrenaline system emerged particularly in aging research.
Studies revealed that the noradrenergic system can influence the process of brain ageing
and that it also changes during ageing. It was reported that NE has a neuroprotective
effect against inflammation and excitotoxicity. Increasing NE levels in vivo improved
cognition while in vitro NE administration protected neurons against β-amyloid toxicity.
On the other side, the LC is vulnerable to age-related changes and particularly impacted
in the most common neurodegenerative diseases, Alzheimer (AD) and Parkinson (PD)
diseases [19].

Most strikingly, in AD patients, the neuronal loss in the LC is higher than the loss
of cholinergic neurons in the nucleus basalis (67.9% vs. 41.1%) [20] and also in PD the
neuronal loss is more intensive in the LC (83.2%) than in the substantia nigra (77.8%) [21].

While it seems well established that dysfunctions of the noradrenergic system are
correlated with neurodegenerative diseases, the question whether or not LC neurons are
also lost during normal physiological ageing has not been answered conclusively [22]. Some
postmortem studies have reported an age-related neurodegeneration in LC neuron number
of about 20–40% [23], whereas other postmortem studies using unbiased stereological
counting and strictly excluding samples with pathological changes (like neurofibrillary
tangles) did not find a reduction of LC cell number in healthy adults [24,25]. Nevertheless,
a recent in vivo study based on a sophisticated magnetization transfer weighted imaging
technique showed a relationship between LC signal intensity values and age, revealing
an age-related decline in LC signal intensity values from the age of 60 confined to the
rostral portion of the LC. This finding thus supports an age-related shrinkage or loss of
neuromelanin containing noradrenergic neurons in the LC also in healthy subjects [26].
Whether an age-related decline in the number of LC neurons is present in mice is still
controversial, ranging from a decline [27] to no change or even an increase in neuronal
numbers [28,29]. These discrepancies may be attributed in part to the fact that different
mouse strains have been used.

There is a large body of evidence demonstrating that cannabinoid receptor type-1
(CB1r) signaling modulates the activity of the LC. First of all, the immunoreactivity for
CB1r within the LC was localized in somatodendritic structures, axon terminals, and also
on some glial processes [30]. In the frontal cortex, one of the main projection areas of the
LC, CB1 receptors were also identified on noradrenergic axon terminals. CB1r activity
can influence both inhibitory and excitatory signaling, although most of the axonal CB1
receptors in the LC are on inhibitory and only a minority on excitatory synapses [30].
Therefore, it is not surprising that systemic administration of the CB1r agonist WIN55,212-2
has been shown to increase the firing frequency of noradrenergic neurons and thus to
enhance forebrain NE release [31,32]. In further support, CB1r deletion caused significant
alterations of the electrophysiological properties of noradrenergic neurons such as an
increase in LC-NE excitability and input resistance. Moreover, the increase in LC-NE
excitability observed in wild-type mice following CRF application was not observed in
CB1r knockout (Cnr−/−) mice. These results indicate that CB1r deletion causes a disruption
in LC-NE signaling, proving a basal endocannabinoid regulation of LC-NE activity [33].

Cannabinoid system activity not only regulates neuronal activity but may also in-
fluence their survival. Cnr1−/− mice show a loss of principal neurons in the hippocam-
pus [34] accompanied by histological signs of brain ageing such as reduced neurogenesis
and neuroinflammation [35] as well as an enhanced accumulation of the ageing pigment
lipofuscin [36].

