u	FGF-2LMWko	FGF-2HMWko	FGF-2HMWtg	FGF-2LMWtg
trai	(FGF-2tm2Doe)	(FGF-2tm3Doe)	Overexpressed human 24 kDa driven by	Overexpressed rat 18 kDa driven by RSV
S			PGK promoter	promoter
Ischemia-reperfusion injury models	 ⑦ (ex vivo) ↑ phosphorylated JNK, MKK4, MKK7 and c-Jun protein level ↓ recovery of contractile heart function partly improved by inhibition of the JNK pathway ↑ apoptosis (caspase 3 and TUNEL+ cells) after DMSO treatment (Liao, Porter et al. 2007)[1] 	 C ?? Precovery of contractile and diastolic function (Liao, Bodmer et al. 2010)[2] C ?? Postischemic recovery of contractile function levels of phosphorylated PKCα at ischemia levels of myofilament PKCδ in ischemia phosphorylation of troponin I and T in ischemia and early reperfusion levels of phosphorylated PKCε at early reperfusion activity of actomyosin MgATPase in reperfusion levels of myofilament PKCε after reperfusion PKCα dependent myofilament sensitivity against calcium 	 ⑦ (ex vivo) ↓ recovery of contractile and relaxation function (Liao, Bodmer et al. 2010)[2] 	 ⑦ (ex vivo) ↑ myocyte viability (↓ LDH activity) after reperfusion (Sheikh, Sontag et al., 2000)[4]
		FGF-2 ^{tm3Doe} x PKCαko ↓ cardioprotection ↑ systolic and diastolic dysfunction ↑ amount of PKCε expression (Manning, Perkins et al. 2013)[3]		
of y	🗗 following treatment	🗗 following treatment		
erenol model c hypertroph	↑ fibrosis ↑ Col1 and α-SMA protein level 9 following treatment	↑ but attenuated cardiac hypertrophy (↑ H/B ratio) ↓ fibrosis ↑ α-SMA and ANF expression		
rote dia	↑ but attenuated cardiac hypoplasia (↓ H/B ratio)	I following treatment		
sop car	(Nusayr, Sadideen et al. 2013)[5]	\downarrow cardiac hypertrophy		
-		(Nusayr, Sadideen et al. 2013)[5]		
ıbicin f acute injury		ଙ୍କ ଓ following treatment Sex independent cardioprotection (no changes in		
		any echocardiographic parameters or Bnip3 protein		
xor lel c liac		level)		
Do moc		(Koleini, Santiago et al. 2019)[6]		

Supplement Table <u>S1</u>. Evaluation of male (**G**) and female (**Q**) FGF-2 isoform-specific mouse mutants in ischemic-reperfusion injury, isoproterenol model of cardiac hypertrophy and doxorubicin model of acute cardiac injury. Results were displayed as increased (†) or decreased (‡) for either FGF-2 isoform-specific ko mice (FGF-2LMWko and FGF-2HMWko), or mice additionally overexpressing rat FGF-2LMW (FGF-2LMWtg) or human 24 kDa FGF-2HMWtg) compared to wildtype littermates.

α-SMA, α-smooth-muscle actin; ANF, atrial natriuretic factor; Col1a1, type 1 collagen; DMSO, dimethyl sulfoxid; FGF-2, fibroblast growth factor 2; JNK, c-Jun N-terminal kinase; ko, knock out; H/B, heart to body weight ratio; HMW, high molecular weight; LDH, lactate dehydrogenase; LWW, low molecular weight; MAPK, mitogen activated protein kinase; MKK, Mitogen-activated protein kinase kinase; PKC, protein kinase C; TUNEL, TdT-mediated dUTP-biotin nick end labeling; +, positive.

