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Abstract: The current study was designed to explore the in vitro nephrotoxic potential of four 3,5-
dichloroaniline (3,5-DCA) metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-dichlorophenylhydrox-
ylamine, 3,5-DCPHA; 2-amino-4,6-dichlorophenol, 2-A-4,6-DCP; 3,5-dichloronitrobenzene, 3,5-DCNB)
and to determine the renal metabolism of 3,5-DCA in vitro. In cytotoxicity testing, isolated kidney
cells (IKC) from male Fischer 344 rats (~4 million/mL, 3 mL) were exposed to a metabolite (0–1.5 mM;
up to 90 min) or vehicle. Of these metabolites, 3,5-DCPHA was the most potent nephrotoxicant, with
3,5-DCNB intermediate in nephrotoxic potential. 2-A-4,6-DCP and 3,5-DCAA were not cytotoxic. In
separate experiments, 3,5-DCNB cytotoxicity was reduced by pretreating IKC with antioxidants and
cytochrome P450, flavin monooxygenase and peroxidase inhibitors, while 3,5-DCPHA cytotoxicity
was attenuated by two nucleophilic antioxidants (glutathione and N-acetyl-L-cysteine). Incubation
of IKC with 3,5-DCA (0.5–1.0 mM, 90 min) produced only 3,5-DCAA and 3,5-DCNB as detectable
metabolites. These data suggest that 3,5-DCNB and 3,5-DCPHA are potential nephrotoxic metabo-
lites and may contribute to 3,5-DCA induced nephrotoxicity in vivo. In addition, the kidney can
bioactivate 3,5-DCNB to toxic metabolites, and 3,5-DCPHA appears to generate reactive metabolites
to contribute to 3,5-DCA nephrotoxicity. In vitro, N-oxidation of 3,5-DCA appears to be the primary
mechanism of bioactivation of 3,5-DCA to nephrotoxic metabolites.

Keywords: nephrotoxicity; in vitro; rat; 3,5-dichloroaniline; 3,5-dichlorophenylhydroxylamine;
3,5-dichloroacetanilide; 2-amino-4,6-dichlorophenol; 3,5-dichloronitrobenzene

1. Introduction

Chloroanilines are chemical intermediates commonly used in the manufacturing pro-
cess for many dyes, agricultural chemicals, drugs and industrial chemicals. Exposure
to chloroanilines occurs in occupational settings, via their release or formation during
mammalian metabolism of numerous compounds [1–3], or by environmental degradation
of pesticides [1,4–6]. The detection of chloroanilines in human urine or blood has been used
as a biomarker for exposure to chloroaniline-based pesticides [7–10]. Toxicity associated
with exposure to chloroanilines includes hematotoxicity (e.g., anemia or methemoglobine-
mia) [11–13], splenotoxicity [11,14], hepatotoxicity [14–17], endocrine disruption [18] and
nephrotoxicity [16,19,20]. Chloroanilines are also considered priority pollutants in environ-
mental risk assessment studies because of their potential adverse health effects and release
following pesticide degradation into the environment in agricultural areas [21,22].

Among the three monochlorinated and six dichlorinated anilines, 3,5-dichloroaniline
(3,5-DCA) is the most potent nephrotoxicant in vivo and in vitro [16,19,23]. In vivo expo-
sure to 3,5-DCA in Sprague–Dawley or Fischer 344 rats resulted in an elevated blood urea
nitrogen (BUN) concentration, decreased organic ion transport in proximal tubular cells,
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decreased kidney weight, proteinuria, and hematuria [23,24]. The most severe morpho-
logical changes occur in the renal proximal tubular cells, but the distal tubular cells and
collecting ducts are also affected by 3,5-DCA exposure [23]. Further studies using isolated
kidney cells (IKC) from male Fischer 344 rats demonstrated that concentrations of 1.0 mM
or greater 3,5-DCA exposure for 90 min leads to increased lactate dehydrogenase (LDH)
release, a measure of cytotoxicity [25].

Toxicity of aniline compounds in vivo is mainly due to the formation of toxic metabo-
lites. Based on studies with aniline and some of its chlorinated derivatives, the biotransfor-
mation pathways for these aniline compounds have been clearly established and include
N-oxidation, N-acetylation, and phenyl ring oxidation [13,26–28]. Although the in vivo
metabolism of 3,5-DCA has not been studied in any detail, these biotransformation path-
ways could produce a number of potentially toxic metabolites (Figure 1), as occurs with
other chloroanilines where biotransformation studies have been conducted [26,29,30].
Recent studies by Racine et al. [25] have demonstrated that 3,5-DCA is metabolized to
toxic metabolites via a number of renal enzyme systems. However, it is not clear which
metabolites are produced by kidneys.
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containing Monooxygenase, NAT = N-acetyltransferase.

