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Abstract: For decades, the aryl hydrocarbon receptor (AHR) was studied for its role in environmental
chemical toxicity i.e., as a quirk of nature and a mediator of unintended consequences of human
pollution. During that period, it was not certain that the AHR had a “normal” physiological function.
However, the ongoing accumulation of data from an ever-expanding variety of studies on cancer,
cancer immunity, autoimmunity, organ development, and other areas bears witness to a staggering
array of AHR-controlled normal and pathological activities. The objective of this review is to discuss
how the AHR has gone from a likely contributor to genotoxic environmental carcinogen-induced
cancer to a master regulator of malignant cell progression and cancer aggression. Particular focus
is placed on the association between AHR activity and poor cancer outcomes, feedback loops that
control chronic AHR activity in cancer, and the role of chronically active AHR in driving cancer cell
invasion, migration, cancer stem cell characteristics, and survival.

Keywords: aryl hydrocarbon receptor; AHR; kynurenine pathway; cancer

1. The First Hints of a Role for the AHR in Cancer: Carcinogenic Environmental
AHR Ligands

Using environmental chemicals as probes, a hydroxylase “inducer” was first dis-
covered by Poland and Glover in 1973 in what may have been one of the most im-
portant discoveries in toxicology [1–3]. By 1974, it was known that mice of disparate
genetic backgrounds exhibited different sensitivities to the environmental chemical 2,3,7,8-
tetrachlorodibenzo(p)dioxin (TCDD) and that these differences were likely due to poly-
morphisms in this unidentified “induction” receptor [4–6]. With mounting evidence that
TCDD is a type 1 carcinogen in animals and humans [7,8] came the realization that the
carcinogenicity of at least some environmental chemicals might not require mutagenesis
but might be by this postulated receptor. With the biochemical purification in 1988 of the
aryl hydrocarbon receptor (AHR) [9], the sequencing in 1991 of the AHR’s highly conserved
N-terminal sequence [10], and the cloning of the AHR gene in 1992 [11,12], came a better
understanding of the AHR’s environmental ligand reactivity and its contribution to the
induction of hydroxylases that generate mutagenic intermediates. In that vein, a variety
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of environmental chemicals, including polycyclic aromatic hydrocarbons (PAHs) [13–15],
aromatic amines [16], and non-ortho-substituted planar polychlorinated biphenyls (e.g.,
PCBs-118, PCB-156, PCB-126) [17–19], were shown to act largely through the AHR, in some
cases through ligand-induced, AHR-mediated transcriptional up-regulation of cytochrome
P450 Phase 1 hydroxylases (CYP1A1, CYP1A2, CYP1B1) and biotransformation of the par-
ent pro-carcinogen into mutagenic epoxide intermediates [20–26]. As would be predicted
from this understanding of AHR activity, mice lacking these hydroxylases were shown to
have a lower incidence of malignant lymphomas and other tumors induced, for example,
by PAH [27–29]. Notably, it could have been worse. Functional changes in the AHR during
human evolution resulted in lower reactivity to PAH, relative to non-human primates, and
thereby lower sensitivity to toxic PAHs present in smoke while retaining sensitivity to
biologically important nontoxic endogenous AHR ligands [30].

These findings provided a ready explanation for the association between the AHR
and cancer. That is, nominally “resting” AHR was seen to be activated by environmental
chemicals to induce Phase 1 P450 hydroxylases that generate mutagenic intermediates
from the pro-carcinogen parent compounds or from some endogenous substrates (e.g.,
estradiol or polyunsaturated fats [31–33]). These intermediates mutate DNA and initiate
cancer. As uncomplicated and attractive as that theory was, it still did not account for the
carcinogenicity of TCDD, a non-genotoxic AHR ligand, or for the AHR-driven induction
of a growing list of genes unrelated to chemical metabolism but clearly related to cancer
(see Sections 6.1–6.4). In addition, the seminal demonstration that the AHR is highly
conserved throughout evolution [34–36] argued for some important function(s) for the
AHR in normal cell physiology. Colloquially speaking, if starfish, sea urchins, arthropods,
nematodes, mollusks, and fish express AHR homologues (as reviewed in [37,38]), then
the AHR must be doing something important in mammals. Since many critical cellular
functions in mammals were first identified in the setting of cancer in which malignant cells
compromise these cellular functions, often by exaggerating them (e.g., growth, survival,
migration), it should come as no surprise that some “nominal” AHR functions were first
identified in the cancer context.