ч	FGF-2LMWko	FGF-2HMWko	FGF-2HMWtg	FGF-2LMWtg
trai	(FGF-2 ^{tm2Doe})	(FGF-2 ^{tm3Doe})	Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter	Overexpressed human 18 kDa driven by
s				Col3.6 promoter
Phenotype Strain	FGF-2LMWko (FGF-2 ^{tm2Doe}) ↓ vertebral bone mineral density and content ↑ sFRP1 protein levels in trabecular bones (Xiao, Liu et al. 2009)[7]	 FGF-2HMWko (FGF-2^{Im3Doe}) ⁶ ⁷ ↑ whole body bone mineral density and content ↑ vertebral, femoral bone mineral density and content ↑ femoral bone volume, trabecular thickness, number (cortical bone area, thickness, cortical mask) ↓ femoral trabecular spacing ↑ connective tissue density ↓ cortical porosity, bone resorption (↓ osteoclast surface, number) ↑ bone formation in cortical periosteum, trabecular bone (↑ osteoblast surface, inter-label thickness, mineral apposition rate) ↑ tibial <i>Col1a1</i>, <i>Runx2</i>, <i>osterix</i>, <i>oc</i>, <i>op</i>, <i>Dmp1</i> gene expression ↓ serum sclerostin, protein levels ↓ tibial <i>Fgf-2</i>, <i>Fgf-23</i> gene expression (Homer-Bouthiette, Doetschman et al. 2014)[8]	FGF-2HMWtg Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter <i>G</i> ² dwarfism, osteomalacia ↓ body weight ↓ whole body bone mineral density and content ↓ femoral bone length ↓ vertebral volume, bone mineral density and content ↓ femoral bone volume, trabecular number, thickness ↑ femoral trabecular spacing ↑ bone resorption (↑ osteoclast surface, number) ↓ bone formation (↓ osteoblast, mineralization surface, bone formation rate) ↓ tibial <i>Col1a1, Oc</i> gene expression ↑ tibial <i>Op, Mgp</i> gene expression ↓ serum phosphate ↑ serum PTH, CTX, FGF-23 ↑ tibial, femoral <i>Fgf-23, Phex</i> gene expression ↑ renal <i>Fgfr-1c, Fgfr-3c, Klotho</i> gene expression ♥ serum phosphate to a normal level ↑ serum FGF-23 (Xiao, Naganawa et al. 2010)[9] € ² ↓ whole body bone mineral density and content ↓ femoral, tibia, vertebral bone mineral density and content ↓ serum phopshate ↑ serum FGF-23, PTH ↑ renal <i>Fgfr-3c</i> gene expression ↑ renal <i>Fgfr-3c</i> gene mineral density and content ↓ serum phopshate ↑	 FGF-2LMWtg Overexpressed human 18 kDa driven by Col3.6 promoter
			 ↑ serum FGF-23, PTH ↑ renal <i>Fgfr-3c</i> gene expression ↑ renal FGFR-1, FGFR-3, Klotho, C-Fos, activated ERK protein levels ↑ renal <i>Klotho, cFos, egr1</i> gene expression ↓ renal <i>Npt2</i> gene expression ↑ renal <i>Cyp24, Cyp27b1</i> gene expression ↓ renal Npt2 protein levels 	
			(Du, Xiao et al. 2017)[10]	

c	FGF-2LMWko	FGF-2HMWko	FGF-2HMWtg	FGF-2LMWtg
Strai	(FGF-2 ^{tm2Doe})	(FGF-2 ^{tm3Doe})	Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter	Overexpressed human 18 kDa driven by
Phenotype			 dwarfism body weight, tail length whole body bone mineral density and content femoral bone mineral density, length vertebral bone mineral density serum FGF-23, PTH urinary phosphate level renal <i>Npt2</i> gene expression renal Klotho, activated renal ERK protein levels cortical porosity, trabecular spacing, osteoid volume cortical thickness, tissue endosteal/periosteal perimeter, subendosteal area mineralization of cortical bone area, metaphyseal cancellous bone volume, trabecular number osteoclast number, surface femoral <i>Fgfr-3c, Pthr1, Op, Fgf23, Mgp</i> gene expression (Xiao, Du et al. 2017)[12] body weight femoral, tibial, vertebral bone mineral density and content serum phosphate serum FGF-23, 1,25D urinary phosphate level renal <i>Klotho, Sostdc-1, En-1, Cyp24</i> gene expression activated renal ERK, Gsk-3β (Tr216) protein levels renal <i>Npt2, Akt</i> gene expression activated renal Gsk-3β (Ser9), active β-catenin and Akt protein levels (Du, Xiao et al. 2016)[13] 	Col3.6 promoter