In the present study, we asked whether CB1r activity, similar to that in hippocampus,
influences neuronal survival and neuroinflammation in the LC during ageing.
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2. Results

2.1. Enhanced Age-Related Neuronal Loss in the Locus Coeruleus in Cnr1−/− Mice

To determine if there is an age-related neuronal loss in the catecholaminergic nuclei in
C57BL/6J mice, we compared the number of tyrosine hydroxylase (TH)-positive cells in
the locus coeruleus (LC), substantia nigra (SN) and ventral tegmental area (VTA) between
3- (Figure 1A) and 22-month-old wild-type mice by stereological counting (Figure 1B). The
number of TH-positive cells in the LC was significantly reduced in old compared to young
C57BL/6J mice (t10 = 2.663; p = 0.0238), whereas neither the SN (t12 = 1.425; p = 0.1798) nor
the VTA (t12 = 1.483; p = 0.1639) showed significant differences between the age groups
(Figure 1C).
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Figure 1. (A,B) Representative photomicrographs of the tyrosine hydroxylase (TH)-positive re-
gions locus coeruleus (LC), substantia nigra (SN) and ventral tegmental area (VTA) in young and 
old animals. (C) Quantitative stereological analysis of the total number of TH-positive cells of 
young (3-month-old) and old (22-month-old) C57BL/6J wild-type mice.* p < 0.05 according to Stu-
dent’s t-test (n = 6-8 per age group). Dots represent single animals, columns represent mean val-
ues, and error bars represent standard error of means (SEM). 

Subsequently, we compared the number of TH-positive cells in the LC, SN and VTA 
between 18-month-old wild-type and Cnr1−/− mice. In the LC, the number of TH-positive 
cells was significantly lower in Cnr1−/− mice than in age-matched wild-type littermates (t10 
= 2.663; p = 0.0238) (Figure 2A). In contrast, we found no genotype effects for the VTA (t10 
= 1.806; p = 0.1010) or the SN (t10 = 0.385; p = 0.7084) (Figure 2B,C). To test whether Cnr1−/− 
mice generally have a reduced number of LC neurons independently from their age, we 
also analyzed the number of TH-positive cells in the LC in 3-month old wild-type and 
Cnr1−/− mice (Figure 2D). We found no difference between the genotypes (t11 = 0.971; p = 
0.352), thus strongly indicating that the difference observed in old mice is due to an exac-
erbated age-related loss of TH-positive LC neurons in Cnr1−/− mice. 

Note that only groups represented on the same panels in Figure 1; Figure 2 are com-
parable, because they were stained together in the same staining series. As staining inten-
sity varies between series, results are not comparable between different figures or panels. 
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Figure 1. (A,B) Representative photomicrographs of the tyrosine hydroxylase (TH)-positive regions locus coeruleus (LC), substantia
nigra (SN) and ventral tegmental area (VTA) in young and old animals. (C) Quantitative stereological analysis of the total number of
TH-positive cells of young (3-month-old) and old (22-month-old) C57BL/6J wild-type mice.* p < 0.05 according to Student’s t-test
(n = 6–8 per age group). Dots represent single animals, columns represent mean values, and error bars represent standard error of
means (SEM).

Subsequently, we compared the number of TH-positive cells in the LC, SN and VTA
between 18-month-old wild-type and Cnr1−/− mice. In the LC, the number of TH-positive
cells was significantly lower in Cnr1−/− mice than in age-matched wild-type littermates
(t10 = 2.663; p = 0.0238) (Figure 2A). In contrast, we found no genotype effects for the VTA
(t10 = 1.806; p = 0.1010) or the SN (t10 = 0.385; p = 0.7084) (Figure 2B,C). To test whether
Cnr1−/− mice generally have a reduced number of LC neurons independently from their
age, we also analyzed the number of TH-positive cells in the LC in 3-month old wild-type
and Cnr1−/− mice (Figure 2D). We found no difference between the genotypes (t11 = 0.971;
p = 0.352), thus strongly indicating that the difference observed in old mice is due to an
exacerbated age-related loss of TH-positive LC neurons in Cnr1−/− mice.

Note that only groups represented on the same panels in Figure 1; Figure 2 are compa-
rable, because they were stained together in the same staining series. As staining intensity
varies between series, results are not comparable between different figures or panels.