2. AHR Transcriptional Signaling

As summarized in a comprehensive review on AHR signaling [39], the AHR is a
basic Helix-Loop-Helix-Per/ARNT/Sim (bHLH-PAS) family member and its canonical
transcriptional AHR signaling pathway began to be defined in the early 1990s (Figure 1).
During that period, “latent” AHR was shown to be confined to the cytoplasm and to exist
in a complex with pp60 Src [40], Immunophilin-like Ah Receptor-interacting Protein (AIP)
(also known as Hepatitis B virus X-associated Protein 2 (XAP2) [41]), two molecules of
HSP90 [42], and the HSP90 co-chaperone, p23 [43]. Both HSP90 and p23 protect the AHR
from degradation [44]. Furthermore, HSP90 blocks nuclear translocation and represses
DNA binding [45]. Ligand binding to the PAS A and PAS B domains exposes a protein
kinase C target site, the phosphorylation of which effects conformational changes and
subsequent translocation of the complex to the nucleus. In the nucleus, HSP90, p23, and
pp60 Src are released and the ligand-bound AHR complexes are released with the aryl
hydrocarbon nuclear translocator (ARNT), first described in 1992 [46]. Domains within the
AHR responsible for ARNT binding were identified in 1994 [47]. The C’ terminus of the
AHR/ARNT heterodimer then binds to promoters bearing Aryl Hydrocarbon Response El-
ements (AHREs), also known as Xenobiotic Responses Elements (XREs) [48], and recruits a
variety of co-activators including NCoA-2 and p/CIP [49]. Most transcriptionally-mediated
AHR activities have been attributed to AHR binding to a consensus AHRE, 5′-(C)GCGTG-
3′ [50]. However, alternative AHR complexes and corresponding DNA binding sites have
been identified and are likely to be important in physiological AHR functions [51]. In this
vein, the AHR can bind to the NF-κB subunits RelA [52] and RelB [53] and to KLF6 [54],
enabling the AHR complex to bind to non-canonical “alternative” DNA binding sites. The
AHR also signals through its binding to other receptors or transcription factors including,
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but not limited to, the estrogen receptor [55,56], E2F1 [57], Rb [58], and c-Maf [59]. Further-
more, the AHR contributes to intracellular signaling through non-transcriptional pathways.
For example, the AHR associates with tissue factor (TF), preventing its degradation and
enhancing thrombosis [60,61]. The AHR may also signal though its associated Src ki-
nase [40,62–64] or through E3 ubiquitin ligase activity [65,66]. It is likely that this diversity
of AHR-associated proteins, along with differential cofactor recruitment [67], is responsible
for the extraordinary variety of AHR responses to a galaxy of endogenous, microbial,
dietary, and environmental ligands (reviewed in [68]). Indeed, “normal” physiological
AHR activity is involved in oocyte development [69,70], oculomotor development [71],
blood vessel development [72,73], cardiomyocyte development [74–76], hematopoietic
stem cell development [77,78], development of the intestinal immune system and the gut
epithelial barrier [79], UVB repair responses in skin [80], and the development and function
of a variety of immune cells (reviewed in [56,68,81]).
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NF-κB subunits, KLF6, or potentially other proteins bind to hybrid (AHRE/NFκB sites) or alternative DNA sequences to 
activate different sets of AHR responsive genes). CYP1B1 degrades at least some endogenous and exogenous AHR ligands 
in a negative feedback loop. The AHR complex can also induce IDO1/2 and/or TDO dioxygenases, which metabolize 
tryptophan into endogenous AHR ligands including, but not limited to, Kyn (kynurenine), in a positive feedback loop 
(see Section 5). Distinct sets of genes are activated by different AHR ligands, likely a result of differential co-factor recruit-
ment. The AHR also functions through non-transcriptional pathways not represented here. 

3. Circumstantial Evidence: High AHR Expression in Many Cancers 
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Figure 1. The Transcriptional AHR Signaling Pathway. Cytoplasmic aryl hydrocarbon receptor (AHR) exists in a complex
with HSP90, Immunophilin-like Ah Receptor-interacting Protein (AIP), p23, and Src 40. Once engaged with exogenous
or endogenous ligands, the AHR sheds AIP and Src and translocates to the nucleus. In the nucleus the AHR dimerizes
with the Aryl Hydrocarbon Nuclear Translocator (ARNT), binds to consensus Aryl Hydrocarbon Response Elements
(AHREs), recruits coactivators, and transactivates a battery of genes including the hydroxylases CYP1B1 and CYP1A1,
which metabolize some environmental AHR ligands into mutagenic epoxide intermediates. (Alternative AHR complexes
containing NF-κB subunits, KLF6, or potentially other proteins bind to hybrid (AHRE/NFκB sites) or alternative DNA
sequences to activate different sets of AHR responsive genes). CYP1B1 degrades at least some endogenous and exogenous
AHR ligands in a negative feedback loop. The AHR complex can also induce IDO1/2 and/or TDO dioxygenases, which
metabolize tryptophan into endogenous AHR ligands including, but not limited to, Kyn (kynurenine), in a positive feedback
loop (see Section 5). Distinct sets of genes are activated by different AHR ligands, likely a result of differential co-factor
recruitment. The AHR also functions through non-transcriptional pathways not represented here.

3. Circumstantial Evidence: High AHR Expression in Many Cancers

Suspicions that the AHR plays some key role(s) in cancer arose from pioneering
studies demonstrating dramatically increased AHR expression in numerous cancer sub-
types, including Hodgkin’s lymphoma and chronic lymphocytic leukemia [82], adult T-cell
leukemia [83], and cancers of the breast [52,56,84,85], head and neck [86,87], brain [88–90],
kidney [91], lung [92,93], pancreas [94], and GI tract [95–98]. Increased AHR expression is
so consistent in some tumor types that it has been proposed as a prognostic marker [91,99].
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The demonstration that both malignant cells and stromal or fibroblast-like cells within the
tumor microenvironment (TME) express high AHR levels, as first shown in 2000 [85] and
later confirmed [100], suggested that the influence of the AHR in cancer may not be limited
to acute induction of mutagenic intermediates and that the contribution of the AHR to
cancer progression in the TME, as with most things AHR, may be complex and ongoing.