я	FGF-2LMWko	FGF-2HMWko	FGF-2HMWtg	FGF-2LMWtg
rai	(FGF-2 ^{tm2Doe})	(FGF-2 ^{tm3Doe})	Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter	Overexpressed human 18 kDa driven by
S				Col3.6 promoter
			8	
			↓ body weight	
			↓ femoral, vertebral bone mineral density and content	
			↓ femur length, cortical density, mineral apposition rate	
			↑ cortical porosity	
			↓ femoral bone volume, trabecular number	
			↑ femoral trabecular spacing	
			↑ osteoid volume	
			↑ serum FGF-23, ALP	
			↓ serum phosphate, TNAP	
			↓ TNAP activity in osteocytes	
			↑ renal <i>Fgfr-1c, Fgfr-3</i> gene expression	
			\downarrow renal <i>Npt2a</i> gene expression	
			↑ tibia Fgf-2, Fgfr-1c, Col1a1, Mgp, Dmp4, Phex, Mepe, Enpp1, SLc20a1	
			gene expression	
			↓ tibia <i>Dmp1</i> , <i>Rankl</i> , <i>Oc</i> gene expression	
			↑ femur cortical ERK, FGFR-1 protein levels	
			(Xiao, Homer-Bouthiette et al. 2018)[14]	

Supplement table S2A. Extensive characterization of the bone related phenotype of adult FGF-2 isoform-specific mouse mutants in chronological order. All data of either FGF-2LMWko, FGF-2HMWko or mice additionally overexpressing human FGF-2LMW (FGF-2HMWtg) or FGF-2HMWtg) were listed as increased (†) or decreased (‡) compared to wt littermates. Whenever possible results were separated for male (③) and female (③) mice.

1,25D, 1,25-dihydroxyvitamin D; ALP, alkaline phosphatase; Col1a1, Type I collagen; CTX, c-terminal telopeptide of type 1 collagen; Cyp24, renal 25-hydroxyvitamin D 24-hydroxylase; Cyp27b1, renal 25hydroxyvitamin D 1alpha-hydroxylase; Dmp, Dentin matrix phosphoprotein; Egr-1, early growth response-1 transcription factor; En-1, Engrailed-1; Enpp1, Ectonucleotide pyrophosphatase/phosphodiesterase family member 1; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; Gsk3β, Glycogen Synthase Kinase 3 Beta; HMW, high molecular weight; knock out; LWW, low molecular weight; Mepe, Matrix extracellular phosphoglycoprotein; Mgp, Matrix gla protein; Npt2, sodium phosphate co transporter; Oc, Osteocalcin; Op, Osteopontin; Phex, Phosphate-regulating neutral endopeptidase; PTH, Parathyroid hormone; PTHR1, parathyroid hormone 1 receptor; Runx2, runt-related transcription factor 2; sFRP-1, secreted frizzled receptor 1; Slc20a1, Sodium-dependent phosphate transporter 1; Sost, sclerostin; Sostdc-1, Sclerostin domain-containing-1; tg, transgene; TNAP, tissue nonspecific alkaline phosphatase.

