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Abstract: Achieving a functional cure for chronic hepatitis B virus (HBV) infection or complete
elimination of HBV covalently closed circular DNA (cccDNA) has been challenging in the treatment
of patients with chronic HBV infection. Although novel antivirals are being investigated, improving
HBV-specific adaptive immune responses is also important for durable viral clearance. Tissue-
resident memory CD8+ T (TRM) cells were recently reported as a T-cell population that resides in
peripheral tissues and does not recirculate. TRM cells have been studied in the livers of mice and
humans. Liver TRM cells have distinct characteristics compared to T cells in peripheral blood or
other tissues, which may be associated with the unique microenvironment of the liver. In this review,
we describe the characteristics of liver TRM cells and their implications in chronic HBV infection.
We emphasize that liver TRM cells can be an immunotherapeutic target for the treatment of chronic
HBV infection.
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1. Introduction

Hepatitis B virus (HBV) is a major risk factor for liver cirrhosis (LC) and hepatocellu-
lar carcinoma (HCC). The prevalence of chronic HBV infection is 3.5%, with 257 million
infected people worldwide [1]. Although effective antiviral agents have been developed,
current antiviral treatments do not eliminate covalently closed circular DNA (cccDNA),
a persistent form of the HBV genome, in infected hepatocytes [2]. Furthermore, HBV-
specific immune responses are insufficient for elimination of the virus in chronic HBV
infection [3]. For effective control of HBV, collaboration of the innate and adaptive im-
mune responses is crucial [4]. CD8+ cytotoxic T cells are one of the major players in the
adaptive immune system, which specifically recognizes viral epitopes loaded on major
histocompatibility complex (MHC) class I molecules, thereby eliminating viruses by killing
virus-infected cells or releasing antiviral cytokines [5]. The International Coalition to Elimi-
nate HBV (ICE-HBV) has suggested that future research on HBV immune control is one
of the important aims to achieve a cure for chronic hepatitis B [2]. However, studies that
have tried to restore HBV-specific immune responses have not been successful. In ex vivo
experiments, blocking inhibitory receptors had only partial effects on the restoration of
HBV-specific T-cell [6] and B-cell [7] responses. A recent pilot human trial showed that
blocking programmed cell death-1 (PD-1) had a partial effect in decreasing the level of
HBV surface antigen (HBsAg) [8].

Tissue-resident memory T (TRM) cells were recently identified as a non-circulating
T-cell population that performs frontline antiviral defense in various peripheral organs,
including the liver [9–11]. TRM cells do not egress to the blood circulation, but reside in
peripheral tissues [9–11]. The liver is an immunologically unique organ, with tolerogenic
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features associated with continuous exposure to gut-derived food-related antigens or micro-
bial products [12]. Therefore, the characteristics of liver TRM cells may be distinct compared
to TRM cells in other organs, and understanding them may be helpful to controlling chronic
HBV infection. Recently, several reports have been published regarding liver TRM cells
in mice and humans. In this review, we describe recent studies of liver TRM cells and
discuss whether they could be potential therapeutic targets for the treatment of chronic
HBV infection.

2. General Characteristics of TRM Cells

TRM cells refer to a T-cell population that resides in peripheral organs, does not recircu-
late to the blood, and responds rapidly and robustly to local antigenic stimulation. They are
now considered a memory T-cell subset [9], though they generally exhibit a phenotype of
effector memory T (TEM) cells in terms of CCR7 and CD45RA expression [9–11]. Therefore,
this population broadly includes CD4+ T cells, FoxP3+ regulatory T cells, and innate-like T
cells, such as γδ T cells, natural killer T cells, and mucosal-associated invariant T (MAIT)
cells. However, most studies of TRM cells have defined them as a CD8+ T-cell population
with the typical phenotypes of tissue residency. Therefore, this review mainly focuses on
the CD8+ T-cell population.

