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Abstract: While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT,
the time point in the infection cycle that these mutations can arise and if they appear spontaneously
without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies
utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting
for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1
RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection
pressure free system. We found rare clinical mutations with a general avoidance of crucial functional
sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10−5, 6.03 × 10−5,
and 7.09 × 10−5 mutations/bp, respectively. Gag and p66 genes showed a large number of ‘A to
G’ mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation
rates (1.88 × 10−4 mutations/bp) and that ‘A to G’ mutations occurred in regions reminiscent of
ADAR neighbor sequence preferences. Mutational free energies of the ‘A to G’ mutations revealed
an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers
to disruptive amino acid changes. Our study demonstrates the importance of studying mutation
emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast
drug resistance can emerge, providing transferable applications to how new viral diseases and drug
resistances can emerge.
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1. Introduction

RNA viruses have a higher likelihood of genetic changes, leading to species jump [1]
and efficient spread among humans [2]. Among RNA viruses, the human immunodefi-
ciency viruses HIV-1 and HIV-2 are reported to be zoonotic transmissions of the simian
immunodeficiency viruses (SIV) [3–5].

Within HIV-1, the Gag and protease proteins play crucial roles in viral assembly
and maturation of infectious virions [6]. Protease cleaves Gag and Pol polyproteins into
functional subunits [7] and this is prevented by protease inhibitors (PI) which compete
with Gag for the active site [8,9]. In emerging PI resistance, mutations on viral protease
reduce affinity to PIs [9,10], and the gradual accumulation of many such resistance mu-
tations [11–13] induced by HIV-1 RT [14,15], eventually limit clinical drug selection due
to cross-resistances [9]. At the same time, mutations on the substrate Gag are reported to
compensate for reduced viral fitness [9,10,15–17], working synergistically with protease
mutations to overcome PIs [17–21].
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In the causative spotlight in HIV drug resistance mutations is the error prone enzyme
reverse transcriptase (RT), an asymmetric heterodimer of the p66 and p51 subunits [22].
The p66 subunit catalyzes DNA polymerisation and cleaves the RNA of the RNA/DNA
duplex [23,24] while the p51 subunit plays a supportive role to p66 [25].

In the investigation of HIV mutations, in-depth analysis of RT mutations is required.
However, most previous studies utilized reporter genes such as LacZ and not HIV genes for
the analysis of mutations. This leaves a gap in understanding the contribution of HIV gene-
specific sequences and codon usage in mutational hotspots, as well as type of mutations
and when they can emerge in the infection cycle [26]. To fill this gap, we developed a low
biosafety level in vitro based assay (see Figure 1 for a schematic representation) without
translational, immune, and drug selection pressures to characterize the innate basal HIV-1
RT mutations and biases on HIV-1 Gag, protease, and RT p66 genes. As a control and
further investigation to the natural codon usage, we also created a silent codon mutated
variant of RT p66. Together, our findings shed light on the emergence of drug resistance
mutations, the native rate, where they appear, and the associated biases and trends that
would be useful for the design of future drug interventions.
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Figure 1. A schematic diagram outlining the workflow of the in vitro selection pressure free HIV-RT fidelity assay.
Vectors containing HIV-1 Gag, protease, RT p66, and Codon Mutated RT were transiently transfected into EXPI293F
cells. Total RNA was extracted and subjected to HIV-RT cDNA synthesis followed by Q5 PCR amplification for TOPO
blunt-end cloning and the sequence that was analyzed. Mutants were subjected to computational analysis with respect to
their mutational free energies and flanking sequences of ‘A to G’.

2. Results
2.1. Characterization of HIV-1 Gag, Protease, RT p66, and Codon Mutated RT p66
Mutant Variants

‘A to G’ mutations were classified as hypermutations when multiple such mutations
were found on the same gene clone, especially given that mutations should statistically
be evenly distributed. 801 HIV-1 Gag sequences were generated and calculated to show
a mutation rate of 3.36 × 10−5 mutations/bp and at 4.71 × 10−5 mutations/bp when
including ‘A to G’ hypermutations (see Table 1). More transitions (n = 24 excluding ‘A to G’
hypermutations and n = 40 including) than transversions (n = 12) were found (Figure 2A).
‘A to G’ substitutions were found to be the most frequent (n = 20, 37.7%) when including
‘A to G’ hypermutations, but when excluded, ‘T to C’ substitutions were the most frequent
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(n = 9, 25.0%), followed by ‘G to A’ and ‘G to T’ (n = 6, 16.7%), ‘C to A’ and ‘C to T’ (n = 5,
13.9%), ‘A to G’ (n = 4, 11.1%), and ‘T to G’ (n = 1, 2.8%), with several substitutions types
not observed (see Figure 2B,C). Amino acid analysis showed missense mutations (n = 30,
55.6%) to occur at approximately twice the frequency of silent mutations (n = 15, 27.8%,
see Figure 3) while nonsense mutations (n = 5, 9.3%) and frameshift mutations (n = 4, 7.5%)
had lower occurrences (see Supplementary Table S1 for full list of mutations).