4. Evidence Builds: An Association between Chronic “Constitutive” AHR Activity
and Cancer Patient Outcomes

In addition to being hyper-expressed in some malignant cells, the AHR was shown,
as early as 2000 [85], to be “constitutively active” in adult T cell leukemias [83] and can-
cers of the stomach [101,102], liver [103,104], prostate [105], head and neck [86,87,106],
breast [100,107–109], brain [88,90], and skin [110,111]. The use of the term “constitutive”
in this context reflected the field’s former lack of understanding about endogenous lig-
ands in the tumor, and not the absence of chronic production of endogenous ligands
(see Section 5.1). As illustrated in Figure 2, this AHR activity is readily identified by
nuclear AHR localization in bladder [112], cervical [113], brain [114], pancreatic [115],
head and neck squamous [116], lung adeno [117], lung squamous [117] and skin [118]
carcinomas. Increased nuclear AHR localization was positively correlated with a higher
tumor grade, more poorly differentiated cells, and/or poor prognosis in prostate, oral,
and breast cancers [99,105,106,119,120], suggesting that the AHR may be contributing to
increasing cancer aggression.
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As would be expected, high AHR expression and activity was usually, although not
always [87], correlated with up-regulated CYP1A1 and/or CYP1B1 in cancers of the GI tract,
bladder, head and neck, and breast [84,106,119,121–123]. Studies in the 1990s suggested
that activated AHR, in at least some cancers, predominantly induced CYP1B1 rather
than CYP1A1 transcription [84,93,124–126], an outcome that could reflect the contribution
of distinct AHR-associated proteins such as the AHR interacting protein (AIP) [127] or
differential recruitment of co-activators. Indeed, AHR-driven CYP1B1 was proposed as
a universal tumor marker that could be immunologically targeted with CYP1B1-derived
peptide vaccines [128–131]. While AHR levels frequently correlated with increased tumor
aggression [119], AHR levels per se were understood to not necessarily represent levels
of AHR activity. To illustrate this point here, we developed a biomarker set of genes



Int. J. Mol. Sci. 2021, 22, 387 5 of 22

regulated by the AHR in cancer by transcriptional profiling triple negative MDA-MB-
231 breast cancer cells and triple negative SUM149 inflammatory breast cancer cells after
CRISPR/Cas9-mediated AHR deletion (Figure 3a) and correlated the set of genes down-
regulated in both knockouts with patient survival. Using a q value (FDR adjusted p value)
of ≤0.05 as a cutoff, we demonstrated that 644 genes were significantly down-regulated in
both cell types as compared with matched cells transduced with Cas9 without a guide RNA
(“Cas9 controls”) (Supplementary Table S1) (Figure 3b). Using this set of AHR-regulated
genes as a biomarker set, Gene Set Variation Analysis (GSVA) [132] was used to test the
association between the AHR biomarker set and patient survival using multiple TCGA
data sets for the eight cancers shown in Figure 2, all of which express nuclear AHR. Higher
expression in human cancers of the genes down-regulated by AHR knockout (i.e., those
driven by baseline AHR activity) significantly correlated with poorer survival in all eight
cancer types (Figure 3c). These new results add support to the hypothesis that increased
AHR activity plays an important role in tumor aggression.
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Figure 3. A 644 AHR-driven gene signature correlates with survival in eight human cancers. (a) Top: Western blotting for
AHR protein in AHR knockout (KO), wildtype (WT) or Cas9 control SUM149 triple negative inflammatory human breast
cancer cells or MDA-MB-231 triple negative human breast cancer cells. Bottom: Quantification of β-actin normalized band
densities. Data are presented as means + SE from three independent experiments. No significant differences (ns) were found
between WT and Cas9 (transfected with Cas9 but not guide RNA) control cells. **** p <0.00001 compared to WT or Cas9
controls. (b) Affymetrix whole human genome microarrays were used to determine transcriptional profiles of Cas9 control
or AHR knockout SUM149 or MDA-MB-231 cells. Genes differentially expressed upon AHR knockout were identified
across cell types. A significant decrease after AHR knockout was defined as an adjusted false discovery rate (q value) of
≤0.05. (c) The 644 AHR-driven gene signature in “b” was correlated with survival for the eight cancers in Figure 1 using
TCGA data and Gene Set Variation Analysis (129).
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5. Regulators of AHR Activity
5.1. An AHR Amplification Loop: A Possible Driver of “Constitutively Active” AHR

The demonstration of chronic AHR activity in a variety of cancers begged the ques-
tion of what was persistently driving the AHR in the TME. While a limited number of
rare AHR polymorphisms were identified, none appeared to play a key role in human
cancer [133–135]. Historically, therefore, it has been assumed that the malignant cell itself
and/or other cells in the TME produce endogenous AHR ligands that drive chronic AHR
activity. Over time, various AHR ligands, including several members of the tryptophan
metabolite pathway, were shown to be produced by malignant cells. For example, kynure-
nine (Kyn), a tryptophan metabolite in the dominant kynurenine pathway, was shown to be
produced by breast, head and neck, and brain (glioblastoma) cancers at levels sufficient to
activate the AHR (e.g., ~90 µM) [88,90,108] (Figure 4, black font). Note that Kyn should be
considered to be an AHR ligand as well as a surrogate for downstream metabolites/AHR
ligands, such as kynurenic acid [136], xanthurenic acid [108], cinnabarinic acid [137], and
trace kynurenine derivatives [138], any of which could serve as the ultimate effector ligands
in a given cancer type.
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mental, microbial or dietary AHR ligands may “prime the pump” and/or exacerbate the endogenous
AHR signaling circuit.