One potential 3,5-DCA metabolite, 4-amino-2,6-dichlorophenol (4-A-2,6-DCP), has
been evaluated for nephrotoxic potential and is a potent nephrotoxicant in vivo and
in vitro in male Fischer 344 rats [31–33]. A comparative in vitro study of the nephro-
toxic potential of ten mono-, di- and trichloronitrobenzenes in renal cortical slices found
3,5-dichloronitrobenzene (3,5-DCNB) to be the least potent nephrotoxicant among the
dichloronitrobenzenes [34]. To date, there are currently no studies that have explored the
nephrotoxic potential of other putative 3,5-DCA metabolites.

The current study was designed to determine the nephrotoxic potential of three addi-
tional putative 3,5-DCA metabolites that arise from N-acetylation, (3,5-dichloroacetanilide;
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3,5-DCAA), N-oxidation (3,5-dichlorophenylhydroxylamine; 3,5-DCPHA), or phenyl ring
oxidation (2-amino-4,6-dichlorophenol; 2-A-4,6-DCP) (Figure 1) following extra-renal bio-
transformation of 3,5-DCA. The nephrotoxic potential of 3,5-DCNB in the IKC model and its
potential mechanism(s) of bioactivation were explored. In addition, the potential for free radi-
cals/reactive metabolites to contribute to 3,5-DCPHA cytotoxicity was determined. Lastly, a
biotransformation study was conducted to ascertain to what extent 3,5-DCA is biotransformed
in IKC from male Fischer 344 rats and to determine which metabolites are formed.

2. Results
2.1. Time and Concentration Cytotoxicity Relationships for 3,5-DCA Metabolites

To determine the nephrotoxic potential of each 3,5-DCA putative metabolite, concen-
tration and time course studies were conducted in IKC. Exposure to 3,5-DCAA did not
significantly increase LDH release, a marker of cytotoxicity, at any time (60 or 90 min)
or concentration (0–1.5 mM) tested (Figure 2A). In addition, exposure to 2-A-4,6-DCP
did not result in significant increases in LDH release at any concentration tested (up to
1.5 mM) after a 60 or 90 min exposure (Figure 2B). Incubation of IKC with 3,5-DCNB
or 3,5-DCPHA resulted in time and concentration dependent increases in LDH release
for both compounds, although 3,5-DCPHA induced the largest increases in LDH release.
Significant LDH release was seen at 3,5-DCNB concentrations 1.0 or 1.5. mM or greater
after 90 min but at only 1.5 mM after 60 min (Figure 2C). In contrast, 3,5-DCPHA induced
a significant increase in LDH release at 0.25 mM or greater after 60 and 90 min, with the
increases in LDH release observed at 90 min being significantly increased as compared
to respective 60 min increases in LDH release (Figure 2D). Therefore, of the metabolites
tested, 3,5-DCPHA was the most nephrotoxic.

2.2. Renal Biotransformation and 3,5-DCNB Cytotoxicity

Since anilines and nitrobenzenes can be metabolized to each other, further studies
were designed to explore the role of renal biotransformation and free radicals in cytotoxicity
following exposure to 1.0 mM 3,5-DCNB for 60 min. To determine the potential role of
free radicals in 3,5-DCNB cytotoxicity, IKC were pretreated with an antioxidant. Pretreat-
ment with all antioxidants (α-tocopherol, glutathione, ascorbate, and N-acetyl-L-cysteine;
Figure 3) significantly attenuated 3,5-DCNB-induced cytotoxicity.

To explore the role of renal biotransformation in 3,5-DCNB toxicity in IKC, pretreat-
ment with inhibitors of cytochromes P450 (CYPs), flavin-containing monooxygenases
(FMOs), and peroxidases was utilized. The use of CYP inhibitors (Figure 4) showed that two
general CYP inhibitors (piperonyl butoxide [PiBx]; metyrapone) significantly attenuated
3,5-DCNB cytotoxicity. Pretreatment with FMO inhibitors (n-octylamine; methimazole),
and the peroxidase inhibitor mercaptosuccinate, significantly attenuated 3,5-DCBN cyto-
toxicity (Figure 5). Indomethacin, which inhibits the peroxidase activity of cyclooxygenase
tended to reduce 3,5-DCNB-induced LDH release but did not reach a significant difference
(Figure 5).
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DCNB cytotoxicity in isolated kidney cells obtained from male Fischer 344 rats after 60 min. Each bar
represents the mean ± S.E.M. for N = 4–5 separate isolation experiments. * Significantly different
from DMSO control, p < 0.05. ♦ Significantly different from the 1.0 mM 3,5-DCNB value, p < 0.05.
ψ Significantly different from pretreatment value, p < 0.05.