2.2. Reduced Density of Noradrenergic Terminals in Aged Cnr1−/− Mice

We next wished to determine the density of noradrenergic terminals. For this purpose,
we analyzed the area covered by the norepinephrine transporter (NET) in wild-type and
Cnr1−/− mice across the following regions of the main output areas of the LC: parietal
cortex (Pa CTX), basolateral amygdala (BLA), mediobasal hypothalamus (Mb HY) and
CA1, CA3 and dentate gyrus (DG) regions of the hippocampus (HC) (Figure 3).
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Figure 2. Quantitative stereological analysis of the total number of tyrosine hydroxylase (TH)-positive cells in 18-month-old
Cnr1+/+ wild-type and Cnr1−/− animals within the (A) locus coeruleus, (B) substantia nigra, (C) ventral tegmental area and
(D) in 3-month-old Cnr1+/+ wild-type and Cnr1−/− animals within the locus coeruleus.* p < 0.05 according to Student´s
t-test (n = 5–7 per genotype). Dots represent single animals, columns represent mean values, error bars represent standard
error of means (SEM).

Our data show that the area covered by NET-positive signal was significantly lower
in 18-month-old Cnr1−/− mice (genotype effect: F(1,15) = 8.104; p = 0.0122) in all the target
regions (region x genotype interaction F(5,750) = 0.6898; p = 0.6327) (Figure 4).

The density of the NET-positive signal differed significantly between the target regions
(F(5,75) = 5.964; p = 0.0001), being the lowest in the Mb HY and the highest in the CA3
region of the hippocampus. There was no genotype effect in young (3-month-old) mice
(F(1,9) = 0.005; p = 0.945) and no genotype x region interaction (F(5,45)= 0.130; p = 0.985).

Importantly, we found a positive correlation between the number of TH-positive cells
and the NET-positive axon densities in both genotypes in the Pa CTX, Mb HY, CA1 and
CA3 regions: lower cell numbers were associated with reduced NET densities (Figure 5
and Table 1). Nevertheless, steady-state noradrenaline levels were not different between
the genotypes in any of the brain regions tested: Pa CTX (t10 = 0.275; p = 0.789), BLA
(t10 = 0.787; p = 0.450), Mb HY (t9 = 1.694; p = 0.125), HC (t10 = 0.776; p = 0.4554).
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Figure 4. Analysis of the density of adrenergic axon terminals are covered by NET-positive signal intensity in the parietal cortex
(Pa CTX), basolateral amygdala (BLA), mediobasal hypothalamus (Mb HY) and hippocampal cornu ammonis 1 (CA1), cornu
ammonis 3 (CA3), and dentate gyrus (DG) regions of 18-month old Cnr1+/+ and Cnr1−/− animals. N = 7–9 per genotype; Dots
represent single animals, columns represent mean values, error bars represent standard error of means (SEM).
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Figure 5. Correlation analysis between the number of tyrosine hydroxylase (TH)-positive cells and the NET signal intensity
parietal cortex (Pa CTX), basolateral amygdala (BLA), mediobasal hypothalamus (Mb HY) and hippocampal cornu ammonis
1 (HC CA1), cornu ammonis 3 (HC CA3), and dentate gyrus (HC DG) in wild-type and Cnr1−/− mice.

Table 1. Correlation analysis between the number of tyrosine hydroxylase (TH)-positive cells and the
NET-positive axon densities in the parietal cortex (Pa CTX), basolateral amygdala (BLA), mediobasal
hypothalamus (Mb HY) and hippocampal cornu ammonis 1 (HC CA1), cornu ammonis 3 (HC CA3),
and dentate gyrus (HC DG) in wild-type and Cnr1−/− mice.

Brain Area

Wild-Type Cnr1−/−

Correlation (r,
Spearman) Significance Correlation (r,

Spearman) Significance

Pa CTX 0.6399 0.0171 0.6857 0.0214

BLA 0.4502 0.0685 0.2713 0.2894

Mb HY 0.6643 0.0137 0.7682 0.0096

HC, CA1 region 0.5527 0.0345 0.8316 0.0042

HC, CA3 region 0.8863 0.0005 0.6826 0.022

HC, DG region 0.7701 0.0042 0.3857 0.1366

2.3. Enhanced Microglia Densities in the LC of Old Cnr1−/− Mice

To assess inflammatory markers within the LC of 18-month-old wild-type and Cnr1−/−

