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Abstract: Different neuromodulatory systems are involved in long-term energy balance and body
weight and, among these, evidence shows that the endocannabinoid system, in particular the
activation of type-1 cannabinoid receptor, plays a key role. We here review current literature focusing
on the role of the gene encoding type-1 cannabinoid receptors in the CNS and on the modulation of
its expression by food intake and specific eating behaviors. We point out the importance to further
investigate how environmental cues might have a role in the development of obesity as well as eating
disorders through the transcriptional regulation of this gene in order to prevent or to treat these
pathologies.

Keywords: type-1 cannabinoid receptor gene; transcriptional regulation; food intake; eating behaviors

1. Central Regulation of Food Intake and the Role of Cannabinoid Receptor Type-1

Food intake might be considered the integration of humoral and neuronal signals
processed by the nervous system for the balance of energy and of sensory cues, as well as of
the motivational and emotional state of an individual. Thus, different eating behaviors are
finely driven by both homeostatic and hedonic signals, whose functions may vary between
individuals according to previous experiences and/or epigenetic variations [1–7].

Homeostatic and hedonic central circuitries are interconnected, in fact feeding behav-
iors are affected by brain regions classically viewed as mainly involved in homeostatic
feeding; however, these are also influenced by brain corticolimbic and hedonic areas, and
vice versa [8,9]. The homeostatic feeding will be terminated once the organism is repleted
with energy and nutrients, while hedonic feeding might continue. An imbalance toward
the hedonic aspect of feeding without restriction may provoke changes in the food intake
with serious consequences on the weight gain/loss [10,11].

The hypothalamus (HYP) is the center for the integration and control of essential
bodily functions, such as circadian rhythm, body temperature and plasma-osmolarity,
and traditionally recognized as the main brain region regulating food intake. It regulates
feeding as a function of caloric and nutritional requirements, by sensing macronutrients
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and through the action of circulating regulatory hormones, neuropeptides and neuromod-
ulators, such as leptin, cholecystokinin, ghrelin, orexin/hypocretin, insulin, neuropeptide
Y, and notably lipid signals like endocannabinoids [12–15]. The imbalance in hypothalamic
function may provoke an altered food intake, potentially leading to eating disorders (EDs)
and obesity [16–18].

Besides HYP, several limbic brain areas including ventral tegmental area, nucleus
accumbens (NAc), amygdala, and hippocampus, as well as cortical brain regions, have also
been implicated in the hedonic aspects of feeding [19–21].

Studies on the role played by the reward circuits in defining hedonic aspects of
feeding allowed to define how common mechanisms are shared by drug abuse and food
addiction [22–24]. Both are compulsive behavioral disorders that induce alterations in brain
mechanisms underlying synaptic plasticity and energy homeostasis, showing common
vulnerabilities and pathophysiological aspects [25].

Among the different neuromodulatory systems involved in long-term energy balance
and body weight regulation, many preclinical and clinical evidence show the key role of the
endocannabinoid system (ECS) [26], and in particular, the activation of type-1 cannabinoid
receptors (CB1R) [27,28].

Indeed, several preclinical studies show that orexigenic stimuli induce CB1R activation
in the rat brain, specifically in the HYP [29,30] where CB1R positive neurons are present
in different nuclei [31], although at low density [32], and support a role in food and
energy balance [33–36]. Brain reward pathways are largely responsible for processing
information related to the motivation, expectation, and pursuit of pleasurable experiences,
and CB1R signaling was reported to modulate dopaminergic signaling in the ventral
tegmental area and NAc to control hedonic eating [37–40]. CB1R signaling also plays a
role in the functional activity of caudal brainstem nuclei: parabrachial nucleus, nucleus
of the solitary tract, and dorsal motor nucleus of the vagus nerve. Herein, CB1R mainly
controls food preferences, e.g., digestion of fat rich palatable food [37]. Several experimental
findings already pointed to CB1R as therapeutic target to treat altered feeding behavior
and obesity [30,34,41,42], due to the hyperphagic role of this receptor, and the possible
exploitation of its pharmacological blockade, as recently reviewed [43]. It should be
recalled that rimonabant, a CB1R antagonist/inverse agonist [44], entered the European
mass market, showing weight loss benefits but it was soon withdrawn due to the significant
side effects [45]. Here, we focused mainly on the role of type-1 Cannabinoid Receptor
gene (CNR1) gene, which encodes for CB1R, and its regulation in food intake and eating
behaviors.