Table 1. Calculated error rates of HIV-1 RT on the respective HIV-1 genes.

HIV-1 Gene No. of
Clones

Nucleotide
Length

Total No.
of Bases

Excluding ‘A to-G’
Hypermutations

Including ‘A to G’
Hypermutations

No. of
Mutations

Mutation
Rate (Muta-

tions/bp)

No. of
Mutations

Mutation
Rate (Muta-

tions/bp)

Gag 801 1485 1,189,485 40 3.36 × 10−5 56 4.71 × 10−5

protease 640 285 182,400 11 6.03 × 10−5 - -
RT p66 571 1680 959,280 41 4.27 × 10−5 68 7.09 × 10−5

Codon
mutated
RT p66

700 1617 1,131,900 74 6.53 × 10−5 213 1.88 × 10−4

Mutation rates were calculated as the ratio of the total number of mutations and the total number of nucleotide bases. The primer regions
were excluded from the calculations. The rates were within the reported range of 1.8 × 10−5–6.67 × 10−4 as previously reviewed [26,27].
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quencies on the respective HIV-1 genes (expressed as a percentage). 
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27.6%), followed by ‘G to A’ (n = 6, 20.7%), ‘C to A’ (n = 4, 12.5%), and ‘A to G’ and ‘C to 
T’ (n = 2, 6.9%). There were several substitution types not observed (see Figure 2B,C). 
Analysis after translation found similar trends for both Gag and protease where missense 
mutations (n = 31, 48.4%) occurred at 1.6 times the frequency of silent mutations (n = 19, 
29.7%), as shown in Figure 3. Nonsense mutations (n = 2, 3.1%) and frameshift mutations 
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Figure 2. Generated HIV-1 Gag, protease, RT p66, and Codon Mutated RT p66 nucleotide substitution mutations using
HIV-1 RT. (A) Bar chart of transitions and transversions mutations observed in HIV-1 Gag (n = 52), protease (n = 8), RT p66
(n = 56) and codon mutated p66 (n = 205). Transitions and transversions are shown in red and blue, respectively. ‘A to G’
hypermutations are shown separately as diagonal stripes. (B) Bar chart of substitution mutations observed in HIV-1 Gag,
protease, RT p66, and codon mutated p66 sequences. (C) Schematic diagram of relative nucleotide substitution frequencies
on the respective HIV-1 genes (expressed as a percentage).
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Figure 3. Generated amino acid mutations using HIV-1 RT. (A) Bar chart of amino acid mutations observed in HIV-1
Gag (n = 54), protease (n = 11), RT p66 (n = 64), and codon mutated RT p66 (n = 194). (B) Pie chart of the relative amino
acid mutation frequencies (expressed as a percentage). For the codon mutated RT p66, two variants (20 and 80 a, b)
containing deletions without frameshifts are not shown. Silent, missense (conservative), missense (non-conservative),
nonsense, frameshift (insertion), and frameshift (deletion) mutations are shown in green, yellow, orange, gray, purple,
and pink, respectively.

For HIV-1 protease, 640 sequences were generated with a calculated mutation rate
of 6.03 × 10−5 mutations/bp (see Table 1). No ‘A to G’ hypermutations were found for
protease. As with Gag, there were more transition mutations (n = 6) than transversions
(n = 2) as shown in Figure 2A. ‘G to A’ substitutions were found to be the most frequent
(n = 3, 37.5%), followed by ‘A to G’ (n = 2, 25%), ‘A to C’, ‘T to C’, and ‘C to A’ (n = 1, 12.5%),
with several substitutions not observed (see Figure 2B,C). Amino acid analysis showed that
missense mutations (n = 4, 36.4%) occurred at approximately 1.3 times the frequency of
silent mutations (n = 3, 27.3%) and frameshift mutations (n = 3, 27.3%), whereas nonsense
mutations (n = 1, 9.1%) were of lower occurrences (see Figure 3, Supplementary Table S2
for full list).

From 571 HIV-1 RT p66 subunit sequences, we calculated a mutation rate of 4.27 × 10−5

mutations/bp when excluding ‘A to G’ hypermutations and 7.09 × 10−5 mutations/bp
when including them (see Table 1). As with Gag and protease, there were more transition
mutations (n = 18 excluding ‘A to G’ hypermutations, 45 including ‘A to G’ hypermu-
tations) than transversions (n = 11), as shown in Figure 2A. ‘A to G’ substitutions were
found to be the most frequent (n = 29, 51.8%) only when including ‘A to G’ hypermutations.
When excluded, ‘T to C’ and ‘G to T’ substitutions were instead the most frequent (n = 8,
27.6%), followed by ‘G to A’ (n = 6, 20.7%), ‘C to A’ (n = 4, 12.5%), and ‘A to G’ and ‘C
to T’ (n = 2, 6.9%). There were several substitution types not observed (see Figure 2B,C).
Analysis after translation found similar trends for both Gag and protease where missense
mutations (n = 31, 48.4%) occurred at 1.6 times the frequency of silent mutations (n = 19,
29.7%), as shown in Figure 3. Nonsense mutations (n = 2, 3.1%) and frameshift mutations
(n = 12, 18.7%) were of lower occurrences (Supplementary Table S3).