2.3. Antioxidants and 3,5-DCPHA Cytotoxicity

To begin to explore the role of free radicals in 3,5-DCPHA-induced cytotoxicity, IKC
were pretreated with antioxidants (glutathione, ascorbate or N-acetyl-L-cysteine) prior
to exposure to 3,5-DCPHA (0.5 mM). Results show that, in contrast to 3,5-DCNB, 3,5-
DCPHA induced cytotoxicity was partially attenuated with N-acetyl-L-cysteine and fully
protected by glutathione (Figure 6). Ascorbate (1.0 or 2.0 mM) was not effective at reducing
3,5-DCPHA cytotoxicity.
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2.4. 3,5-DCA Metabolism by IKC

The previous comparative cytotoxicity studies were designed to explore the nephro-
toxic potential of putative 3,5-DCA metabolites produced extra-renally. We also examined
how IKC metabolized 3,5-DCA to see which metabolites were directly produced by the
kidney cells. In these experiments, IKC were incubated with either a nontoxic concentration
of 3,5-DCA (0.5 mM) or a cytotoxic concentration (1.0 mM) for 90 min and samples of
media and cells analyzed via HPLC for 3,5-DCA and its metabolites. Retention times for
3,5-DCA and its metabolites, limits of detection, and extraction coefficients are shown in
Table 1 for authentic standards of 3,5-DCA and each metabolite (4-A-2,6-DCP, 2-A-4,6-DCP,
3,5-DCPHA, 3,5-DCAA and 3,5-DCNB).

Table 1. Retention times, limits of detection and extraction efficiency of 3,5-DCA and its metabolites.

Compound Retention
Time (Min)

Limit of
Detection (µg)

Extraction
Efficiency (%)

4-A-2,6-DCP 3.8 0.018 75.8
2-A-4,6-DCP 13.8 0.018 97.8
3,5-DCPHA 24.6 17.8 0.0 *

3,5-DCA 29.4 0.002 89.5
3,5-DCAA 42.6 0.002 96.1
3,5-DCNB 57.7 0.002 79.7

* 3,5-DCPHA rapidly degraded and the pure compound was not extractable.

At both concentrations, the major compound in media and cells at the end of the
incubation period was the parent compound 3,5-DCA. Less than 5% of 3,5-DCA was me-
tabolized to 3,5-DCAA and 3,5-DCNB (Table 2). There was no evidence for the formation
of unconjugated aminochlorophenol metabolites 2-A-4,6-DCP or 4-A-2,6-DCP. 3,5-DCPHA
was not detected, which was not surprising given the highly reactive nature of this metabo-
lite, but the finding that 3,5-DCNB was present in media and cells supports the conclusion
that 3,5-DCPHA was formed and then further oxidized to 3,5-DCNB.

The possibility existed that the aminochlorophenols were formed but metabolized
to sulfate or glucuronide conjugates. To determine if conjugates were formed, 3,5-DCA
(1.0 mM) was incubated with IKC for 45 or 90 min. However, treatment of media or cells
lysates with arylsulfatase or β-glucuronidase did not reveal any free 2-A-4,6-DCP or 4-
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A-2,6-DCP (data not shown). These results suggest that these two metabolites were not
formed at detectable levels or were further oxidized to reactive metabolites (Figure 1).
However, since essentially full recovery of 3,5-DCA equivalents occurred, it is unlikely that
very much, if any, of these metabolites were formed by the kidney cells.

2.5. Effect of Diethyldithiocarbamic Acid (DEDTCA) on 3,5-DCA Metabolism

Previous studies had demonstrated that pretreatment of IKC with CYP2C inhibitors
markedly reduced 3,5-DCA cytotoxicity [25]. One of the most effective inhibitors of 3,5-
DCA toxicity was the CYP2C inhibitor DEDTCA. To examine how DEDTCA affected
3,5-DCA metabolism, IKC were pretreated with DEDTCA (0.1 mM) followed by 3,5-DCA
(1.0 mM) for a 90 min incubation. Determination of 3,5-DCA and 3,5-DCA metabolite levels
revealed that the total level of 3,5-DCA in media and cells was only slightly increased, while
formation of 3,5-DCAA and 3,5-DCNB were reduced (Table 3). There was no 2-A-4,6-DCP,
4-A-2,6-DCP or 3,5-DCPHA detected, which agrees with earlier studies (Table 2).