2. CNR1 Gene

CB1R is one of the most abundant seven transmembrane G protein-coupled receptor
of the class A [46]. It is prominently expressed in the central nervous system (CNS) [47] and
has attracted great attention as a modulator of different brain functions including appetite,
fear, anxiety and pain [48–50]. The ECS, as a whole, is comprised of (1) the endocannabi-
noids (eCBs) anandamide (N-arachidonoyl-ethanolamine) and 2-arachidonoylglycerol,
which are physiological ligands for cannabinoid and non-cannabinoid receptors; (2) the
cannabinoid receptors and non-cannabinoid receptors, such as transient receptor potential
vanilloid 1 channels [51,52]; and (3) enzymes responsible for the biosynthesis and hydroly-
sis of eCBs. Biosynthetic routes are mediated by N-acylphosphatidylethanolamines-specific
phospholipase D, diacylglycerol lipase, phosphoinositide-specific PLC and lyso-PLC, while
termination of eCB signaling is terminated through the action of purported transmem-
brane transporters, followed by hydrolysis by fatty acid amide hydrolase (FAAH) and
monoacylglycerol lipase [50].

CB1R was first cloned in 1990 and was immediately recognized as the receptor respon-
sible for the effects of marijuana on CNS; it was also reported to be more responsive to
psychoactive than non-psychoactive cannabinoids [53]. CB1R is encoded by CNR1 gene,
and consists of 472 amino acids in humans, and 473 amino acids in rats and mice, with



Int. J. Mol. Sci. 2021, 22, 398 3 of 16

97–99% amino acid sequence identity among them [54] (Figure 1). CNR1 gene is located on
human chromosome 6q14–15 [55] and its gene sequence is composed of four exons, with
exon 4 containing the entire protein coding region.

Figure 1. Schematic representation of human(A), rat (B) and mouse (C) CNR1 gene, with their cromosomial locations.

Also, in mice and rats the coding region of CNR1 is contained within a single exon.
However, the 5′ untranslated region (5′-UTR) and promoter structures differ between
mice and humans [56,57], and these structures are not described in rats [58]. Alternative
splicing of portions outside the coding region yields six different 5′-UTR splicing variants.
In addition, it appears that multiple transcription starting sites exist within the first 60
base pairs (bp) of the first exon [59]. Three CNR1 coding region variants for CB1R protein
isoforms have been identified in humans and non-human primates: (1) the intronless 472
amino acid-long protein, the one known as CB1R, (2) the 411 amino acid-long protein,
marked as CB1Ra and (3) the 439 amino acid-long protein, marked as CB1Rb [60–62].
Some evidence indicated that CB1Ra may also be expressed in the rat brain [59]. Several
natural polymorphisms of the human gene have been identified, associated with different
responsiveness to cannabinoids [57,63–67]. Alternative splice variants have also been
reported, including the canonical long form expressed predominantly in the brain and
skeletal muscle and two isoforms with shorter N-terminus, one of which is highly expressed
in the liver and pancreatic islet cells where it is involved in metabolic processes [62,68,69].
CB1R displays conserved spatial distribution in the CNS among different mammalian
species [70]. In the brain, the majority of CB1R expressing cells are neurons. In the cortex
and in the hippocampus high CB1R expressing cells are GABAergic neurons, whereas
glutamatergic principal neurons express CB1Rs on a lower level [71], while glial cells and
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astrocytes exhibit only the marginal expression [72,73]. Localization of CB1R in the brain,
correlated with its role in the control of motor function, analgesia, cognition and memory,
is abundant in the cortex, hippocampus, basal ganglia nuclei and cerebellum [46,74–77].
CB1R is also expressed in peripheral tissues like heart, uterus, testis, liver and small
intestine, as well as in immune cells [78–80] and adipose tissue [81]. In a model of insulin
resistance, CNR1 gene was identified as one of the genes with the greatest increase in
expression in adipose tissue [82].