Int. J. Mol. Sci. 2021, 22, 370 5 of 16

A total of 700 codon mutated p66 sequences gave a calculated mutation rate of
6.53 × 10−5 mutations/bp when excluding ‘A to G’ hypermutations and 1.88 × 10−4 mu-
tations/bp when including them (see Table 1). In the same trend with Gag, protease,
and wild-type p66, there were more transition mutations (n = 37 excluding ‘A to G’ hyper-
mutations, 176 including ‘A to G’ hypermutations) than transversions (n = 29) in codon
mutated p66 (Fiure 2A). Of the same trend with wild-type p66, ‘A to G’ substitutions were
found to be the most frequent (n = 146, 71.2%) only when including ‘A to G’ hypermuta-
tions, and when excluded, ‘G to T’ substitutions were found to the most frequent (n = 17,
25.8%), followed by ‘G to A’ (n = 13, 19.7%) and ‘T to C’ (n = 13, 19.7%), ‘A to G’ (n = 7,
10.6%), ‘C to A’ (n = 8, 12.1%), ‘C to T’ (n = 4, 6.1%), ‘A to T’ (n = 2, 3.0%), and ‘T to A’
and ‘T to G’ substitutions (n = 1, 1.5%), with the absence of the following substitutions:
‘A to C’, ‘C to G’ and ‘G to C’ (see Figure 2B,C). Amino acid analysis showed agreement
in trends with the other HIV-1 genes where missense mutations (n = 109, 56.2%) occurred
approximately 1.6 times the frequency of silent mutations (n = 70, 36.1%, see Figure 3).
Nonsense mutations (n = 7, 3.6%) and frameshift mutations (n = 8, 4.1%) were at lower
occurrences (Supplementary Table S4).

2.2. Mutation Rates of the Domains of HIV-1 Gag, Protease and RT p66

The HIV-1 genes were further analyzed by their respective domains and the mutation
rates calculated separately (see Figure 4). Within Gag, the overall mutation rates throughout
the domains were within a narrow range of 2.29 to 4.46 × 10−5 mutations/bp when exclud-
ing ‘A to G’ hypermutations but increased to 8.16 × 10−5 mutations/bp when including
them. ‘A to G’ hypermutations were found in the capsid (CA), nucleocapsid (NC), and p6
subunits, but not in the matrix (MA), p2 and p1 domains. Mutations were not observed in
the MA/CA 129SQNY/PIV135, CA/p2 360ARVL/AEA366, p2/NC 374ATIM/IQK380, P1/p6
445PGNF/LQS451 cleavage sites and the 277YSPTSIL283 capsid linker. However, a couple of
mutations (A431D and F433L) occurred in the NC/p1 429RQAN/FLG435 cleavage site.
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across multiple domains were excluded in calculations. The mutation rates of the respective regions are also shown.



Int. J. Mol. Sci. 2021, 22, 370 6 of 16

For HIV-1 protease, there were no ‘A to G’ hypermutations and no mutations in the
active site 25DTG27. For RT p66, when excluding hypermutations, there was a range of 0 to
9.12 × 10−5 mutations/bp, which increased to 1.35 × 10−4 mutations/bp when including
them. Despite the 2nd finger domain being of similar length as the 1st palm segment,
only ‘A to G’ hypermutations were observed in the 2nd finger without other mutations.
No mutations were observed in the RT p51 and RNase H domain (p51-RNH) cleavage
site AETF440↓Y441VD or in the catalytic triad: D110, D185, and D186. For the codon
mutated p66, the mutation rate was in the range of 2.98 × 10−5–1.06 × 10−4 mutations/bp
when excluding hypermutations and 3.38 × 10−4 mutations/bp when including them.
Contrary to the wild-type p66, there were mutations observed in the 2nd finger domain,
suggesting that codon usage of the wild-type 2nd finger domain resisted mutations with
the exception of ‘A-G’ hypermutations. Similarly, no mutations were observed in the p51-
RNH cleavage site AETF440↓Y441VD despite the different codon usage. Interestingly, ‘A to
G’ hypermutations were not observed in the 1st palm region of the codon mutated p66.