Table 2. Metabolism of 3,5-DCA in isolated kidney cells (IKC) *.

Compound
0.5 mM 1.0 mM

Percentage of Dose (%)

Media Cells Media Cells

4-A-2,6-DCP ND ND ND ND
2-A-4,6-DCP ND ND ND ND
3,5-DCPHA ND ND ND ND

3,5-DCA 89.31 ± 6.32 6.82 ± 3.33 87.13 ± 4.56 13.19 ± 2.12
3,5-DCAA 1.86 ± 0.42 0.07 ˆ 0.56 ± 0.07 ND
3,5-DCNB 2.80 ˆ 0.41 ˆ 1.18 ± 0.57 # 0.34 ± 0.19 #

Total 93.97 ± 5.52 7.30 ± 3.32 88.83 ± 5.14 13.53 ± 5.14
* IKC were incubated with 3,5-DCA at 0.5 mM (N = 3; nontoxic) or 1.0 mM (N = 4; cytotoxic) for 90 min. Cells and
media were separated and the amount of 3,5-DCA and its metabolites in each fraction was determined by HPLC.
Data are presented as mean ± SE. ˆ Detected in only one sample. # Detected in three samples. ND = not detected.

Table 3. Effect of DEDTCA on 3,5-DCA metabolism in IKC *.

Compound
−DEDTCA +DEDTCA

Percent of Dose (%)

Media Cells Media Cells

3,5-DCA 89.43 ± 5.66 16.01 ± 2.02 91.14 ± 3.04 14.67 ± 1.78
3,5-DCAA 0.50 ± 0.03 0.02 ˆ 0.30 ± 0.05 ND
3,5-DCNB 0.31 ± 0.19 # 0.13 ˆ 0.09 ˆ 0.06 ˆ

* IKC were pretreated with DEDTCA (0.1 mM) for 30 min followed by 3,5-DCA (1.0 mM) and the incubation
continued for 90 min. Values are means ± SE for N = 4 separate experiments. ˆ Only found in one sample. # Only
found in two samples. ND = not detected.

3. Discussion

An important aspect of this study was determining the nephrotoxic potential of
putative extra-renally produced metabolites of 3,5-DCA on renal target cells. These metabo-
lites are predicted to be formed based on the metabolism of aniline and chloroanilines
(Figure 1) [13,26,28,29]. We have previously calculated that a nephrotoxic dose of 3,5-DCA
in a Fischer 344 rat would yield a maximum blood level of ~1.25 mM [25]. Thus, concentra-
tions of metabolites below this concentration could be physiologically relevant. Results
of the current study show that the metabolite arising from N-acetylation of 3,5-DCA, 3,5-
DCAA, possessed a greatly reduced nephrotoxic potential relative to 3,5-DCA. This result
is not surprising and is in agreement with earlier studies with monochloroanilines and
their metabolites which show that N-acetylation results in chloroacetanilide metabolites
with reduced nephrotoxic potential as compared to the parent compound [35,36]. Thus,
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N-acetylation appears to be a detoxification pathway for chloroaniline-induced nephro-
toxicity, including 3,5-DCA. In addition, IKC are able to metabolize 3,5-DCA to 3,5-DCAA
(Table 2). But given the weak nephrotoxic potential of 3,5-DCAA, it is unlikely that this
metabolite contributes to 3,5-DCA induced nephrotoxicity in vitro.

In contrast to 3,5-DCAA, at least one metabolite resulting from phenyl ring oxidation
of 3,5-DCA induces nephrotoxicity. Oxidation of 3,5-DCA at the 4-position, produces 4-A-
2,6-DCP (Figure 1), which is a potent nephrotoxicant in vivo and in vitro [31–33]. In vivo,
4-A-2,6-DCP (0.38 mmol/kg, i.p.) induces marked nephrotoxicity in male Fischer 344 rats
characterized by proteinuria, glucosuria, elevated blood urea nitrogen (BUN) concentration
and kidney weight, and proximal tubular necrosis in the S3 segment [31,32]. In vitro, 4-A-
2,6-DCP reduced uptake of p-aminohippurate (PAH) and tetraethylammonium (TEA) in
rat renal cortical slices at concentrations of 5 µM and 50 µM, respectively [31] and increased
LDH release at 50 µM or higher after 2 h exposure [33]. In IKC, concentrations of 250 µM
or higher and a 90 min exposure are required for 4-A-2,6-DCP to increase LDH release. The
higher concentrations needed to induce cytotoxicity in this model are most likely due to the
presence of albumin in the incubation media for IKC but not in the Krebs–Ringer solution
used in renal cortical slice incubation studies. In this study, 2-A-4,6-DCP, which results
from oxidation at the 2-position of 3,5-DCA, did not increase LDH release at concentrations
up to 1.5 mM and up to a 90 exposure, indicating that 4-A-2,6-DCP was more potent as a
nephrotoxicant than 2-A-4,6-DCP. This finding is in agreement with comparisons of the
nephrotoxic potentials of other 4-amino- and 2-aminophenols [37,38]. Thus, 4-A-2,6-DCP
appears more likely than 2-A-4,6-DCP to contribute to 3,5-DCA-induced nephrotoxicity
in vivo.