c	FGF-2LMWko	FGF-2HMWko	FGF-2HMWtg	FGF-2LMWtg
rai	(FGF-2 ^{tm2Doe})	(FGF-2 ^{tm3Doe})	Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter	Overexpressed human 18 kDa driven
St				by Col3.6 promoter
	₫ <u>₿</u>	\$ Q	ୢୢୖ୶	J
	↑ OA in knee joints (flattening of tibial	no radiographical signs of OA in knee	↑ OA in knee joints (flattening of tibial plateau, osteophyte formation,	no radiographical signs of OA in knee
	plateau, osteophyte formation)	joints	femoral subchondral bone thinning, sclerotic bone development,	joints
	۲. F	,	narrowing of the patellofemoral space, loss of trabeculae, sclerosis of	(Meo Burt, Xiao et al. 2016)[16]
	↓ femoral, tibial bone volume, trabecular	œ	femur)	
	number, thickness	↑ activated FGFR-3 protein levels in	\downarrow epiphyseal bone volume density, trabecular thickness, number in	
	↑ femoral, tibial trabecular spacing	knees	femur, tibiae	
	↓ proteoglycan content, cartilage	↓ FGF-2 protein levels in articular	\downarrow proteoglycan content, cartilage thickness in knee joint	
	thickness in knee joint	cartilage	↑ <i>MMP13, Col10, ADAMTS-5</i> gene expression in articular cartilages	
	↑ tendonitis, arthritis	(Burt, Xiao et al. 2019)[15]	\uparrow <i>Igf1, IL-1β, Bmp2, Bmp4, Hif1α, Bax, Sox9, Vegf</i> gene expression in knee	
	↑ MMP-13, ADAMTS-5, FGF-2, FGF-23,		joints	
	FGFR-1 protein levels in articular		↑ FGF-23, FGFR-1 protein levels in knee joints	
	cartilages		↓ mineralization of hypertrophic chondrocytes	
	↑ Igf1, IL-1β, Bmp4, Hif1α, Bax, Fgf-2, Fgf-		(Meo Burt, Xiao et al. 2016)[16]	
	23, Fgfr-3 Vegf, Col10 gene expression		ଟ	
iti	in knee joints		\downarrow Sost, Dkk1, Lrp6 gene expression in knee joints	
rth	↑ activated ERK protein levels in		\uparrow <i>Wnt5a, Axin2, Lef1</i> gene expression in knee joints	
eoa	articular cartilage		↓ Sost, Lrp6 protein levels in knee joints	
Dst	↓ activated FGFR-3 in articular cartilage		\uparrow Wnt7b, Wnt5a, Lrp5, Axin2, Gsk-3β, Let1, nuclear β-catenin protein	
)/ ^g l	a signs of OA following tibial loading		levels in knee joints	
Bin	(loss of proteoglycan content, thinning		(Mag Burt, Vinge, Minges, 2018)[17]	
A	(Burt Xiao et al 2019)[15]			
			€ Stime of ΩA in lunce is into (flattening of tibic) alstern setemberts	
			formation sclerocis)	
			femoral tibial hone volume trabecular number thickness	
			proteoglycane content, cartilage thickness in knee joints	
			↑ cartilage calcification in knee cartilage	
			ି ଜ	
			↑ Fofr-1c, Fof-18, Col10, Mmn13 gene expression in knee joints	
			\downarrow Fgfr-3c gene expression in knee joints	
			↑ FGF-2, FGF-23, FGFR-1 protein level in subchondral bone	
			↑ MMP13, SOX9, ADAMTS-5 protein level in articular cartilages	
			↓ Dkk1 Lrp6, Sost protein levels in articular cartilage	
			↑ Wnt7b, Lrp5, Gsk-3β, active β-catenin, AXIN2 protein levels in	
			articular cartilage	
			(Xiao, Williams et al. 2020)[18]	

Supplement table <u>S2B</u>. Extensive characterization of the bone related phenotype developed through aging of FGF-2 isoform-specific male () and female () mouse mutants. All alterations through aging were listed for FGF-2LMWko, FGF-2LMWko, FGF-2LMWkg or FGF-2HMWtg mouse mutants given as increased () or decreased () compared to wt littermates