mice, we investigated the density of ionized calcium-binding adapter molecule 1 (Iba1)-
positive microglia, the level of tumor necrosis factor (TNFα) and the area covered by
glial fibrillary acidic protein (GFAP)-positive astrocytes. In Cnr1−/− animals, there was
a marked increase (+66.2%) in microglia density within the TH-positive area (t11 = 2.602;
p = 0.0246) (Figure 6A,B). However, we did not find any genotype differences in other
neuroinflammation markers: Iba1 (t192= 0.984; p = 0.326), TNFα (U = 28924; p = 0.167),
GFAP (U = 11; p = 0.914) (Figure 6C–F).
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3. Discussion

The findings from this study strongly indicate that a constitutive genetic disruption
of CB1r signaling accelerates the age-related loss of noradrenergic LC neurons in mice of
the C57BL/6J genetic background. Thus, using unbiased stereological counting now we
found less noradrenergic neurons in the LC of old C57BL/6J mice compared to young ones,
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whereas the number of dopaminergic neurons in the SN (and also in the VTA) remained
unchanged. Even though the results from similar analyses in different mouse strains were
contradictory, a reduction in noradrenergic neurons in C57BL/6J mice was also reported in
an earlier study. The authors reported an even more dramatic decline in cell numbers [27],
which may be related to the fact that they did not use a stereological technique. The
age-related loss of LC neurons was more pronounced upon deletion of the CB1 receptor
in Cnr1−/− mice. In old Cnr1−/− mice, the number of LC neurons, but not SN or VTA
neurons, was lower than in age-matched wild-type controls. This difference is not due to a
developmental effect of the CB1 receptor deletion, because there was no genotype effect
in LC neuronal numbers in young animals. Our findings are in line with the previously
reported enhanced age-related loss of hippocampal neurons in Cnr1−/− mice [34]. It is
important to note, however, that Cnr1−/− mice do not show a general decline in neuronal
numbers in old animals. Rather, they seem to be restricted to the LC and hippocampus,
which are brain areas that show neuronal loss during ageing in wild-type animals. Further
studies using multiple age groups can answer the question as to whether the reason for
the reduced LC neuronal numbers in old Cnr1−/− mice is an earlier onset of the neuronal
death or the neuronal loss being more intensive.

In general, neuronal numbers are largely preserved during ageing in most of the
brain areas, but in several regions, like in the SN [37] or in the LC [22], a significant
neuronal loss was detected in the elderly. A significant—28%—loss of SN dopaminergic
neurons was detected in mentally healthy older adults [38], whereas, in Parkinson´s disease,
the neuronal loss is much more severe (66% compared to age-matched controls) [37]. A
significant reduction in LC noradrenergic neurons is present in Alzheimer´s disease from
the early phases of the disease onward [39]. It is still not entirely clear if normal, healthy
ageing is also associated with a moderate loss of noradrenergic neurons or if symptom-free
individuals with a reduced number of LC neurons are in the prodromal, symptom-free
phase of the disease. A reduced noradrenergic signaling can contribute not only to the
pathogenesis of Alzheimer´s disease [40] but also to cognitive deficits—lower arousal,
reduced attention [11] and memory deficits [41]—that are typical in old age. Indeed, in older
individuals, locus coeruleus integrity was associated with better memory performance [42].

We also asked whether decreased neuronal number leads to a loss of noradrenergic
axons or whether with increasing arborization the remaining neurons can maintain the
original axonal network by sprouting axonal projections as observed in Alzheimer´s
disease patients [43]. Our work now suggests that, in ageing mice, lower neuronal numbers
are associated with a reduced density of noradrenergic terminals, suggesting a low level
of compensation. We noted that the reduction of NET-positive axons in the function of
TH-positive neurons in the LC is more intensive in Cnr1−/− than in Cnr1+/+ mice. We
hypothesize that, in the knockout line, the compensation is even lower (if any) than in
wild-type animals. It was previously hypothesized that LC neurons are organized into
clusters having unique efferent regions [44]. Our study now suggests that the age-related
neuronal loss affects these clusters similarly, because we found similar changes in the
density of axon terminals in the projection areas. The decreasing noradrenergic signaling in
the efferent regions leads to a decline in synaptic plasticity [45,46], which may contribute to
the deficits in learning flexibility. Indeed, in old Cnr1−/− mice where we found a reduced
number of LC neurons, the learning flexibility was also severely impaired [35].