This production of Kyn and other tryptophan-derived AHR ligands is rate-limited
by indoleamine 2,3,-diozygenase (IDO) and tryptophan dioxygenase (TDO) [139], hydrox-
ylases that generate N-formyl-Kyn (Figure 4). N-formyl-Kyn is further reduced to Kyn
followed by catabolism to kynurenic, xanthurenic, and cinnabarinic acids. IDO and TDO
were first shown to be regulated by the AHR in macrophages and dendritic cells [140–142]
and later in malignant cells [108]. Therefore, chronic AHR activity may be sustained in
malignancies by AHR-regulated induction of IDO or TDO and production of Kyn pathway
ligands in a positive amplification loop [108,143] (Figure 4). Since stromal cells in the
TME may also express nuclear (i.e., active) AHR [85], non-malignant cells may contribute
to this amplification loop. That said, it still is not clear what factor(s) primes the pump.
It is possible that environmental, microbial, or dietary [30,144–147] AHR ligands, many of
which can be detected in human sera or urine [148–150], initiate AHR activation and start
a self-perpetuating AHR circuit. This would suggest that even transient exposure to envi-
ronmental AHR ligands may initiate a domino effect that results in enhanced AHR activity
and ends in malignant transformation. Conversely, it is possible that short-term exposure
to AHR inhibitors may reset the amplification loop at a lower steady state. Indeed, bistable
or multistable biological circuits, defined as positive or negative feedback pathways that
can reset at high low, or intermediate activity states after perturbation with inhibitors
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or activators, have been described and modeled in various biological contexts [151–155].
For example, the level of the Cdc2-cyclinB/Wee1 signaling pathway or the strength of
MAPK activity can be stably reset depending on the magnitude of the response to a pertur-
bation [151]. This could have important implications for the consequences of even brief
exposures to environmental AHR ligands and, conversely, for the use of AHR inhibitors as
cancer therapeutics.

5.2. Negative Regulators of the AHR Amplification Loop

In counterbalance to the AHR-IDO/TDO amplification circuit is a feedback pathway
that limits AHR activity (Figure 4, red font). As early as 1999, it was known that the AHR
transcriptionally induces its own inhibitory protein, the AHR Repressor (AHRR) [156,157].
Initially thought to work solely by competing with the AHR for its dimerization partner
ARNT, the AHRR was subsequently shown to suppress AHR activity without affecting
DNA binding [158,159]. Whatever the mechanism through which the AHRR represses
AHR activity, low AHRR expression in breast, lung, stomach, cervical, and ovarian cancers
(likely mediated by DNA hyper-methylation and gene silencing [160]) has led some to
suggest that the AHRR is a “tumor suppressor” [160], a moniker consistent with the
description of the AHR as a tumor promoter, at least in some cancers. Notably, low level
AHRR expression in breast cancer is associated with poorer survival [100] and ectopic
AHRR expression is associated with decreased invasion [107].

It also has been suggested that a second level of negative feedback within the AHR
circuit is likely mediated by AHR induction of prototypic target genes such as CYP1A1
and CYP1B1. In 2004, it was shown that pharmacological inhibition of CYP1A1 increased
baseline AHR activity in rat hepatoma cells through the inhibition of CYP1-mediated
catabolism of endogenous AHR agonist(s) [161]. To illustrate this point in cancer cells here,
we generated CYP1B1 knockout SUM149 inflammatory breast cancer cells (Figure 5a) and
quantified AHR activity in the presence or absence of AHR agonists using an AHR-driven
(pGudLuc) reporter construct. The AHR knockout cells described in Section 4 were used as
a positive control. AHR knockout significantly reduced baseline AHR reporter (pGudLuc)
activity in naïve and DMSO groups (Figure 5b, first two green bars). CYP1B1 knockout
enhanced baseline AHR activity (Figure 5b, first two red bars). Furthermore, AHR activity
induced by several AHR ligands, including environmental (B[a]P) and endogenous AHR
ligands 6-formylindolo[3,2-b]carbazole (FICZ), Kyn, or xanthurenic acid, was enhanced
by CYP1B1 knockout (Figure 5, remaining red bars). These data illustrate the general
conclusion in the field that the classic AHR-inducible hydroxylases likely participate in a
negative feedback loop in cancer cells.
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AHR Activity. The AHR or CYP1B1 was deleted from triple negative, inflammatory human breast
cancer cells [162]. (a) Western blotting showing the absence of detectable CYP1B1. (See Figure 3 for
AHR knockout western blots). (b) CMV-driven GFP-normalized, AHR-driven pGudLuc reporter
activity was assayed in wildtype, Cas9 control, AHR knockout, or CYP1B1 knockout SUM149 cells
treated for 24 hours with 0.1% DMSO (vehicle), 10 uM B[a]P, 0.5 uM FICZ, 100 uM kynurenine (Kyn),
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or 100 uM xanthurenic acid (XA). Data are presented as normalized means + SE. from
a minimum of three experiments. ++ p < 0.01 relative to similarly treated Cas9 control.
*** p < 0.001 relative to similarly treated Cas9 control. **** p < 0.0001 relative to similarly
treated Cas9 control.