2.3. Flanking Sequences of ‘A to G’ Mutation Sites

To explore the possible influence of host defense deaminases e.g., ADAR in causing
‘A to G’ hypermutations, we analyzed the flanking 4 nucleotides (nt) of all the detected
‘A to G’ mutations using the two-sample logo analysis (Figure 5A,C) for comparisons with
those in the study by Eggington and colleagues to map the ADAR neighboring sequence
preferences [28].
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Figure 5. Two Sample logo analysis of HIV-1 Gag, protease, RT p66 (p66 Wt) and Codon Mutated RT (p66 CM). (A) The
flanking sequence preferences 4 nt upstream and downstream of all ‘A to G’ mutations were determined from the identified
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the base did not significantly contribute to the editing of the 4 bases are delimited by commas. (C) Two Sample Logos
analysis of the flanking sequences around the ‘A to G ‘mutation sites. Only significantly enriched and depleted neighboring
nucleotides flanking A to G mutations are shown. Bases were colored opaque when p < 0.01, and translucent when p < 0.05.
Statistics: two sample t-test without Bonferroni correction.
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Analysis of the Gag sequences showed significant depletions of ‘A’ at−4 and ‘G’ at−1
nt positions upstream of the ‘A to G’ mutation sites (with p < 0.05), which are in agreement
with the known ADAR neighbor sequence preferences [28], see Figure 5B). Using the Two
Sample Logo of multiple and single substitution mutations, there was an enrichment of ‘C’
at positions +1, +4 (both with p < 0.05), and −4 nt (p < 0.01) (Supplementary Figure S1),
with the known two (+1 and +4 nt) positions concurring with ADAR neighbor sequence
preferences [28], Figure 5B). For protease, only the ‘T’ enrichment at the −2 nt (Figure 5B)
is in agreement with previously reported ADAR neighbor sequence preferences.

Sequence analysis of the wild-type p66 ‘A to G’ mutations reflected the signatures of
ADAR sites found by Eggington and colleagues [28], with enrichments of ‘T’ over ‘G’ and
‘C’ at the positions −1, and also at −2 positions, whereas the enrichment of ‘A’ occurred at
the +4 positions (p < 0.05), see Figure 5C (bottom left panel). For the codon mutated p66,
there were enrichments of ‘T’ at positions −1, −2, of ‘A’ at −3 position, and of ‘G’ at the +1
and +4 nt positions (all with p < 0.01).

It is also noticed that for both the p66 sequences, the large representation of multiple
mutation variants masked single substitution variants with ADAR neighbor sequence
preferences found in the enrichments of ‘T’ at the −1 and −2 nt positions of the 3′ end
(Supplementary Figure S1).

2.4. Effects of ‘A to G’ Mutations on Protein Thermostability

The unique robustness of HIV to resist drugs, immune pressures, and the error prone
nature of RTs may be attributed to the ability of viral protein structures to buffer fitness
by minimizing the difference in free energy changes or ∆∆G [29]. When mutation(s)
caused destabilization (e.g., with ∆∆G > 4 kcal/mol), proteins may adopt a substantially
different fold or be misfolded [30]. Our results showed that the distribution of ∆∆G
caused by all the mutations in the combined Gag and p66 genes (Gag-p66 in Figure 6A,
excluding Protease due to the absence of classified hypermutations) revealed that the
majority of the ‘A to G’ mutations did not exert significant effects on the protein stability
(FoldX: |∆∆G| < 0.46 kcal/mol and Rosetta: |∆∆G| < 1 kcal/mol, shown as yellow and
brown peaks in Figure 6A). It is noteworthy in Gag that there were some cases where the
‘A to G’ mutations stabilized the protein (∆∆G ~ −3.9 kcal/mol, shown as yellow peaks in
Figure 6A,B).

On the other hand, the other non ‘A to G’ mutations had more destabilizing effects
(Figure 6A, blue and green peaks with |∆∆G| more or approximate the thresholds for
FoldX and Rosetta, respectively). This supports the earlier observation that ‘A to G’ muta-
tions tend to cause little difference in free energy change in the combined Gag-p66 genes,
especially since respective secondary peaks were observed in individual distributions of
Gag and the wild-type RT p66 mutations (Figure 6B,C).

The results suggest that the HIV-1 genes, particularly RT p66 wild-type, were less
sensitive to ‘A to G’ mutations (i.e., ‘A to G’ ∆∆G of 1.13 kcal/mol versus ‘other mutations’
∆∆G of 1.75 kcal/mol in wild-type p66) as compared to codon mutated p66 as shown as
yellow peaks in Figure 6C. This trend was also reflected in the results from Rosetta analysis.