In the IKC 3,5-DCA metabolism studies, neither 2-A-4,6-DCA nor 4-A-2,6-DCA were
detected as free metabolites or as glucuronide or sulfate conjugates (Table 2). While it is
possible that small amounts of these aminodichlorophenols were produced, a complete re-
covery of the 3,5-DCA added to the IKC incubation was detected as parent compound plus
other metabolites (Table 2). These results suggest that the kidney is not forming sufficient
aminodichlorophenol metabolites to contribute to 3,5-DCA nephrotoxicity in vitro.

N-Oxidation has been shown to be an important biotransformation pathway of aniline
and chloroaniline metabolism which can contribute to hematotoxicity, and potentially other
toxicities, induced by these compounds [11,39–41]. N-Oxidation of an aniline produces the
phenylhydroxylamine metabolite that is further oxidized to the nitrosobenzene metabo-
lite [39] (Figure 1). The phenylhydroxylamine and nitrosobenzene metabolites can redox
cycle to generate free radicals and oxidize ferrous iron in hemoglobin, and other ferrous iron
containing proteins, to ferric iron. This cycling converts hemoglobin to methemoglobin in
erythrocytes but can also affect the biological activity of other proteins and enzymes that re-
quire a ferrous iron molecule for biological activity. The nitrosobenzene metabolites are also
reactive and can covalently bind to nucleophiles on macromolecules within a cell [42,43].
The nitroso group may be further oxidized to form nitrobenzene metabolites (Figure 1).
Previous studies have demonstrated that 3,5-DCA can induce methemoglobinemia in vivo
and that 3,5-DCPHA (Figure 1) is primarily responsible for this toxicity [40,44,45]. These
findings suggest that 3,5-DCPHA is being produced extra-renally, most likely in the liver,
and moving into the blood to induce methemoglobinemia as occurs with aniline [44,45].
These findings also suggest that the kidney is being exposed to 3,5-DCPHA produced at
extra-renal locations.

The formation of 3,5-DCNB by IKC (Table 2), demonstrates that the kidney can form
3,5-DCPHA from 3,5-DCA. Thus, the kidney can be exposed to 3,5-DCPHA from both intra
and extra-renal formation. 3,5-DCPHA proved to be the most toxic metabolite tested, and
it is likely that 3,5-DCPHA is a major contributor to 3,5-DCA nephrotoxicity, directly to
kidney cells and/or indirectly via hematotoxicity. It is also likely that multiple enzyme
systems are capable of forming 3,5-DCPHA from 3,5-DCA, and these enzyme systems may
also be forming other 3,5-DCA nephrotoxic metabolites [46,47]. N-Oxidation of aniline
compounds has been shown to be catalyzed by CYPs, flavin monooxygenases (FMOs),
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peroxidases and prostaglandin synthetase [48–51]. Previous studies from our laboratory
have shown that 3,5-DCA nephrotoxicity in IKC can be attenuated by inhibitors of these
various enzyme families to varying degrees [25], suggesting that inhibition of one enzyme
family will allow 3,5-DCA to continue to be bioactivated by other metabolizing enzyme
systems. To determine if the inhibitors used by Racine et al. [25] were altering N-oxidation
of 3,5-DCA, the ability of diethyldithiocarbamate (DEDTCA), an inhibitor of CYP2C, and to
a lesser extent CYP2E1, to reduce DCNB formation was examined. DEDTCA was selected
for study because it markedly reduced 3,5-DCA cytotoxicity in IKC [25]. The finding that
DEDTCA reduced the formation of 3,5-DCNB in IKC supports the conclusion that DEDTCA
attenuated 3,5-DCA nephrotoxicity, at least in part, by inhibiting N-oxidation of 3,5-DCA.
Since the CYP2E1 inhibitor isoniazid had no effect on 3,5-DCA cytotoxicity, it appears that
CYP2C enzymes are bioactivating 3,5-DCA to toxic metabolites via 3,5-DCPHA formation.