6. Consequences of Chronic AHR Activity in Cancer
6.1. AHR-Mediated Cell Migration and Invasion

The ability of malignant cells to migrate from a primary site into adjacent tissue and/or
vasculature is a major determinant of metastatic potential [163]. One of the earliest studies
implicating the AHR in tumor cell migration was published in 2005 and demonstrated
that the migratory potential of immortalized mouse mammary fibroblasts was significantly
decreased when the AHR was ablated, an effect likely due to the removal of the AHR’s
stimulatory effect on the ERK-FAK-Rac-1 pathway [164]. Shortly thereafter, a second study
leveraged the effects of environmental AHR ligands by demonstrating the pro-migratory
effects of B[a]P and TCDD on breast cancer cells [165]. In a complementary approach,
DiNatale et al. demonstrated that AHR inhibitors slowed the migration of oral squamous
carcinoma cells [86]. Similar results were obtained in triple negative breast cancers cells, in
which migration and anchorage-independent growth was diminished after AHR knock-
down [166]. Our laboratory demonstrated that AHR inhibitors or AHR knockout slows
triple negative breast cancer and oral squamous carcinoma cell migration [106,108,162].
Furthermore, ectopic IDO expression, excess Kyn, xanthurenic acid, pyocyanin (a bacterial
AHR ligand), B[a]P, TCDD, and FICZ accelerate the migration of breast and/or oral cancer
cells in an AHR-dependent fashion [106,108,162]. Similar trends have been seen in other
cancers. For example, the AHR transcriptionally regulates Memo-1, a gene implicated in
colorectal cancer migration [97]. AHR activation with TCDD induces MMP-9 expression
and gastric cancer cell invasiveness, an effect likely mediated through a c-Jun-dependent
pathway [96]. TCDD and B[a]P also up-regulate MMP-9 in prostate cancer cells [167], while
AHR knockdown decreases invasion of prostate cancer cells in matrigel [168].

6.2. AHR-Mediated Epithelial-to-Mesenchymal Transition (EMT) and Metastasis

Epithelial-to-mesenchymal transition (EMT) is a critical process during which epithe-
lial cells lose apicobasal polarity, connective junctions, and the ability to bind to the basal
lamina, which collectively leads to migration and metastasis [169]. E-cadherin is a central
contributor to an epithelial morphology, although E-cadherin deficiency in and of itself is
insufficient to induce metastasis [170]. E-cadherin expression is repressed by Snail family
members Snail, Slug, and Twist, and their upregulation, along with intermediate filament
proteins such as Vimentin, are markers of metastatic potential [169,171,172].

Perhaps the earliest and most convincing study implicating the AHR in EMT was pro-
vided by Brooks and Eltom in 2011 [173]. These investigators demonstrated that retroviral
transduction of an AHR plasmid into non-transformed human mammary epithelial cells
was sufficient to induce motility, migration, invasion in Matrigel, anchorage-independent
growth, and markers of EMT including increased Vimentin and morphologic changes con-
sistent with EMT. Consistent with these results, AHR hyperactivation with FICZ increased
Snai1, Twist1, Twist2, and Vim expression and migration in triple negative breast cancer.
These genes have two to five consensus AHR binding site sequences (5′-GCGTG-3′) in their
promoter regions, suggesting direct transcriptional regulation [162].

High AHR expression also correlates with lymph node metastases and/or poor prog-
nosis in inflammatory breast and esophageal squamous cell carcinomas (ESCC) [119,174].
In the ESCC context, AHR modulation with the partial AHR agonist 3,3′-diindolylmethane
not only down-regulated Vimentin and Slug, but also inhibited the RhoA/ROCK1 pathway,
which in turn suppressed COX2/PGE2 signaling, prostaglandin E2 production, migration,
metastasis and EMT [174–177]. This appears to be a generalizable metastasis pathway
in that both RhoA/ROCK1 and PGE2 have been implicated in lung and endometrial
carcinoma metastasis [178–181].
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Data from hepatocellular carcinomas (HCC) show a similar AHR effect, albeit through
different signaling pathways. For example, AHR induction with a prototypic environmen-
tal AHR ligand and carcinogen, benzo[a]pyrene (BaP), induced long interspersed nuclear
element-1 (Line-1) expression through TGF-α signaling [182], a known inducer of EMT and
a facilitator of metastasis [100,183]. Given that Line-1 and other retrotransposon elements
mobilize throughout the mammalian genome and damage host DNA via mutational inser-
tions, these results suggest a wide-ranging effect of AHR activation on cancer progression
to a highly metastatic state.