Adamts5, A disintegrin metalloproteinase with thrombospondin motifs 5; Bax, B-cell lymphoma 2 associated X, apoptosis regulator; BMP, Bone morphogenetic protein ; Col10, type 10 collagen; Dkk1, Dickkopf-Like Protein 1; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; Gsk3β, Glycogen Synthase Kinase 3 Beta; Hif1α, hypoxia inducible factor 1; HMW, high molecular weight; IL-1β, interleukin-1 β; Igf1, insulin like growth factor 1; ko, knock out; Lef1, Lymphoid Enhancer Binding Factor 1; LWW, low molecular weight; Lrp, low density lipoprotein receptor-related protein; Mmp, Matrix metallopeptidase; OA, Osteoarthritis; Sox9, Sex-determining region Y box 9; Sost, sclerostin; tg, transgene; Vegf, vascular endothelial growth factor; Wnt, wingless-type.

Strain	FGF-2LMWtg Overexpressed human 18 kDa driven by Col3.6 promoter
Fracture healing	G ² calvarial defect model 1 healing of calvaria defect 2 bone volume, formation 1 healing after BMP-2 addition additional BMP-2 treatment: 1 bone volume, mineral apposition rate 1 healing of calvaria defects 1 Fgf-2, Bmp-2, Fgfr-1, Fgfr-2, Runx2, osterix, Oc, Lrp5, Wht10b, β-catenin gene expression in calvaria bone (Xiao, Ueno et al. 2014)[11] Q closed tibial fracture model 1 tibial fracture callus expansion 1 fracture callus expansion 1 fracture callus stepolatist, osteocytes Fgf-1 gene expression in callus osteoblasts, osteocytes Fgf-1 gene, protein expression in fracture healing process 1 Fgfr-1, Fgfr-3 mRNA earlier through fracture healing process 2 Sox9 gene, protein expression in fracture callus 2 Col2a1 gene, protein expression in fracture callus 1 Col10, Mmp9 gene, protein expression in fracture callus 1 Col10, Mmp9 gene, protein expression earlier through fracture healing process 1 Vegf mRNA, protein in bone marrow 1 Trap, cathepsin gene, protein expression peaked earlier in osteoclasts, chondroclasts 1 Kunz2, osterix, Oc gene, protein expression peaked earlier in periosteum, osteoblasts
	(Hurley, Adams et al. 2016)[19]

Supplement table <u>S2C</u>. Evaluation of FGF-2LMWtg mice different models of fracture healing. Male (\mathfrak{F}) and female (\mathfrak{P}) mice were analyzed and results were displayed as increased (\uparrow) or decreased (\downarrow) compared to wt littermates.

BMP, Bone morphogenetic protein; Col, collagen; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; LWW, low molecular weight; Lrp, low density lipoprotein receptor-related protein; Mmp, Matrix metallopeptidase; Oc, Osteocalcin; Pdgf, Platelet-derived growth factor; Runx2, runtrelated transcription factor 2; Sox9, Sex-determining region Y box 9; Trap, tartrate resistant acid phosphatase; Vegf, vascular endothelial growth factor; Wnt, wingless-type.

Strain	FGF-2HMWtg Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter	
	Short-term treatment	Long-term treatment
FGF-23 antibody treatment	<pre></pre>	<pre></pre>

Supplement table <u>S2CS2D</u>. Effects following FGF-23 antibody treatment in male (③) and female (③) FGF-2HMWtg mice. All measurements were conducted 24 hours following single injection (short-term treatment) of a FGF23 neutralizing antibody (10 mg/kg) or after repeated treatments with the same dosage over six weeks (long-term treatment). Results were shown as increased (↑) or decreased (↓) compared to vehicle treated littermates.