2.1. CNR1 Gene in the Control of Energy Homeostasis and Obesity

Circuits in the HYP regulate appetite and energy homeostasis [83] and a key role
is played by hypothalamic CB1R signaling intertwined with the pathways of metabolic
hormones. In fact, for instance, the reduced hypothalamic eCB levels are associated with
appetite suppression by leptin [26], while the increased hypothalamic eCB levels are
correlated with orexigenic actions of ghrelin, with the involvement of the activation of
AMP-activated protein kinase and the inhibition of paraventricular neurons [84].

Using mice lacking CNR1 gene, it has been documented that eCBs actions on food
intake and body weight depend on the functional expression and activity of CB1R [85].
In this work, Cota and colleagues demonstrated that germline deletion of CNR1 in male
mice resulted in a phenotype characterized by decreased body weight, reduced fat mass,
and hypophagia. Moreover, the study highlighted that CNR1 mRNA is co-expressed in the
HYP with neuropeptides known to modulate food intake [85].

A significantly reduction in body weight was also reported in mice, where CNR1 gene
expression was selectively deleted in the HYP, after 9 weeks of viral-mediated deletion. This
effect, without any changes in food intake, suggested an increase in energy expenditure [86].
Further, adult mice, in which CNR1 gene was deleted in adipocytes, resulted to be protected
from diet-induced obesity and associated with metabolic alterations [87].

Again, conditional mutant mice, with CNR1 deletion in forebrain and sympathetic
neurons, known to control energy balance, are resistant to diet-induced obesity and display
a lean phenotype [88].

Moreover, the relevant role of CB1R in the initiation of milk suckling in pups has been
observed [89,90] and, in particular, CNR1-knock-out (KO) newborns did not ingest milk on
the first day of life, significantly affecting their survival rate [90].

Furthermore, central dysregulation of CNR1 gene expression has been documented
in animal models of obesity in different brain areas, implicated in both homeostatic and
hedonic aspects of eating [91–93].

In particular, the exposure to a palatable diet resulted in tissue and sex-specific changes
in the gene expression of both CB1R and type-2 cannabinoid receptor (CB2R) in the HYP of
offspring and adults. These results clearly indicate that the maternal diet has long-term
effects on the development of pups through multiple alterations of signaling homeostatic
pathways that include cannabinoid receptors [93].

Gamelin and colleagues (2016) found in the hippocampus of rats, fed with High
Fat Diet (HFD), an increase in the CNR1 mRNA expression compared to rats fed with
standard diet. The up-regulation of hippocampal CNR1 expression was increased with
exercise training combined with HFD. Indeed, chronic exercise did not appear to counteract
ECS overactivation and, in fact, seems even to induce this effect independently from diet.
Moreover, the authors showed that CNR1 expression in the HYP is not affected by HFD in
rats [91].

It was also reported, in rats exposed to HFD, the reduction in CB1R binding sites in
extrahypothalamic brain regions and CB1R density was related to the intake of palatable
food, whereas no changes have been observed in the HYP [94]. This does not exclude
transient changes in CB1R levels or CNR1 expression over time. Indeed, a transient increase
in mouse hypothalamic CB1R density, after 3 weeks of HFD, was normalized at the end
of the 20 weeks of HFD, suggesting a temporal CB1R alteration during the development
of obesity [95]. A temporal transcriptional regulation of CNR1 gene was also proved
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in the HYP of rats exposed to diet-induced obesity. The analysis of ECS components
gene expression revealed a significant and selective increase in CNR1 mRNA levels at the
beginning of obesity development (5 weeks on HFD) as well as after 21 weeks of exposure,
when the phenotype was already well-established. Moreover, a consistent selective and
significant reduction in DNA methylation at specific Cytosine–phosphate–Guanine (CpG)
sites of CNR1 gene promoter in overweight rats was observed just after 5 weeks, but not
21 weeks on HFD [92].

In the same study, the DNA methylation status of CNR1 gene was assessed in pe-
ripheral blood mononuclear cells from a subset of obese human subjects. An age-based
stratification of DNA methylation levels showed a significant reduction of the epigenetic
hallmark at CNR1 promoter in younger (<30 years old) humans with obesity, when com-
pared to age-matching controls. These findings suggest that the regulation of CNR1 gene is
altered mainly at early life stage of phenotype development [92].