As a possible explanation for the protective effect of CB1 receptor activity we con-
sidered its anti-inflammatory effect on glia cells. Indeed, loss of hippocampal neurons
in constitutive or GABAergic neuron specific Cnr1−/− mice [35] was associated with in-
creased pro-inflammatory glial activity. However, we found no difference in microglial
Iba1, TNFα levels or size of GFAP-positive astrocytes covered areas in the LC between old
Cnr1−/− and wild-type mice. Although microglia numbers were enhanced in Cnr1−/−

mice, which is generally interpreted as a sign of inflammation, the normal Iba1 and TNFα
levels suggest that these microglias were not more pro-inflammatory. Thus, it is unlikely
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that increased pro-inflammatory glial activity is responsible for the loss of LC neurons in
Cnr1−/− mice.

The reason why noradrenergic neurons in the locus coeruleus seem to be more vulner-
able to ageing is not fully known. It has been suggested that the combination of several
factors is responsible for the neuronal loss in this specific neuronal population: high ox-
idative stress due to the noradrenaline synthesis, high neuronal iron content, autonomous
pacemaking activity and a very high axonal arborization size [47,48]. Importantly, the
cumulative effect of these factors could eventually result in a global energetic failure [49]
and be responsible for the cell death.

There are several lines of evidence that cannabinoid system activity is neuroprotective
and influences brain ageing [50,51]. Importantly, factors contributing to the vulnerability
of LC noradrenergic neurons—increased oxidative stress, pacemaking activity, impaired
proteostasis due to the high arborization, and high load on mitochondria due to the big
energetic need—are all influenced by the cannabinoid system.

Cannabinoids are known to possess antioxidant-like properties [52] through the CB1
receptor-dependent [53] and independent mechanism [54]; therefore, the level of antioxi-
dant defense may correlate with the cannabinoid signaling activity. Cannabinoids might
also influence proteostasis in LC neurons partly by increasing lysosomal stability and
integrity [55,56] and partly by modulating mTOR signaling [57,58]. Activation of CB1
receptors on the neuronal membrane decreases firing frequency and protects against de-
pletion of energy sources, whereas activation of mitochondrial CB1 receptors decreases
mitochondria activity, thus enabling a coupling between firing activity and energy need
of the neurons [59]. Moreover, CB1r agonists decrease oxygen consumption, ROS pro-
duction [60], and oxidative phosphorylation [61], and, under cellular stress, cannabinoids
protect mitochondria [62], which together could be essential for the survival of noradrener-
gic neurons. Cellular stress resistance is largely dependent on cell metabolism and also
on mitochondrial function. The biogenesis and dynamics of mitochondria is controlled by
three major nutritional sensors: mTOR, AMPK and sirtuins [63]. Interestingly, cannabi-
noid system activity influences each of these controlling pathways. Activation of CB1
receptors upregulates mTOR signaling [57] and the activity of AMPK [64] in the brain,
and there is a mutual interaction between the cannabinoid and sirtuin signaling. These
studies and the observation that the mitochondria in neurons of Cnr1−/− mice show an
aberrant morphology [65] together suggest that CB1r on mitochondria can play a signifi-
cant role in the neuroprotective effect of cannabinoid system activity. Further experiments
are necessary to clarify whether the protective effect of cannabinoid system activity on
LC noradrenergic neurons is cell intrinsic or extrinsically mediated by CB1 receptors on
afferent neurons or on glia cells. For that, specific targeting of noradrenergic neurons
is necessary where the expression of Cre is specific to the dopamine beta hydroxylase
(DBH·)-positive noradrenergic neurons.