1,25D, 1,25-dihydroxyvitamin D; ALP, alkaline phosphatase; Col10, Type 10 collagen; Cyp24, renal 25-hydroxyvitamin D 24-hydroxylase; Cyp27b1, renal 25-hydroxyvitamin D 1alphahydroxylase; Dmp, Dentin matrix phosphoprotein; Egr-1, early growth response-1 transcription factor; En-1, Engrailed-1; Enpp1, Ectonucleotide pyrophosphatase/phosphodiesterase family member 1; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; HMW, high molecular weight; knock out; LWW, low molecular weight; Mepe, Matrix extracellular phosphoglycoprotein; Mmp, Matrix metallopeptidase; Npt2, sodium phosphate co transporter; Oc, Osteocalcin; Op, Osteopontin; Phex, Phosphate-regulating neutral endopeptidase; PTH, Parathyroid hormone; Runx2, runt-related transcription factor 2; Slc20a1, Sodium-dependent phosphate transporter 1; tg, transgene; TNAP, tissue nonspecific alkaline phosphatase.

Strain	FGF-2HMWtg Overexpressed human 22, 23, 24 kDa driven by Col3.6 promoter		
	Short-term treatment	Long-term treatment	
FGFR Inhibitor NVP-BGJ398	9 ↓ renal FGFR-1, Sostdc-1, En-1, klotho protein levels ↓ activated renal ERK, β-catenin, Gsk-3b (Tyr216) protein levels ↑ renal Npt2a gene expression, protein levels ↑ renal Cyb24, Akt, b-catenin, Cyp27b1 gene expression ↓ renal Sostdc-1, En-1 gene expression ↑ serum phosphate, PTH, 1,25D, FGF-23, Klotho ↓ urinary phosphate (Du, Xiao et al. 2016)[13]	\$\circ\$ \$\circ\$ dwarfism \$\circ\$ body weight \$\circ\$ tail length, femoral trabecular thickness, density \$\circ\$ femoral <i>Fgfr-3c</i> gene expression \$\circ\$ femoral <i>Fgfr-3c</i> , <i>Mepe</i> , <i>Op</i> , <i>Dmp1</i> , <i>Bsp</i> , <i>Pthr1</i> gene expression \$\circ\$ femoral <i>Fgfr-1c</i> , <i>Mepe</i> , <i>Op</i> , <i>Dmp1</i> , <i>Bsp</i> , <i>Pthr1</i> gene expression \$\circ\$ femoral <i>Fgfr-1c</i> , <i>Mepe</i> , <i>Op</i> , <i>Dmp1</i> , <i>Bsp</i> , <i>Pthr1</i> gene expression \$\circ\$ femoral <i>expression</i> \$\circ\$ femoral agrowth of femoral plates, trabecular spacing \$\body bone formation rate, osteoblast activity \$\circ\$ femoral osteoclast number, surface \$\circ\$ integrity of femoral cortical bone \$\circ\$ endosteal, periosteal perimeter, subendosteal area \$\circ\$ cortical thickness, tissue \$\circ\$ activated renal Npt2 protein levels \$\circ\$ activated renal Npt2 protein levels \$\circ\$ activated renal ERK protein levels \$\circ\$ actilage thickness in knee joint \$\circ\$ actilage thickness in knee joint \$\circ\$ cartilage thickness in knee joint \$\circ\$ cartilage calcification in knee joint \$\circ\$ trabecular thickness, bone volume \$\circ\$ <i>Mmp13</i> , <i>Sox9</i> , <i>ADAMTS-5</i> gene expression in articular cartilages \$\circ\$ <i>Kapp-3</i> , gene expression in knees	

Supplement table $\underline{S2DS2E}$. Effects following administration of the FGFR inhibitor NVP-BGJ398 in male () and female () FGF-2HMWtg mice. All measurements were conducted 24 hours following single oral administration of the FGFR inhibitor NVP-BGJ398 with 50 mg/kg (short-term treatment) or following daily subcutaneous injection of the same antibody (2 mg/kg) for at least six weeks (long-term treatment). Results were shown as increased (\uparrow) or decreased (\downarrow) compared to vehicle treated littermates.