While efforts to understand how the AHR affects tumor migration, invasion, EMT and
metastasis have focused on classic cancer progression-associated genes discussed above,
one significant contributor could be one of the most obvious AHR target genes, CYP1B1,
especially in hormone-driven cancers. Kwon et al. demonstrated that ectopic CYP1B1
expression enhances Wnt/β-catenin signaling, a driver of EMT [184,185], and increased
invasion in MCF10A breast epithelial cells and/or ER+ MCF7 breast cancer cells at least in
part by increasing Snai1, Twist1, and Vimentin and decreasing E-cadherin expression [186].
The effector of this EMT gene profile appears to be the transcription factor, Sp1, induced
through CYP1B1-mediated estradiol metabolism. Similarly, our data indicate that CY1B1
knockout in ER- breast cancer cells reduces Wnt5b expression and invasion in matrigel
(data not shown).

The translational implications of all of these studies on migration and invasion is
exemplified by the ability of non-toxic AHR inhibitors to completely block metastasis
of cervical (HeLa), TNBC (MDA-MB-231), and OSCC (HSC3) metastasis in a zebrafish
model [107], or by AHR knockout to block melanoma metastasis to the lung [187].

6.3. AHR Role in Cancer Stem Cell (CSC) Development

Perhaps the earliest indication that the AHR could be involved in attainment of
stem cell qualities came in 2000 in a toxicology paper by Murante and Gasiewicz, which
demonstrated that in vivo treatment with TCDD increased the percentage of bone marrow
cells expressing phenotypic markers of hematopoietic stem cells (HSCs) [188]. Subsequent
studies from the Gasiewicz group and others extended these results by demonstrating
that the AHR plays a central role in HSC growth and differentiation [77,78,188–192] and in
lineage commitment of bipotential (erythroid/megakaryocyte) stem cells [78]. Similarly,
the AHR has been associated with normal embryonic stem cell function [76,193]. In a
classic example of how basic toxicology leads to translational outcomes, follow-up studies
demonstrated that an AHR inhibitor, Stemregulin-1, expands HSCs in vitro and that these
expanded HSC populations shorten the recovery time in high dose chemotherapy-treated,
stem cell-rescued cancer patients [194,195].

These studies are of relevance here given the importance of aberrant organ stem
cells in cancer. Cancer stem cells (CSCs) are a relatively small population of chemo- and
radio-resistant malignant cells that have the ability to self-renew and to generate progenitor
cells that form the bulk of a tumor. CSCs commonly over-express normal organ stem
cell-associated genes and have an increased propensity to invade, migrate and metastasize.
A rapidly enlarging body of evidence implicates the AHR in these processes. For example,
in head and neck carcinoma, lung carcinoma, and choriocarcinoma cell lines, the AHR
regulates expression of an ABC transporter, ABCG2, which contributes to chemoresistance
by exporting drugs out of the cell against a concentration gradient [86,196–198]. AHR ex-
pression is elevated and nuclear in choriocarcinoma [197], TNBC [162], and oral squamous
cell CSCs [106]. Similarly, in oral cancer and triple negative or ER+ breast cancer cells,
the AHR was shown to regulate aldehyde dehydrogenase (ALDH) [106,162,199], which,
like ABCG2, is associated with chemotherapy export [200]. ALDH also is associated with
increased tumor cell invasion, higher tumor grade, and poor survival [201,202]. Further,
AHR hyper-activation with the endogenous ligand FICZ [148,203,204] induced migra-
tion and invasion-associated (Snai1, Twist1, Twist2, Tgfb1, Vim) and stem cell-associated
(Notch1, Notch2, Bmi1, Nanog, Sox2, Dppa3) genes in triple negative ALDHhigh breast cancer
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CSCs [162]. Promoters from 11 of these genes contain 3–13 consensus AHR binding site
sequences and the AHR interacts directly with the Sox2 promoter [162]. Wnt5a/β-catenin
signaling also correlates with CSC phenotype and disease progression in inflammatory
breast cancers [119].

Functional studies are consistent with the findings on AHR-regulated stem cell genes.
Thus, as would be predicted from the studies on ABCG2 and ALDH1, AHR inhibitors
increased the sensitivity of ER+ and ER- breast carcinoma cells to Adriamycin and Pa-
clitaxel [162,199], oral cancer cells to Cisplatin [106,199] and choriocarcinoma cells to
Methotrexate [197], directly connecting AHR-driven CSCs to cancer treatment outcomes.
With regard to these studies, the ability of some of the chemotherapeutics (e.g., Cisplatin)
to reduce AHR signaling in and of themselves, may have contributed to the increased
effectiveness of the combination of AHR inhibitor and chemotherapeutics [205]. That said,
Paclitaxel and Adriamycin have been shown to enhance AHR expression in MDA-MB-231
breast cancer cells [206] and AHR activity in cardiomyocytes [206], results that one would
have expected would lead to a reduction in efficacy of a chemotherapeutic plus AHR
inhibitor regimen. The fact that the combination proved more and not less effective demon-
strates how elusive it is in some contexts to predict the outcomes of AHR manipulation.