Thermostability analysis of all the hypermutations showed that the mutations might
destabilize Gag and wild-type RT p66 and that the effects were doubled for codon mutated
p66 (Supplementary Table S6).
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Figure 6. Distributions of the change in mutational free energies (∆∆G) of pooled mutations. Density plots showing
distributions of ∆∆G of all individual amino acid mutations (including hypermutations) from (A) Gag-p66, (B) Gag (C)
wild-type RT p66 (p66-Wt) and codon mutated RT p66 (p66-CM) genes. (D) Positions of ‘A to G’ mutations in the protein
structures of Gag and p66 are shown in yellow while all other mutations are in blue. There were both ‘A to G’ and ‘other’
mutations at position 462 of p66-CM labeled blue. The C and N terminals and locations of major domains and functional
protein regions are shown with labels. Peaks are numbered with corresponding ∆∆G values. The mutational free energies
were modeled with the Rosetta Cartesian_ddg and FoldX BuildPDB protocols. ∆∆G values or ∆∆G differences between
different distributions of >1 kcal for Rosetta (29) and ∆∆G > 0.46 kcal/mol for FoldX (30) were significant. Note that Gag
exists in both the compact and extended states and since the former precedes the later during viral assembly, the former
was used.

3. Discussion

We set out to study the native mutation rates of HIV-1 RT on HIV-1 genes: Gag, pro-
tease and RT p66 subunit in a low biosafety single replication cycle model devoid of
translational, immune or drug selection pressures. While mutations can be contributed by
plasmid hosts (DH5α and/or EXPI293F), Q5 polymerase, and even sequencing artefacts,
these were very unlikely given that the mutations/bp/replication for E. coli and mam-
malian cells were estimated at 5.4 × 10−10 and 5.0 × 10−11, respectively [31], and that Q5
polymerase is one of the most high-fidelity polymerases with an error rate of 5.3 × 10−7

sub/base/doubling [32]. Since there may be a role for primer selection bias when priming
the first few bases of the genes, the priming areas were excluded from analysis and calcula-
tion of mutation rates. The observed biases are thus presumed to be intrinsic to HIV-1 RT
and host cell factors.
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While numerous in vitro studies have reported the error rates of HIV-1 RT (as pre-
viously reviewed in [26,27]), only two reports utilized HIV-1 gene templates for anal-
ysis [33,34]. Our mutation rates of HIV-1 Gag, protease, RT p66, and codon mutated
p66 were found to be 4.71 × 10−5, 6.03 × 10−5, 7.09 × 10−5, and 1.88 × 10−4 muta-
tions/bp (inclusive of hypermutations), respectively, within the previously reported range
of 1.8 × 10−5–6.67 × 10−4 mutations/bp [26,27]. Across the HIV-1 genes, there was a pre-
dominance of transition mutations consistent across most phyla, hypothesized to be for
the conservation of protein functions [35–37]. Missense mutations occurred at the highest
frequency in this study, followed by silent, frameshifts, and nonsense mutations, findings in
agreement with the in-built genetic code change probabilities [38].

Different HIV-1 gene templates had varying mutation rates, type of mutations and
mutational biases with a general absence of ‘A–T’ or ‘C–G’ mutations in the wild-type
HIV genes and were detected only in the codon mutated p66 (see Figure 2) which was
2.7 folds higher than the wild-type HIV-1 RT p66. The RNase H domain of the codon
mutated HIV-1 RT p66 had a 7.1 fold increase (3.38 × 10−4 mutations/bp) compared
to the wild-type (4.79 × 10−5 mutations/bp), possibly due to sequence motif protec-
tion/susceptibility [28,39].

Possible explanations for this may be attributed to the short nucleotide length of
protease, thereby avoiding the ‘A to G’ mutational effects elicited by host adenosine deami-
nases such as double-stranded RNA-specific adenosine deaminase (ADAR). ADAR editing
(by either ADAR1 and ADAR2) was suggested to influence cell based in vitro RT-fidelity
assays in HIV-1 [40], and mutations in other positive strand RNA viruses [41–43].

The susceptibility of Gag, p66, and codon mutated p66 to ‘A to G’ hypermutations
would result in an accumulation of G bases resulting in a translational bias towards glycine,
arginine, valine, and alanine [38]. This will in turn reduce the occurrences of phenylala-
nine, isoleucine, tyrosine, histidine, and asparagine in these genes. For HIV-1 protease,
the mutational bias towards ‘A’ and ‘C’ accumulation, which is also the case when ‘A to G’
hypermutations are not considered for Gag and both p66 genes, would lead to translational
bias in the ‘A’ accumulation towards threonine and lysine, isoleucine, asparagine, arginine,
and stop codons, while reducing phenylalanine, tryptophan, and cysteine occurrences.
Similarly, the accumulation of ‘C’ would lead to biases for proline, serine, leucine, threo-
nine, alanine, and arginine while reducing methionine, lysine, glutamic acid, tryptophan,
and more importantly, stop codons. Thus, increasing the mutations rates can push the
virus towards lethal mutagenesis, allowing a possible therapeutic intervention to exploit
the possible underlying host deaminases e.g., ADAR neighbor preference bases flanking
target sites.