Considering other epigenetic modifications possibly occurring in the development of
obesity, recently a hypothalamic increase in histone acetylation was reported at CNR1 gene
promoter and was linked to increased receptor expression [96]. Almeida and colleagues
hypothesized that maternal fat enriched diet would up-regulate CNR1 mRNA levels in the
HYP of the male offspring at birth [96].

These latter findings support the relevance of environment and lifestyle in the facilita-
tion of diseases progression, including obesity, by engaging epigenetic mechanisms [97], and
in meantime could represent an innovative field to produce new strategies of intervention.

Genetic studies have identified several polymorphisms at different locations across
the CNR1 gene that have been associated with obesity and related phenotypes, such as
metabolic syndrome and dyslipidemia [98–106].

Among others, particular attention has been focused on a silent intragenic biallelic
polymorphism in codon 435 of CNR1 gene, substitution of G to A at nucleotide position
1359 (1359 G/A rs1049353) [107]. This Single Nucleotide Polymorphism (SNP) was re-
ported to be associated with abdominal adiposity [108], Body Mass Index (BMI) [109],
intermuscular fat mass [110], and longitudinal changes from healthy to metabolic syn-
drome occurrence [111]. However, the literature has been inconsistent with respect to
CNR1 polymorphisms and obesity-related markers, with many studies not finding any
relevant association with CNR1 gene variants [112–114].

2.2. CNR1 Gene in Eating Disorders

EDs, defined in the Diagnostic and Statistical Manual of Mental Disorders (DSM)-
V [115], represent a group of conditions characterized by abnormal appetite and eating
patterns, accompanied with other physiological as well as psychological disturbances.

The principal mechanisms implicated in the etiology of EDs involve dysregulation of
neuronal circuits regulating homeostatic and hedonic aspects of food intake, thus including
the ECS signaling.

Candidate gene association studies revealed the association of ECS genes SNPs in
EDs. Specific genetic variants of CNR1, again rs1049353, as well as FAAH genes were
identified in individuals with Anorexia Nervosa (AN) and Bulimia Nervosa (BN) [116],
even if an earlier study failed to find associations of the same SNPs in a different AN
population [114]. Although CNR1 rs1049353 is synonymous or silent, thus, not altering
the amino acid sequence of the protein, Monteleone et al. suggested that it might have
functional effects by changing mRNA stability or translation as already proposed for other
SNPs [117]. Moreover, rs1049353 was found associated with lower BMI with unexplained
heterogeneity within the human cohort [107].

A microsatellite polymorphism, namely an AAT (adenine-adenine-thymine) trinu-
cleotide short tandem repeat (AAT)n, is present at CNR1 gene downstream the transla-
tion site [57]. It is known that microsatellites might affect transcription efficacy in some
genes [118]. This AAT trinucleotide repeat has been found to be associated with restricting
and bingeing/purging AN [119].
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CNR1 KO mice display significant body weight loss under standard diet, a resistance
to the obesogenic effects of the HFD and a reduced food intake on both diet regimens [120]
further supporting the specific association of CNR1 gene with hypophagia [121,122]. Fur-
thermore, preclinical studies in the Activity-based anorexia (ABA) rat model, found a
reduced density of CB1Rs in lateral HYP and dental gyrus of the hippocampus [123] and,
consistently, it was recently reported the reduction in CNR1 gene expression in HYP as
well as NAc in ABA rats [124]. It has been suggested that the decrease in CB1R density
might be driven by the decrease in eCBs that are necessary for receptor expression [125].
However, others reported increased CB1R availability in ABA rats [126], as well as in
AN [127,128] and BN patients [128]. Gerard et al. suggested that in AN, this might act
as compensatory mechanisms to chronically hypoactive ECS. Interestingly, short-term
starvation increased hypothalamic 2-arachidonoylglycerol concentration in animals [129],
whereas a long-term food-restriction (12 days protocol in mice) resulted in whole brain
decrease of 2-arachidonoylglycerol [130]. There might occur adaptive strategies for coping
with short- and long-lasting food deprivation, as elevated eCB levels might be beneficial
to promote food seeking behavior in short term, while down-regulation of this orexigenic
signal and reduction of appetite and motivation to eat may aid survival in the conditions
of prolonged starvation [131]. Thus, the down-regulation of CNR1 gene expression might
be a compensation for a purported reduced sensitivity of the receptor or a physiological
consequence of up-regulated eCBs in these disorders [132]. Following to that, a recent
study reported that CB1R availability was inversely associated with BMI in homeostatic
brain regions of HYP and brainstem both in ED patients and healthy controls, while in
the mesolimbic reward system (amygdala, insula, midbrain, striatum, and orbitofrontal
cortex), negative correlation was found only in EDs patients [133]. The ECS deviations in
homeostatic brain regions most likely present compensatory mechanism aimed at restoring
energy balance, while alterations in brain areas implicated in motivation and reward may
reflect disordered hedonic eating behavior observed in AN patients.