CSC-dependent low adherence spheroid formation of choriocarcinoma or breast carci-
noma cells in vitro was suppressed with AHR inhibitors or AHR knockdown and increased
with AHR agonists (e.g., TCDD) [162,197,199]. Importantly, AHRhigh/ALDHhigh breast can-
cer CSCs were significantly more efficient at initiating tumors than AHRlow/ALDHlow cells,
and AHR knockdown with siRNA significantly reduced tumor-initiating capacity [162],
a sine qua non of CSCs [207].

Finally, it is important to note that, in some instances, AHR down-regulation, not
up-regulation, characterizes CSC maintenance. For example, decreased AHR signaling
contributes to CSC maintenance in human acute lymphocytic leukemia [208]. This type
of paradoxical result, elegantly reviewed in Murray et al. [209] and [210], is not unusual
in the AHR field and is likely attributable to the ability of a variety of endogenous and
exogenous ligands [211] to differentially recruit AHR co-factors in different tissue contexts
effecting different outcomes [67]. Indeed, we have specifically addressed this paradox in
invasion, migration, and in vivo metastasis assays in head-to-head comparisons between
AHR agonists and inhibitors [107]. It was shown that AHR agonists TCDD and/or 3,3′-
diindolylmethane and AHR inhibitors CH223191 [212] and CB7993113 [109] inhibited triple
negative breast cancer invasion in vitro and metastasis in vivo. The ability of agonists to
reduce these measures of tumor aggression is consistent with previous studies, for example,
from Safe et al. [213–215] and Kolluri et al. [210,216], showing that AHR hyper-activation
with agonists can be anti-tumorigenic. While the molecular signal that results in these
apparently contradictory results is still unknown, it has been postulated that agonists
such as TCDD, 3,3′-diindolylmethane, or Omeprazole [217] induce differential cofactor
recruitment by the AHR then those recruited by endogenous ligands in cancer [107,218].
In essence, some agonists may “divert” the AHR from a pro- to an anti-tumorigenic
signaling pathway.

6.4. The AHR’s Role in Malignant Cell Apoptosis

In addition to relatively unfettered growth, an increased ability to invade local tissue,
and a propensity to migrate from the primary site, aggressive malignant cells possess the
ability to survive what, to a normal cell, would be a lethal signal to initiate apoptosis.
Relatively recent studies in cancer cells suggest that the AHR may play a role in that
resistance to death. The AHR was first implicated in apoptosis control in 1996, with studies
demonstrating that activated T cells were more susceptible to Fas-mediated death signals
when exposed to TCDD [219]. In 2005, these studies were extended by Park et al., who
showed that the AHR potentiates Fas-mediated apoptosis in hepatocytes [220]. Remarkably,
attrition of primordial ovarian follicles, an apoptosis-mediated event responsible for normal
ovarian germ cell development, was shown to be driven by the AHR, potentially explaining
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the fertility issues seen in women who smoke [221]. Although in these cases AHR had a
pro-apoptotic effect, they demonstrated that apoptotic and AHR signaling pathways could
be linked.

In cancer, the AHR appears to do the opposite, i.e., to suppress apoptosis. As
noted in Section 6.3, AHR inhibition increases tumor cell susceptibility to chemother-
apeutics [106,162,197,199]. As a corollary, AHR activation with TCDD inhibited apoptosis
in lymphoma cells in vitro and in vivo through the induction of COX2 and dysregula-
tion of BCL2 [222]. AHR-dependent COX2 induction was also shown to play a role in
blocking apoptosis induced by UVB irradiation, Adriamycin, or the dual tyrosine kinase
inhibitor Lapatinib in breast cancer cells [223], or in non-transformed, AHR-transfected
breast epithelial cells [224]. AHR-mediated resistance to UVB radiation-induced apoptosis
may be most relevant in skin photo-carcinogenesis [14,225], where it was shown, in 2013,
that AHR desensitized keratinocytes to UVB-induced apoptosis signaling in consort with
increased expression of E2F1 and CHK1 [226]. More recently, it was shown that the AHR
also suppresses pyrimidine dimer repair in vitro and in vitro and blocks the formation
of double strand breaks that lead to apoptosis [227]. Remarkably, AHR knockout mice
exhibited 50% fewer UVB-induced cutaneous squamous cell carcinomas than wildtype
mice [227]. Finally, Kyn increased expression of anti-apoptotic proteins cIAP-1, cIAP-2,
XIAP and Bcl-2 and decreased pro-apoptotic Bax in a pancreatic cancer cell line [228].

7. Caveats: Interspecies Differences

While the studies summarized above begin to reveal commonalities in how the AHR
influences carcinogenesis, some important caveats should be kept in mind, not the least of
which is the interspecies differences between murine and human models. The murine AHR
has approximately a 10-fold higher affinity for TCDD than the human AHR [229], a differ-
ence that suggests that humans may have a higher tolerance for TCDD than mice [229,230].
Furthermore, a relative lack of similarity of the carboxy (DNA-binding) terminus between
the mouse and human AHRs may result in different co-factor recruitment, specifically
LXXLL binding motifs, leading to distinct transcriptional activity [231,232]. Furthermore,
using a transgenic model in which mice expressed the human AHR in liver, it was shown
that the murine and human AHRs induce different transcriptional responses to a given
ligand, including TCDD and endogenous indole compounds [229]. With regard to the
latter class of agonists, the human AHR has a higher affinity for indirubin and generates a
different transcriptional profile than the murine AHR, suggesting an evolutionary prefer-
ence for endogenous ligands [30,233]. This species-specific ligand selectivity may explain
many of the differences observed in human and murine models.