Structurally, the ‘A to G’ transitions had less destabilization effects in ∆∆G within
Gag and wild-type p66. Gag was found to be less sensitive to the ‘A to G’ mutations than
p66 (Rosetta data showed distributions of stabilizing mutations that could have acted as
epistatic buffers against destabilizing ones), although this may require confirmation using
cleaved Gag models [44]. On the other hand, codon mutated p66 was less resistant to
‘A to G’ changes compared to wild-type p66, showing that there was not just minimiza-
tion of ∆∆G at the structural level [29] alone, but also at the nucleotide sequence level.
With multiple ‘A to G’ substitutions, the average of all p66 mutations (and also Gag) were
half that of the codon mutated p66. There were less ‘A to G’ transitions in the wild-type
p66 compared to its codon mutated counterpart, showing that the codon usage of the
natural wild-type p66 (and possibly Gag) gene protected the genes against the cause of
hyper ‘A to G’ substitutions. It is worth noting that due to different empirical thresholds of
∆∆G (in kcal/mol) being considered as “significant” effects between FoldX and Rosetta
calculations, the effects were not clear in the use of Rosetta as compared to FoldX. However,
similar effect trends were observed in both.

Despite the lack of selection pressure towards functional proteins, there were no muta-
tions in the active sites of the enzymes (protease and p66) nor in the cleavage sites of Gag,
with the exception of A431D and F433L in the NC/p1 cleavage site 429RQAN/FLG435
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of Gag. The detection of non-cleavage mutations in Gag show that such compensation
mutations can occur early in the infection process, even in the absence of drugs. In this
experimental model of mimicking a single replication cycle, previously reported clinical
drug resistance mutations (see Supplementary Table S5 for Gag, protease, and p66) were
detected. In Gag, the rare transient mutation E17K (in the matrix) implicated in cytotoxic T
lymphocyte (CTL) immune evasion resistance [45,46]. In protease, K70T, the minority muta-
tion associated with resistance to PIs [47]. In p66, the known polymorphic mutation K103R
(in the palm domain), which when combined with V179D (not found in our repertoire),
reduced susceptibility to non-nucleoside reverse transcriptase inhibitors (NNRTIs): nevi-
rapine (NVP) and efavirenz (EFV) by about 15 folds [48]. Interestingly, the observed K103R
originated from an ‘A to G’ hypermutation event, specifically from “AAA” to “AGA”.

Despite being in lower frequencies, mutations were also found in crucial functional
sites. In Gag, P222L occurred in the cyclophilin A (CyPA) binding site (along with G221),
potentially affecting the binding of the capsid to CyPA as previously reported for P222A [49].
Given that the probability of P (CCT) to L (CTT) is 0.33 of having a T substitution in the 2nd
codon position, and that P (CCT) to A (GCT) is also 0.33 of having the first C mutated to a G,
there were equal probabilities. However, when considering that our Gag mutation analysis
did not show a transition mutation link between C to G (Figure 2), the clinical mutation
is a rare-occurrence or a result of two or more mutation steps. Mutations A431D in the
nucleocapsid and P453T in the p6 domain were also observed, with reported clinical drug
resistance counterparts as A431V and a L449F/P453T pair [50]. In p66, the substitution
F61S implicated in strand synthesis with F61Y/L/W altering activity [51] was present.
P95L, in which P95 was reported to be at the dimerization interface for the formation of the
bottom of NNRTI pocket [52], and a proposed target amino acid in NNRTI design together
with N137 and P140 [53] was also detected. Although P95 was reported to be in a highly
conserved location [52], it was present in our limited sample size assay.

The occurrence of previously reported in vitro and clinical mutations in our assay
demonstrate that these mutations can occur very early in infection, even in the absence
of selection pressures. The avoidance of inducing mutations at crucial sites at the nu-
cleotide stage and protective effects in natural nucleotide codon usage (compared to p66
codon mutated) to minimize changes in protein ∆∆G, suggests in-built sequence barriers
of self-preservation. Given that these mutations occurred within our mimic of a single
cycle of replication and that HIV-1 generates approximately 109 virions per day in an
infected individual [54], drug resistance virions could have been made within the first day
of infection. Evidently, given the limitation of generating exhaustive repertoire of each of
the genes, our results are limited in detecting the entire repertoire of possible mutations
HIV-1 RT would generate. It is expected that with improved high-throughput sequencing
technologies such as next-generation sequencing platforms [55,56] that can allow long
reads, it would be possible to detect rare mutations to allow a more comprehensive un-
derstanding. Furthermore, such platforms could be applied after adaptations to other
RNA viruses and cancer to pre-emptively detect mutations. By studying spontaneous
viral receptors mutations, the assay can allow better prediction of viral tropism changes
(as evident in current COVID19 spike changes) and for pre-emptive interventions to be
designed. However, this would depend also on the mutation rate of the system to be
studied, where the lower the mutation rate, the bigger the repertoire sampling required to
detect rare mutations.