As a summary, we observed that there is a significant reduction in the number of
the ageing-sensitive LC noradrenergic neurons in Cnr1−/− mice. On the other hand, the
number of SN and VTA dopaminergic neurons is not influenced by ageing in wild-type
animals and also not by the genetic deletion of CB1 receptor. Therefore, we hypothesize
that the increased neuronal loss in the LC of Cnr1−/− mice is a result of an accelerated
brain ageing due to the lack of neuroprotective effect of CB1 receptor activity.

4. Materials and Methods
4.1. Animals

We used two cohorts of male mice on a congenic C57BL6/J background bred at
the animal facility of the Medical Faculty at the University of Bonn. The first cohort
contained 14 3- and 22-month-old wild-type mice, and the second cohort contained 10 3-
and 18-month-old Cnr1−/− (B6.cg Cnr1 tm1Zim) and 12 age-matched wild type littermates.
Animals were housed under a reversed light cycle in groups of 3–5 with food and water ad
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libitum. Animal experiments were approved by the Landesamt fuer Natur, Umwelt und
Verbraucherschutz Nordrhein-Westfalen (LANUV NRW; 84-02.04.2015.A265).

4.2. Tissue Preparation

The animals were deeply anesthetized with ketamine and xylazine and transcardially
perfused with ice-cold phosphate buffered saline (PBS) followed by 4% formaldehyde solu-
tion between 10 am and 2 pm. The isolated brains were post-fixed 2 h in 4% formaldehyde
solution, kept in 20% sucrose overnight for cryoprotection, snap frozen in dry ice-cooled
isopentane and stored in −80 ◦C. Afterwards, 18 µm thick coronal slices were serially
sectioned using a cryostat (CM3050 S, Leica, Wetzler, Germany) and mounted on glass
slides. Glass slides were kept at −80 ◦C until further use.

4.3. Microscopy

Frozen sections were dried for 30 min at 37 ◦C on a hot plate. After drying, the slices
were framed with a PapPen, washed in PBS and permeabilized in PBS containing 0.5%
Triton X-100 for 1 h. Nonspecific binding was blocked by incubation in PBS containing
3% bovine serum albumin (BSA, PAN Biotech, Jabalpur, India) for 2 h. Next, slices were
incubated overnight at 4 ◦C with the primary antibody: sheep anti-TH (1:1000, Abcam,
Cambridge, UK), mouse anti-TNFα (1:100, Abcam, Cambridge, UK) rabbit anti-Iba1 (1:2000,
Wako, Osaka, Japan) or chicken anti-GFAP (1:300, Abcam, Cambridge, UK) diluted in PBS
containing 0.5% BSA and 0.05% Triton X-100. Afterwards, slides were washed three
times in PBS, followed by incubation with the respective secondary antibody (AF488
anti-sheep, AF647 anti-mouse, AF647 and AF568 anti-rabbit and AF647 anti-chicken, all
1:1000 all from Life Technologies, Darmstadt, Germany) in PBS containing 0.5% BSA
and 0.05% Triton X-100 for 2 h. Then, slides were washed in PBS, briefly immersed in
MilliQ water, mounted with 4’,6-diamidino-2-phenylindole (DAPI, Southern Biotecnology
Associates, Birmingham, AL, USA) and covered and stored at 4 ◦C. For the NET staining,
TBS instead of PBS has been used and the slices were subjected to antigen retrieval with
citrate buffer for 20 min at 65 ◦C. The primary antibody (rabbit anti-NET, 1:2000, Synaptic
Systems, Gottingen, Germany) and the secondary antibody (AF647 anti-rabbit, 1:1000, Life
Technologies, Darmstadt, Germany) were also diluted in TBS containing 3% BSA and 10%
donkey/goat serum. Images were obtained with an LSM SP8 confocal microscope (Leica,
Wetzler, Germany).