8. Conclusions

Here we have summarized a variety of studies, all of which rest on a foundation of
toxicological research that was designed to define the basic molecular mechanisms through
which environmental AHR ligands generate adverse biological responses. Many of the
studies, conducted with diverse cancer types, exploited environmental and, more recently,
endogenous AHR ligands to untangle the AHR’s role in cancer. The results clearly indicate
a complex association between the AHR and several critical cancer features, including
increased malignant cell invasion, migration, metastasis, CSC formation, and survival. For
the most part, these studies have been conducted on a basic science level. However, the
implications of these studies for our understanding of the genesis of many cancers, their
prevention, and their treatment are far-reaching. Thus, these studies have lent credence to
the argument that: (1) primary cancer prevention can be effected by minimizing exposure
to subsets of environmental AHR ligands, (2) cancer interception can be considered prior
to full blown malignancy if early markers of AHR activity can be identified (e.g., Figure 3),
and (3) several cancers in which AHR levels correlate with poor survival may be treatable
with specific AHR inhibitors.
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9. Materials and Methods
9.1. Generation of AHR or CYP1B1 Knockout MDA-MB-231 and SUM149 Cell Lines with
CRISPR-Cas9 Gene Editing

Human AHR and CYP1B1 knock-out SUM149 and MDA-MB-231 cell lines were cre-
ated using lentiCRISPR v2 (Addgene no. 52961, Cambridge, MA, USA), which contains
Cas9 and a guide RNA cloning site (BsmBI). Two target sequences (5′-CCTACGCCAGTCGC
AAGCGG-3′ and 5′-CCGAGCGCGTCCTCATCGCG-3′) for AHR or the two target se-
quences (5′-TTAGCGGCCAAGGGTCGTTC-3′ and 5′-CCTGCTACTCCTGTCGGTGC-3′)
for CYP1B1 knock-out were used. The target sequences are located in the first exon of
the AHR and CYP1B1 genes, respectively. Lentivirus particles were generated in the
HEK293NT cells by co-transfecting the lentiCRISPR v2, or AHR-lentiCRISPR v2 plasmids,
and the packaging plasmids (pLenti-P2A and pLenti-P2B, Cat. # LV003, Applied Biological
Materials Inc. Richmond, BC, Canada), using Lipofectamine 2000 (Invitrogen, Grand Is-
land, NY, USA), according to the manufacturer’s instructions. Virus-containing media were
collected 72 h later and filtered through a 0.45µm filter. SUM149 and MDA-MB-231 cells
were transduced with lentiviruses in the presence of 5 µg/mL polybrene as described [234].
Forty-eight hours after transduction, cells were selected with 2 µg/mL Puromycin for
10 days. The efficiency of AHR and CYP1B1 knockout was validated by DNA sequencing
and immunoblot analyses.

9.2. Western Blotting

Cells were lysed and protein extracted with RIPA (Radio Immune Precipitation Assay)
buffer (Boston BioProducts, Ashland, MA, USA). Protein concentrations were quantified
with a Bradford protein assay. Equal amounts of protein (30 µg) were subjected to 10%
SDS-PAGE and then transferred to a nitrocellulose membrane. Non-specific binding sites
were blocked with blocking buffer containing Tris-buffered saline and 0.1% Tween-20 with
5% nonfat milk powder for 1 h at room temperature, and the blot was incubated with
1:1000 dilution AHR- or beta-actin-specific antibody in blocking buffer. AHR antibody was
purchased from Cell Signaling. β–Actin antibodies were from Sigma-Aldrich (St. Louis,
MO, USA).

9.3. AHR-Driven Reporter Assay

SUM149 cells were co-transfected with the pGudluc reporter plasmid (0.5 µg) (gener-
ously provided by Dr. M. Denison, UC, Davis), and CMV-green (0.1 µg) (for normalization)
using TransIT-2020 transfection reagent (Mirus, Madison, WI, USA). Transfection medium
was replaced after 24 h. The cells were left untreated or dosed with vehicle (DMSO, 0.1%
final concentration), 10 uM B[a]P, 0.5 uM FICZ, 100 uM kynurenine, or 100 uM xanthurenic
acid and harvested after 24 h in Glo Lysis Buffer (Promega, San Luis Obispo, CA, USA).
Luciferase activity was determined with the Bright-Glo Luciferase System according to
the manufacturer’s instructions (Promega, Madison, WI, USA). Luminescence and fluores-
cence were determined using a Synergy2 multifunction plate reader (Bio-Tek, Winooski,
VT, USA).
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Abbreviations

AHR Aryl hydrocarbon receptor
AHRR AHR repressor

AIP/XAP2
Immunophilin-like AHR-interacting protein/Hepatitis B virus X-Associated
Protein 2

ARNT Aryl hydrocarbon receptor nuclear translocator
bHLH-PAS Basic helix-loop-helix-Per Arnt Sim
FICZ 6-formylindolo[3,2-b]carbazole
Kyn Kynurenine
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
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