Cytotoxicity can be produced in vitro in IKC by 3,5-DCPHA via two potential mecha-
nisms; redox cycling to produce free radicals (e.g., superoxide anion radical) and oxidative
stress or production of an alkylating metabolite(s). Racine et al. [25] found that 3,5-DCA-
induced cytotoxicity in IKC was not due to oxidative stress. Reduced and total glutathione
levels were both reduced by 3,5-DCA exposure suggesting formation of a reactive metabo-
lite. In the current study, 3,5-DCPHA cytotoxicity was reduced by nucleophilic antioxidants
(glutathione and N-acetyl-L-cysteine), but not by the non-nucleophilic antioxidant ascor-
bate (Figure 6). These results support one or more reactive, alkylating metabolites of
3,5-DCPHA as the cytotoxic species.

Chlorinated nitrobenzenes are nephrotoxicants in vivo and in vitro [34,52,53]. Rickert
and Held [3] found that hepatic microsomes from male Fischer 344 rats metabolized 3-
chloronitrobenzene by reduction of the nitro group to form 3-chloroaniline, indicating that
metabolism between 3,5-DCA and 3,5-DCNB is reversible. Thus, reduction of 3,5-DCNB
will produce 3,5-dichloronitrosobenzene and 3,5-DCPHA just as oxidation of 3,5-DCA
produces these two metabolites. However, the potential contribution of 3,5-DCNB to
3,5-DCA nephrotoxicity was unclear. If 3,5-DCNB was a nephrotoxic metabolite, it was also
unclear whether biotransformation was required to produce the toxic chemical species. The
current results support 3,5-DCNB as a toxic 3,5-DCA metabolite, potentially contributing
to 3,5-DCA nephrotoxicity following biotransformation.

The current study demonstrates that 3,5-DCNB is a more potent nephrotoxicant
than 3,5-DCA in IKC [25]. In addition, the ability of antioxidants and inhibitors of ox-
idative biotransformation to attenuate 3,5-DCNB cytotoxicity mirrors the effects of these
pretreatments in reducing 3,5-DCA cytotoxicity in IKC [25]. These results suggest that
any 3,5-DCNB formed during 3,5-DCA biotransformation has the potential to contribute
to 3,5-DCA nephrotoxicity via metabolism of 3,5-DCNB being converted back to 3,5-
dichloronitrsobenzene and 3,5-DCPHA. However, the weak activity of the CYP inhibitors
on 3,5-DCNB cytotoxicity suggests that other enzyme systems (e.g., non-CYP nitroreduc-
tases) may be responsible for, or contribute to, the reduction of the nitro group in this
model system. In addition, the ability of the antioxidants to markedly attenuate 3,5-DCNB
cytotoxicity supports the role of nitro group-derived free radicals and/or reactive oxy-
gen/nitrogen species in the nephrotoxic mechanism for this compound. Given the marked
attenuation of 3,5-DCNB nephrotoxicity by some of the inhibitors of oxidative metabolism
(e.g., n-octylamine and mercaptosuccinate), it is unlikely that 3,5-DCNB is directly toxic to
kidney cells but produces its cytotoxicity via metabolites. In addition, the in vitro 3,5-DCA
metabolism studies suggest that the renal cells may not make sufficient 3,5-DCNB to be
responsible for 3,5-DCA cytotoxicity in vitro. It is possible that extrarenal metabolism of
3,5-DCA produces sufficient 3,5-DCNB to contribute to 3,5-DCA-induced nephrotoxicity
in vivo, but the overall contribution of 3,5-DCNB to 3,5-DCA nephrotoxicity will require
further study.

In summary, the results of these studies suggest that extra-renally generated amin-
odichlorophenol metabolites and metabolites arising from N-oxidation have the potential
to contribute to 3,5-DCA nephrotoxicity in vivo, while N-acetylation of 3,5-DCA is a
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detoxification mechanism. In vitro, N-oxidation of 3,5-DCA is the major mechanism of
bioactivation of 3,5-DCA to cytotoxic metabolites, and toxicity is most likely mediated by
3,5-dichloronitrsobenzene and/or 3,5-DCPHA. In addition, 3,5-DCNB-induced nephrotoxi-
city is due to the formation of metabolites, and nephrotoxicity of 3,5-DCNB is also most
likely is mediated by 3,5-dichloronitrsobenzene and/or 3,5-DCPHA.