Endocannabinoids are also implicated in psychiatric comorbidities common in AN,
such as anxiety and depression. Chronic stress, anxiety and depression exhibit CB1R
deficiency and reduced CB1R-mediated signaling [134,135], while blockade or genetic
deletion of CB1Rs has anxiogenic properties [136]. Furthermore, depression in human
patients has been linked with several polymorphisms in the CNR1 gene [117,137,138].

The environment, both independently and in interaction with heritable factors, plays
a relevant role in the onset of EDs and may influence gene expression via epigenetic
mechanisms [139].

A possible transcriptional regulation of CNR1 gene, through DNA methylation of its
promoter, was investigated in two animal models of AN (one behavioral and one genetic),
in order to gain insight on players involved in AN onset and development [124].

More specifically, as an environmental model, it has been used the ABA model,
through which rats are exposed to a restricted feeding schedule combined with physical
activity, by giving them free access to a running wheel; a “combo” able to induce to a
reduction in food intake, dramatic body weight loss and hyperactivity [140–142].

The major outcome of the above-mentioned study is that, among genes of the ECS,
the expression of only CNR1 gene resulted to be altered in the ABA group and selectively
in the HYP and in the NAc. Moreover, epigenetic analysis on the CNR1 gene promoter
showed a consistent and significant increase of DNA methylation in the NAc; whereas,
no changes of the epigenetic mark occurred at the earliest time-point (3 days induction) in
the same area, nor in the HYP at neither time-points. Moreover, a significant correlation
between body weight and both CNR1 expression and DNA methylation was reported.
No changes were instead observed in the genetic model of AN, the anx/anx mice [143].
This let the authors to suggest that the selective molecular alterations reported in the ABA
model were due to environmental cues (i.e., food restriction and physical activity), and not
driven by a genetic predisposition.
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In this respect, we would like to point out that we recently analyzed the transcriptional
regulation of CNR1 gene in a small population of subjects with restricted eating habits,
mainly resembling AN feature [144]. Recruited subjects were females (n = 9) selected based
on the age (18 to 65 years old, excluding pregnant women and people with known genetic
mutations) and BMI (BMI ≥18.5–<25 for normal weight subjects with restricted eating
habits, BMI <18.5–≥17 for mild malnutrition, BMI <17–≥16 moderate malnutrition, BMI
<16–≥15 severe malnutrition and BMI <15 extreme malnutrition), with healthy subjects
(n = 21) included as controls. Preliminary findings indicate that, in addition to food restric-
tion, other environmental cues seem to be necessary to alter, in saliva, CNR1 gene DNA
methylation patterns, that we analyzed by pyrosequencing as previously described [92]
(see Figure 2A for details of the sequence under investigation). These additional environ-
mental inputs include abnormally high levels of physical activity, previously experienced
stressful events and/or dieting history. Among the 5 CpG sites under study at CNR1 gene,
we have observed the most pronounced methylation differences at CpG site 4 (Figure 2B)
(unpublished data ref [144]). Moreover, we identified retinoid X receptor alpha (RXR-α) as
the transcription factor (TF) that binds this CpG site. Retinoic acid receptors (RAR) form
heterodimers with RXR exerting a broad range of biological effects. For instance, RARs
are involved in CB1R up-regulation in both alcohol- and HFD-induced fatty liver and in
mediating CB1R expression evoked by eCBs [145]. Moreover, the same CpG site 4 binds an-
other TF, glucocorticoid receptor alpha (GRα), well known for its implication in metabolic
conditions of obesity and diabetes and psychiatric illnesses [146]. Agonistic actions on the
GR promote fat deposition and central adiposity with adverse metabolic profile, including
hyperglycemia, insulin resistance, dyslipidemia and hypertension, observed both in animal
models and in human subjects [147,148]. Finally, a synthetic GC was shown to up-regulate
peripheral CNR1 expression, suggesting it is involved in GR-regulated lipolysis making it
an attractive drug target in type 2 diabetes and dyslipidemia [149].