Given that many HIV proteins can function in intense drug/immune selection environ-
ments with significant reduced activity [57,58], a multi-pronged drug intervention against
HIV would involve inhibitors against all possible drug resistance mutations. Such in-
hibitors could include proteins such as the gp120 glycoprotein to disrupt the necessary
CD4 interaction and cell entry [59]. Combining such efforts, this could drive HIV towards
Muller’s ratchet [60–62] by bottlenecking the production of drug resistant functional pro-
teins. The alternative is to augment the mutation rate towards lethal mutagenesis for error
catastrophe [63,64] by mutagenic nucleoside analogues [65–67]. With significant nonsense



Int. J. Mol. Sci. 2021, 22, 370 11 of 16

mutations or missense mutations that disrupt protein functionality, the replication would
then be self-limiting in error-catastrophe.

As it was previously shown that protease and RT drug cross resistance have a struc-
tural basis governed by drug resistance mutations [68,69], the bias of restricting specific
amino acid changes by the absence of A-T and C-G mutation occurrences can be exploited.
However, such an approach will require an in-depth understanding of HIV-RT mutations
that are selected for and against at protein functional levels.

Through such analysis, it is possible to calculate the mutational events leading to the
zoonotic transmission of SIV to HIV or that of other viruses better, opening up surveillance
of emerging viral threats [2], especially given that RNA viruses are the most likely to
species jump [1], which is relevant to the current ongoing COVID19 pandemic.

4. Materials and Methods
4.1. Transfection of HIV-1 Gag, Pr and RT Plasmids

HIV-1 Gag was PCR amplified from plasmid p8.91 [70]. HIV-1 Protease (GenBank:
AY622223.1), HIV-1 RT p66 (GenBank: K03455.1), and codon mutated p66 genes were
gene synthesized (BioBasic Asia Pte Ltd., Singapore). The codon mutated p66 sequence
was generated by reverse translation from the amino acid sequence to obtain differing
nucleotide sequences while retaining the amino acid sequence (Supplementary Data 1).
The genes were then cloned separately into the pTT5 plasmid vector (YouBio), trans-
formed into competent DH5α E. coli cells [71], and transfected into EXPI293F cells cultured
in Dulbecco’s modified Eagle’s Media supplemented with 10% fetal bovine serum, peni-
cillin/streptomycin, and sodium pyruvate in a 37 ◦C incubator with CO2 supplemented at
5% and transfected (4 × 105 cells/mL) as previously performed [72–74].

4.2. RNA Extraction and cDNA Synthesis

Total RNA from two-day transfected cells with the gene of interest were extracted
using TRIzol according to manufacturer’s instructions (Invitrogen, Singapore). cDNA syn-
thesis was performed using recombinant HIV-1 RT subunits: (i) p51 (0.2475 µg) and p66
(0.2125 µg) from Sino Biological Inc, China. (catalogue: 40244-V07E and 40244-V07E1, re-
spectively), (ii) 3 µg DNase-treated RNA, (iii) 5X RT buffer (25 mM Dithiothreitol, 375 mM
KCl, 15 mM MgCl2, 250 mM Tris-HCl [pH 8.3]), (iv) 50 µM Oligo(dT)18 (Thermo Scien-
tific, Singapore), (v) 10 mM dNTP mixture (First Base Pte Ltd., Singapore), and (vi) 40 U
RiboLock RNase inhibitor (ThermoFisher Scientific, Singapore), in a single cycle of 25 ◦C
for 18 min, 37 ◦C for 1 h, and 85 ◦C for 5 min. RT negative controls were prepared without
the addition of HIV-1 RT p51 and p66 subunits.

4.3. Amplification of cDNA and TOPO Cloning

PCR amplification of the cDNA template was performed using the high-fidelity Q5
Polymerase PCR (New England Biolabs, Singapore) with the following in-house adapted
primers sets: HIV-1 Gag-F (5′-TAT TAG GAA TTC ATG GGT GCG AGA GCG-3′) and R
(5′-CTG GTA AAG CTT CTA GTG GTG GTG GTG-3′); protease-F (5′-GCG GCC GAA
TTC ATG CCT CAA ATC AC-3′) and R (5′-TAT AAT AAG CTT CTA GTG GTG GTG
GTG-3′); RT p66-F (5′-ATG GCC TTG ACC TTT GCT TTA CTG-3′) and R (5′-CTT GTC
GTC ATC GTC TTT GTA GTC–3′); and codon mutated p66-F (5′-GCG GTG ATG GAT
GGA CCA AAA GTA AA-3′) and R (5′-CTG CGC CTA ATG ATG ATG ATG AT-3′) as
per manufacturer’s recommendations. Oligonucleotide properties were determined using
OligoCalc [75]. Thermocycler conditions were set at 98.0 ◦C (30 s), 35 cycles of 98.0 ◦C
(10 s), 61.3 ◦C (30 s), and 72.0 ◦C (1 min 10 s), with a final extension at 72 ◦C (7 min) for
HIV-1 Gag, 98.0 ◦C (30 s), 35 cycles of 98.0 ◦C (10 s), 63.0 ◦C (30 s), and 72.0 ◦C (45 s),
with a final extension at 72 ◦C (7 min) for protease, 98.0 ◦C (30 s), 35 cycles of 98.0 ◦C
(10 s), 58.0 ◦C (30 s), and 72.0 ◦C (1 min 18 s), with a final extension at 72.0 ◦C (7 min)
for RT p66 and codon mutated p66. PCR products were analyzed by gel electrophoresis
with GelApp [76] and purified using the gel extraction and PCR purification kits that were
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previously described [77]. Purified PCR products were cloned using Zero Blunt TOPO PCR
cloning kit (Invitrogen, Singapore) as per the manufacturer’s protocol and transformed
into in-house competent DH5α cells as previously described [71]. Transformed DH5α cells
were plated and grown overnight at 37 ◦C on LB agar plates supplemented with kanamycin
(50 µg/mL). Transformants were screened using GoTaq PCR (Promega, Singapore) with
universal M13 forward and reverse primers prior to sanger sequencing (BioBasic Asia Pte
Ltd., Singapore).