For light microscopy, the processing of the tissues was identical, but we used biotiny-
lated donkey anti-sheep secondary antibody (1:500, Abcam, Cambridge, UK) as a. Slides
were incubated with ABC-reagent (Vectastain, Vector Laboratories, CA, USA) for 30 min
and immersed in 0.5 mg/mL diaminobenzidine (DAB) and 0.5 mg/mL NH4Ni-Sulphate
in 50 mM Tris pH 7.3. The reaction was started with H2O2 and stopped by washing the
slides in 50 mM Tris. Subsequently, slides were rinsed in MilliQ water and dehydrated
with serial incubations in solutions with increasing concentrations of ethanol and xylol.
The slices were mounted with Roti Histokitt II mounting medium (Carl Roth GmbH, Karl-
sruhe, Germany), covered and stored at 4 ◦C. Images were obtained with Axio Imager M2
microscope (Zeiss, Oberkochen, Germany) with 20 x objective lens.

For the stereological quantification of TH-positive cells, every 4th slice of the region
of interest was collected for a total of 8–10 slices per sample. Then, we stained for TH
immunoreactivity. The total number of TH-positive neurons in both hemispheres was
estimated manually using the plugin cell counter from Fiji software (Ver. 2.1.0/1.53c, NIH,
Bethesda, MD, USA).

Iba1 and TNFα signal intensities were analyzed within the Iba1-positive microglia
within the LC in both hemispheres using Fiji software. GFAP staining was analyzed as the
percentage of GFAP-covered area in the LC.

The density of NET-positive axons (as % area covered by NET-positive signal) was
analyzed in the parietal cortex, basolateral amygdala, CA1, CA3 and dentate gyrus regions
of the hippocampus and in the mediobasal hypothalamus in both hemispheres.
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4.4. Determination of Noradrenaline Levels

Noradrenaline levels were quantified in regions representing the main output areas
(hippocampus, basolateral amygdala, parietal cortex, mediobasal hypothalamus) of LC
in 18-month-old male Cnr1+/+ and Cnr1−/− mice. Mice were deeply anaesthetized by
isoflurane inhalation and transcardially perfused with ice-cold PBS. Brains were quickly
removed and stored at –80 ◦C until analysis. Brain regions of interest were isolated using
the punch technique from both hemispheres of the frozen brain tissue and homogenized
on ice in 0.01 N HCl, 0.15 mM EDTA and 4 mM sodium metabisulfite. Protein concentra-
tion was quantified using the Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific,
Waltham, MA, USA). Quantification of noradrenaline was performed using the Mouse/Rat
Noradrenaline (Norepinephrine) ELISA Assay Kit (Eagle Biosciences, Inc., Amherst, NH,
USA). For extraction, 40 µg of protein per sample were used in a total volume of 400 µL.
Extracted samples were eluted in 250 µL 0.025 M HCl and split into 100 µL duplicates for
the subsequent enzyme and ELISA procedure. A total of 20 µL of standards and controls
were extracted in a total volume of 400 µL and processed in duplicates.

4.5. Statistics

The number of the animals or samples is indicated in the figure legends. All the data
are presented as means ± SEM and statistical analysis was done using the Prism software
(Ver. 9.0.0., GraphPad Software, San Diego, CA, USA) Data distribution was analyzed
using the D’Agostino and Pearson normality test. Statistical significance was determined
by Student t-test, Mann–Whitney test or 2-way ANOVA. Significant outliers were identified
and excluded by using Grubb’s test.
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CB1r cannabinoid receptor type-1
Cnr1−/− cannabinoid 1 receptor knockout
GFAP glial fibrillary acidic protein
Iba1 ionized calcium-binding adapter molecule 1
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NE noradrenaline
NET noradrenaline transporter
SN substantia nigra
TH tyrosine hydroxylase
TNFα tumor necrosis factorα
VTA ventral tegmental area
Pa CTX parietal cortex
BLA basolateral amygdala
Mb HY mediobasal hypothalamus
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CA1 cornu ammonis 1
CA3 cornu ammonis 3
DG dentate gyrus
mTOR mechanistic target of rapamycin
AMPK 5’ adenosine monophosphate-activated protein kinase
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