1,25D, 1,25-dihydroxyvitamin D; ALP, alkaline phosphatase; Bsp, bone sialoprotein; Col10, Type 10 collagen; Cyp24, renal 25-hydroxyvitamin D 24-hydroxylase; Cyp27b1, renal 25hydroxyvitamin D 1alpha-hydroxylase; Dkk1, Dickkopf-Like Protein 1; Dmp, Dentin matrix phosphoprotein; Egr-1, early growth response-1 transcription factor; En-1, Engrailed-1; Enpp1, Ectonucleotide pyrophosphatase/phosphodiesterase family member 1; FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor; Gsk3β, Glycogen Synthase Kinase 3 Beta; HMW, high molecular weight; knock out; LWW, low molecular weight; Mepe, Matrix extracellular phosphoglycoprotein; Mmp, Matrix metallopeptidase; Npt2, sodium phosphate co transporter; Oc, Osteocalcin; Op, Osteopontin; Phex, Phosphate-regulating neutral endopeptidase; PTH, Parathyroid hormone; Pthr1, parathyroid hormone 1 receptor; Runx2, runt-related transcription factor 2; Slc20a1, Sodium-dependent phosphate transporter 1; Sost, sclerostin; tg, transgene; TNAP, tissue nonspecific alkaline phosphatase; Wnt, wingless-type.