4.4. Sequence Analysis

Sequence assembly and alignment of HIV-1 sequences were performed using the
YAQAAT Webserver [78]. DNA2App [79] was used to analyze nucleotide and amino
acid sequences. Mutations in the cDNA gene sequences were identified by multiple
sequence alignments with characterized HIV-1 sequences from the Los Alamos sequence
database [80]. To rule out sequencing artefacts, sequence chromatograms were analyzed.
Sequencings were repeated for ambiguous peaks and detected mutations. The mutation
rates were calculated as mutations/bp where the total number of mutations and the total
nucleotide bases of the respective HIV-1 genes were compared.

A ‘Two Sample logo’ analysis was performed to study the flanking sequences of ‘A to
G’ transitions for reported ADAR neighbor sequence preferences [28] that may underlie
‘A to G’ hyper-editing reported for a wide variety of RNA based viruses [41–43]. A cus-
tom script was written to automate the locating, pooling, and aligning of 4 nucleotides
upstream and downstream of all identified adenosine mutants (see Figure 5A for schematic
representation). These sequence regions were compared against the respective original se-
quences using the Two Sample logo software [81] with two sample t-test without Bonferroni
correction to test for significantly enriched and depleted bases within 9 nucleotides.

4.5. In-Silico Assessment on Protein Thermostability Using FoldX and Rosetta Cartesian_ddg

In silico mutagenesis for Gag was performed on previously modeled compact Gag
structures [14] using PyMOL [82] followed by energy minimization using Swiss-
PdbViewer [83]. For the RT p66, a HIV-1 RT crystal structure (PDB: 3T19) was used.

To evaluate protein thermostability, free energy changes with ∆∆G = ∆Gmutant-
∆Gwild-type were modeled using FoldX5 (Delgado et al., 2019), and Rosetta Cartesian_ddg
Version: 2017.52.58848 [84], with ∆∆G < 0 indicating stabilizing and ∆∆G > 0 indicating
destabilizing effects. It should be noted that the thresholds of difference in free energy
changes, i.e., absolute value of ∆∆G, were used to evaluate the extent of mutational effect
on the protein stability, e.g., |∆∆G| > 0.46 kcal/mol for FoldX 5 (Delgado et al., 2019),
and |∆∆G| > 1.0 kcal/mol for Rosetta energy calculations (Park et al., 2016a).

Structural models were first relaxed using the FoldX RepairPDB prior to mutagenesis
(either with all individual amino acid mutations arising from all ‘A to G’ substitutions or
multiple mutations arising from each hypermutation event) using the BuildModel module
with default parameters. The process was replicated 10 times (numberOfRuns = 10) and
the average ∆G used for comparisons.

For the Rosetta calculations, similar mutagenesis was performed as in the Foldx
process. Cartesian-space refinement were performed (1000 replicates) using the ref2015_cart
score function to first relax the structures. The lowest scoring model was selected for further
calculations. Free energy modeling using the Cartesian_ddg protocol (https://www.
rosettacommons.org/docs/latest/cartesian-ddG) with the ref2015_cart score function was
used to generate 15 replicates for each mutant structure. The average of the lowest 3 scores
were converted into kcal/mol units by multiplying it with the scaling factor α = 0.34 [84].

5. Conclusions

In conclusion, we have established an assay and characterized HIV-1 RT mutations on
HIV-1 Gag, protease, and RT p66 in a safe non-viral environment, allowing for insights into
the mutational bias and mutation rate of HIV in the absence of biological selection pressures.

https://www.rosettacommons.org/docs/latest/cartesian-ddG
https://www.rosettacommons.org/docs/latest/cartesian-ddG
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Such assays can provide deeper insights relevant for drug and vaccine development and
be applied for horizontal understanding to other viruses with deeper insights into their
adaptive trajectories at the sequence and structural levels.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/1422
-0067/22/1/370/s1.
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