4. Materials and Methods
4.1. Animals

Male Fischer 344 rats (200–250 g) were obtained from Hilltop Lab Animals, Inc. (Scotts-
dale, PA, USA). Animals were housed two rats per cage with food and water available
ad libitum, with temperature (21–23 ◦C), humidity (40–55%), and light (12 h on/12 h
off) controlled. Prior to use, all animals were allowed at least one week to acclimate in
American Association for Accreditation of Laboratory Animal Care (AAALAC) accredited
animal facilities. All animal use was approved by the Marshall University Institutional
Animal Care and Use Committee (Protocols 447 (5 August 2010) and 531 (1 February 2013)),
and animal use experiments were conducted in accordance with the Guide for the Care
and Use of Laboratory Animals, adopted by the National Institute of Health.

4.2. Chemicals

All chemicals were purchased at the highest purity available from either Fischer
Scientific (Pittsburgh, PA, USA) or Sigma Aldrich (St. Louis, MO, USA), except for 3,5-
dichlorophenylhydroxylamine (3,5-DCPHA), 3,5-dichloroacetanilide (3,5-DCAA), and
2-amino-4,6-dichlorophenol (2-A-4,6-DCP), which were synthesized in our laboratory. 3,5-
DCPHA was synthesized by reduction of 3,5-DCNB using hydrazine-palladium on carbon
via the previously described method of Rondestvedt and Johnson [54] and purified as de-
scribed by Valentovic et al. [55]. Synthesis and purification of 3,5-DCAA was accomplished
using the method of Newell et al. [56] by reacting equal amounts of 3,5-dichloroaniline
and acetic anhydride in the presence of sodium acetate. To prepare 2-A-4,6-DCP, 2,4-
dichlorophenol was nitrated using the method of McMillan et al. [29,57] followed by
reduction of the nitro group to an amino group with sodium hydrosulfite in 10% aqueous
sodium hydroxide according to Newell et al. [56].

4.3. Preparation and Treatment of Isolated Kidney Cells

Isolated kidney cells (IKC) were obtained from untreated male Fischer 344 rats. Male
Fischer 344 rats were selected as the model to obtain isolated kidney cells as the majority
of our previous toxicity data with 3,5-DCA has been obtained in this model. Rats were
anesthetized with pentobarbital (75 mg/kg, i.p.), and IKC prepared via the method of Jones
et al. [58] using collagenase perfusion as described by Racine et al. [25]. Kidney cells isolated
by this technique are enriched in renal cortical cells based on biochemical characterization
and are frequently used in renal toxicology assessments [59–63]. Initial cell viability was
determined to be ~85–90% by lactate dehydrogenase (LDH) release and trypan blue (2%
w/v) exclusion. Prior to incubation, IKC were counted and resuspended in Krebs–Henseleit
(pH 7.37; 25 mM Hepes; 2% w/v bovine serum albumin) buffer at a concentration of
~4.2 million cells/mL. IKC (3 mL) were pre-incubated in 25 mL polycarbonate Erlenmeyer
flasks for 5 min at 37 ◦C under an atmosphere of 95% oxygen/5% carbon dioxide. Following
pre-incubation, cells were exposed to various concentrations of 3,5-DCNB (0.5–1.5 mM),
3,5-DCAA (0.5–1.5 mM), 3,5-dichlorophenylhydroxylamine (3,5-DCPHA; 0.25–1.0 mM),
2-A-4,6-DCP (0.5–1.5 mM), or vehicle (30 µL DMSO) for up to 90 min. At the conclusion of
the allotted incubation period, samples (0.5 mL) were taken for the LDH release assay, as
previously described [20,25].

To determine the role of renal biotransformation in 3,5-DCNB cytotoxicity and free
radicals in 3,5-DCPHA nephrotoxicity, IKC were pretreated with either an antioxidant or an
inhibitor of biotransformation enzyme systems (Table 4) or vehicle (30 µL DMSO) prior to
exposure to 1.0 mM 3,5-DCNB (60 min) or 0.5 mM 3,5-DCPHA (60 min). All concentrations
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and pretreatment times of the antioxidants and renal enzyme inhibitors were based on
previously published studies [20,25].

Table 4. Pretreatments and Conditions *.