Defects in the endocannabinoid signaling, mediated primarily by CB1R, have been
also implicated in development of binge eating disorder (BED), characterized by recurrent
episodes of binge eating, with no compensatory behaviors to prevent weight gain, such
as vomiting or laxative abuse [150]; therefore, obese individuals are the most commonly
affected by BED [151]. CB1R antagonist/inverse agonist rimonabant has been demonstrated
to decrease binge eating behavior in female rats by reducing the consumption of the
HFD binged, with the accompanying significant body weight loss [152]. It has been also
recently demonstrated that female rats under dietary-induced binge eating show a modified
central eCB tone in several brain areas within the mesocorticolimbic system, which is the
principal neural pathway that drives hedonic eating, as well as reduced CB1R density
in the prefrontal cortex, probably related to the development and maintenance of this
behavior [153]. Moreover, CB1R-dependent positive reinforcement appears responsible
for maintenance of excessive food intake upon withdrawal [154]. With regards to genetic
variants, specific allele has been associated with bingeing/purging AN, but not restricting
subtype of AN [115], while several polymorphisms in CNR1 gene as well as FAAH gene
have been associated with addiction and binge-drinking [155–158]. Recently, the study of
ECS components transcriptional regulation [159] in a rat model of binge-like eating showed
altered levels of just FAAH gene in the HYP of binge-eating group. BED also has a complex
multifactorial etiology, with both genetic and environmental factors implicated [160].
Evidence on the epigenetic of CNR1 gene in BED are scarce: one report showed a reduced
DNA methylation in CNR1 gene promoter in the prefrontal cortex of eating addicted-
like animals, correlated with an elevated expression of CB1R protein in the same brain
region [161]. More recently, a crucial role of glutamatergic CNR1 gene has been proposed as
part of the regulatory mechanisms of relevance in the loss of inhibitory control for palatable
food seeking and consumption [162].
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Figure 2. (A) Representation of human CNR1 gene and sequence of CpG islands (human GRcH38:
crh 6:88165719-88165820) studied for DNA methylation. Flanking sequences are marked in black,
UTRs in dark gray, coding regions in light gray, introns in white and CpG islands in lined pattern.
Position of ATG, TSS and exons are also reported. Bold text indicates the CpG sites analyzed; framed
CG indicates the CpG site number 4. (B) DNA methylation status at the CpG site number 4 in the
sequence of the human CNR1 gene under study in food-restricted subjects stratified based on the
co-occurrence of different environmental factors. The bars represent the mean of the % of DNA
methylation ± the SEM in the different subgroups. Significant differences are indicated as * p < 0.05
vs. Control [144].

3. Conclusions

The ECS is a constitutive signaling system that plays a critical role in energy home-
ostasis by promoting consumption of palatable food, stimulating fat mass expansion and
inhibiting energy expenditure and thermogenesis. Via CB1R, eCBs modulate homeostatic
and rewarding neural circuitries, and regulates consequently eating behaviors and energy
balance, according to food availability: activation of eCB signaling is favorable when access
to food is restricted, whereas it promotes obesity and metabolic diseases when food is
abundant. Engagement of ECS occurs in conjunction with other metabolic signals, particu-
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larly leptin, that act synergistically through their specific neuronal pathways to maintain
body energy homeostasis. We provided an overview of the role of CNR1 gene in EDs and
obesity, in order to further stimulate the challenging idea that the modulation of CNR1
gene transcriptional regulation might represent a promising approach to prevent or to treat
these pathologies, in addition to existing pharmacological interventions on CB1R [103].
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BN Bulimia Nervosa
AAT Adenine-Adenine-Thymine
ABA Activity-Based Anorexia
RXR Retinoid X Receptor
TF Transcription Factor
RAR Retinoic Acid Receptors
GR Glucocorticoid Receptor
BED Binge Eating Disorder
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