- 1. Liao, S.; Porter, D.; Scott, A.; Newman, G.; Doetschman, T.; Schultz Jel, J. The cardioprotective effect of the low molecular weight isoform of fibroblast growth factor-2: the role of JNK signaling. J. Mol. Cell. Cardiol. 2007, 42, 106-120, doi:10.1016/j.yjmcc.2006.10.005.
- 2. Liao, S.; Bodmer, J.R.; Azhar, M.; Newman, G.; Coffin, J.D.; Doetschman, T.; Schultz Jel, J. The influence of FGF2 high molecular weight (HMW) isoforms in the development of cardiac ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2010, 48, 1245-1254, doi:10.1016/j.yjmcc.2010.01.014.
- 3. Manning, J.R.; Perkins, S.O.; Sinclair, E.A.; Gao, X.; Zhang, Y.; Newman, G.; Pyle, W.G.; Schultz Jel, J. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction. *Am J Physiol Heart Circ Physiol* **2013**, *304*, H1382-1396, doi:10.1152/ajpheart.00613.2012.
- 4. Sheikh, F.; Sontag, D.P.; Fandrich, R.R.; Kardami, E.; Cattini, P.A. Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. *Am J Physiol Heart Circ Physiol* **2001**, *280*, H1039-1050, doi:10.1152/ajpheart.2001.280.3.H1039.
- 5. Nusayr, E.; Sadideen, D.T.; Doetschman, T. FGF2 modulates cardiac remodeling in an isoform- and sex-specific manner. *Physiol Rep* 2013, 1, doi:10.1002/phy2.88.
- 6. Koleini, N.; Santiago, J.J.; Nickel, B.E.; Sequiera, G.L.; Wang, J.; Fandrich, R.R.; Jassal, D.S.; Dhingra, S.; Kirshenbaum, L.A.; Cattini, P.A., et al. Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. *Am J Physiol Heart Circ Physiol* **2019**, *316*, H279-H288, doi:10.1152/ajpheart.00587.2018.
- 7. Xiao, L.; Liu, P.; Li, X.; Doetschman, T.; Coffin, J.D.; Drissi, H.; Hurley, M.M. Exported 18-kDa isoform of fibroblast growth factor-2 is a critical determinant of bone mass in mice. *J Biol Chem* **2009**, *284*, 3170-3182, doi:10.1074/jbc.M804900200.
- 8. Homer-Bouthiette, C.; Doetschman, T.; Xiao, L.; Hurley, M.M. Knockout of nuclear high molecular weight FGF2 isoforms in mice modulates bone and phosphate homeostasis. *J Biol Chem* **2014**, *289*, 36303-36314, doi:10.1074/jbc.M114.619569.
- 9. Xiao, L.; Naganawa, T.; Lorenzo, J.; Carpenter, T.O.; Coffin, J.D.; Hurley, M.M. Nuclear isoforms of fibroblast growth factor 2 are novel inducers of hypophosphatemia via modulation of FGF23 and KLOTHO. J Biol Chem 2010, 285, 2834-2846, doi:10.1074/jbc.M109.030577.
- 10. Du, E.; Xiao, L.; Hurley, M.M. FGF23 Neutralizing Antibody Ameliorates Hypophosphatemia and Impaired FGF Receptor Signaling in Kidneys of HMWFGF2 Transgenic Mice. *J Cell Physiol* **2017**, *232*, 610-616, doi:10.1002/jcp.25458.
- 11. Xiao, L.; Ueno, D.; Catros, S.; Homer-Bouthiette, C.; Charles, L.; Kuhn, L.; Hurley, M.M. Fibroblast growth factor-2 isoform (low molecular weight/18 kDa) overexpression in preosteoblast cells promotes bone regeneration in critical size calvarial defects in male mice. *Endocrinology* **2014**, *155*, 965-974, doi:10.1210/en.2013-1919.
- 12. Xiao, L.; Du, E.; Homer-Bouthiette, C.; Hurley, M.M. Inhibition of FGFR Signaling Partially Rescues Hypophosphatemic Rickets in HMWFGF2 Tg Male Mice. *Endocrinology* **2017**, *158*, 3629-3646, doi:10.1210/en.2016-1617.
- 13. Du, E.; Xiao, L.; Hurley, M.M. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice. *J Cell Biochem* **2016**, *117*, 1991-2000, doi:10.1002/jcb.25493.
- 14. Xiao, L.; Homer-Bouthiette, C.; Hurley, M.M. FGF23 Neutralizing Antibody Partially Improves Bone Mineralization Defect of HMWFGF2 Isoforms in Transgenic Female Mice. J. Bone Miner. Res. 2018, 33, 1347-1361, doi:10.1002/jbmr.3417.
- 15. Burt, P.M.; Xiao, L.; Doetschman, T.; Hurley, M.M. Ablation of low-molecular-weight FGF2 isoform accelerates murine osteoarthritis while loss of high-molecular-weight FGF2 isoforms offers protection. *J Cell Physiol* **2019**, *234*, 4418-4431, doi:10.1002/jcp.27230.
- 16. Meo Burt, P.; Xiao, L.; Dealy, C.; Fisher, M.C.; Hurley, M.M. FGF2 High Molecular Weight Isoforms Contribute to Osteoarthropathy in Male Mice. *Endocrinology* **2016**, *157*, 4602-4614, doi:10.1210/en.2016-1548.
- 17. Meo Burt, P.; Xiao, L.; Hurley, M.M. FGF23 Regulates Wnt/beta-Catenin Signaling-Mediated Osteoarthritis in Mice Overexpressing High-Molecular-Weight FGF2. *Endocrinology* **2018**, *159*, 2386-2396, doi:10.1210/en.2018-00184.
- 18. Xiao, L.; Williams, D.; Hurley, M.M. Inhibition of FGFR Signaling Partially Rescues Osteoarthritis in Mice Overexpressing High Molecular Weight FGF2 Isoforms. *Endocrinology* **2020**, *161*, doi:10.1210/endocr/bqz016.
- 19. Hurley, M.M.; Adams, D.J.; Wang, L.; Jiang, X.; Burt, P.M.; Du, E.; Xiao, L. Accelerated fracture healing in transgenic mice overexpressing an anabolic isoform of fibroblast growth factor 2. *J Cell Biochem* **2016**, *117*, 599-611, doi:10.1002/jcb.25308.