Pretreatment
Concentration Pretreatment Time Mechanism of Action

(mM) (Min) or Enzyme Inhibited

α-Tocopherol 1 5 Antioxidant
Ascorbate 1.0 or 2.0 5 Antioxidant

Glutathione 1 30 Antioxidant
N-Acetyl-L-Cysteine 2 30 Antioxidant
Piperonyl Butoxide 1 15 CYP General

Metyrapone 1 5 CYP General
n-Octylamine 2 5 FMO
Methimazole 1 30 FMO
Indomethacin 1 15 Cyclooxygenaase

Mercaptosuccinate 0.1 15 Peroxidase
DEDTCA 0.1 30 CYP2C > CYP2E

* Pretreatments were added to IKC at the concentration and time indicated prior to addition of 3,5-DCA or a 3,5-DCA metabolite [20,25].

4.4. IKC Metabolism of 3,5-DCA
4.4.1. IKC Incubations and Metabolite Isolation

IKC (~4.2 million cells/mL; 3 mL) were incubated with 3,5,-DCA (0.5 or 1.0 mM) in
Krebs–Henseleit (KH) buffer (pH 7.4) for 90 min in a shaking water bath under a 95%
oxygen/5% carbon dioxide atmosphere as described above. The 0.5 mM concentration
of 3,5-DCA is a non-cytotoxic concentration at 90 min, while the 1.0 mM concentration
induces cytotoxicity as evidenced by increased LDH release. At the end of the incubation
period, 1.0 mL samples were collected, and media and cells separated by centrifugation.
The pelleted cells were washed with KH buffer (no bovine serum albumin), and the rinse
was added to the media. Cells were lysed via sonication and protein was precipitated
by methanol (1.0 mL) addition to all samples. Samples were centrifuged (3000 g; 10 min,
4 ◦C) and the supernatant filtered through a 0.45 µ syringe filter and stored at −20 ◦C until
analyzed by HPLC as described below.

4.4.2. Determination of Sulfate and Glucuronide Conjugates

To determine if sulfate or glucuronide conjugates were formed, in some experiments,
media and cell supernatant fractions obtained as described above were treated with β-
glucuronidase (6500 units/mL, final concentration) or arylsulfatase (200 units/mL, final
concentration) + saccaharolactone (20 mM, final concentration) for 18 h (37 ◦C) in 0.1 M
acetate buffer (pH 5.0) to hydrolyze any glucuronide or sulfate conjugates, respectively,
that were formed [26]. Hydrolysis was stopped by the addition of cold methanol (2.4 mL).
The fractions were then filtered and stored until analyzed as described above.

4.4.3. Inhibition of CYP2C Metabolism by DEDCTA

In a separate experiment, cells were pretreated with diethyldithiocarbamic acid
(DEDTCA, 0.1 mM, 30 min pretreatment), a CYP2C inhibitor, before 3,5-DCA addition
to determine which metabolites were decreased with DEDTCA pretreatment. Follow-
ing the 90 min incubation period, cells and media were treated and stored as described
above for the determination of 3,5-DCA concentrations and the concentrations of 3,5-DCA
metabolites formed.

4.4.4. HPLC Determination of Metabolites

Samples (75 µL) of media and lysed IKC were analyzed on a Waters Alliance e2695 HPLC
system (Waters Co., Milford, MA, USA), utilizing a Waters 2489 variable UV/Vis detector at
254 nM. Chromatograms were collected and integrated using Empower 3 software (Waters
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Co., Milford, MA, USA). A Waters X Select HSS T3 C18 column (3.5 µm; 4.6 × 150 mm2)
fitted with a Waters XSelect HSS T3 VanGuard Cartridge (3.5 µm; 3.9 × 5 mm2) was used for
separation of compounds. The mobile phase consisted of 50:50 methanol:water with a flow
rate of 0.75 mL/min. Standard curves, limits of detection, and extraction coefficients were
determined for 3,5-DCA and putative metabolites. Extraction coefficients were determined by
comparing the integration of a 1.0 mM 3,5-DCA or a metabolite sample that had undergone
sample processing (i.e., the addition of methanol and centrifugation) to that of a unprocessed
1.0 mM 3,5-DCA or metabolite sample.

4.5. Statistics

Data are presented as mean ± S.E.M. with an N of 4–5 separate animal experiments,
with the exception of N = 3 in the nontoxic 0.5 mM 3,5-DCA metabolism experiment. Data
between treatments were analyzed by one-way analysis of variance (ANOVA) followed by
a Tukey Test. Significance was determined at p < 0.05. A power analysis was performed
with G * Power software version 3.1.9.7 for F tests, ANOVA (repeated measures, within
factors) with effect size f = 0.85, α error probability = 0.05, power (1-β error probability)
= 0.8 and actual power = 0.832, which determined a sample size of n = 4 was sufficient
with a 95% confidence interval.
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