TRM cells were first described in mice using parabiosis [13–15] and intravascular
staining [15,16]. Figure 1 shows the representative characteristics of TRM cells compared to
the circulating T-cell population. They generally express CD69 but do not express S1PR1
and KLF2, which prevent T cells from egressing out of the peripheral organ [9–11]. TRM
cells also downregulate molecules associated with homing to the lymph nodes, such as
CD62L and CCR7 [9–11]. Consequently, they can constantly reside in the peripheral tissues
and respond to secondary antigen stimulation, thereby functioning as a frontline protector
against infection. In addition to CD69, the integrin molecule CD103 has been considered
a canonical marker of TRM cells, but some mouse studies have reported that TRM cells
in the liver [17,18] and kidney [19] do not express CD103. PD-1, CD49a, CD101, and
CXCR6 are also known to be upregulated in TRM cells, though their expression levels
are different according to the type of tissue. Cytokines, such as tumor growth factor-β
(TGF-β) and interleukin (IL)-15, play a role in the development of TRM cells [20]. Hobit and
Blimp1 are important transcriptional regulators for the function and maintenance of TRM
cells [17], and the aryl hydrocarbon receptor and Notch signaling are associated with TRM
maintenance [21,22]. Upon antigenic stimulation, such as infection or tumor growth, TRM
cells respond rapidly by proliferating, secreting cytokines such as interferon-γ (IFN-γ),
tumor necrosis factor (TNF), and IL-2, and exerting cytotoxicity. Moreover, they trigger
adaptive and innate immune responses, such as dendritic cell (DC) maturation, NK cell
activation, and B cell recruitment [23]. Therefore, murine studies have revealed that TRM
cells have unique phenotypes and transcriptional programs that are associated with their
local maintenance and function.

Fewer studies have been performed on TRM cells in human tissues due to the difficul-
ties obtaining tissue samples compared to mice and difficulties proving true persistence
within peripheral tissues. However, evidence from human studies is accumulating. In hu-
man TRM studies, CD69 and CD103 have been used to define TRM cells in various peripheral
organs, and phenotypically defined human TRM cells share core characteristics of mouse
TRM cells. Importantly, human studies of TRM cells have revealed associations with disease
activity in infection, cancer, autoimmune diseases, and transplantation [20].
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Figure 1. Characteristics of tissue-resident memory T (TRM) cells. TRM cells express CD69 and 
CD103, though CD103 expression is variable depending on the type of peripheral organ. These 
cells also downregulate KLF2 and S1PR1 and cannot egress to the blood or secondary lymphoid 
organs; therefore, they reside in the peripheral tissues. TRM cells do not express CCR7 and exhibit 
an effector memory T cell (TEM) phenotype or effector memory T cells re-expressing CD45RA 
(TEMRA) phenotype. However, circulating memory T cells also have central memory T (TCM) cells 
that express CCR7 but not CD45RA. CM, central memory; EM, effector memory; EMRA, effector 
memory re-expressing CD45RA. 

3. Liver TRM Cells 
3.1. General Features of Liver T Cells 

Before the concept of TRM cells was established, reports described the characteristics 
of liver T cells, focusing on the mechanism of trapping, activation, and tolerance. An old 
report briefly but comprehensively showed the characteristics of hepatic T-cell responses 
[24]. Activated T cells were trapped in the liver but then underwent apoptosis, suggesting 
that the liver accumulates T cells but also induces their tolerance [24]. 

The retention of circulating T cells within liver sinusoids is first induced by docking 
to platelets, which can attach to sinusoidal hyaluronan in a CD44-dependent manner, and 
then the T cells crawl along the liver sinusoids during hepatocellular antigen recognition 
[25]. Another report demonstrated that the trapping of T cells within liver sinusoids may 
occur via liver sinusoidal epithelial cells (LSECs), Kupffer cells, and hepatic stellate cells 
(HSCs), which upregulate adhesion molecules such as ICAM-1, VCAM-1, and VAP-1 [26]. 
Thus, liver T-cell trapping and crawling within the sinusoids may allow communication 
with other cell populations within the liver. 

Under stable conditions, numerous gut-derived materials enter the liver via the por-
tal vein. Therefore, liver T cells are instructed by cells in the hepatic microenvironment to 
be tolerant. HSCs can restrict hepatic T-cell responses via their enhanced expression of 
programmed death-ligand 1 (PD-L1), which induces T-cell apoptosis [27]. Furthermore, 
mouse HSCs can interfere with CD8+ T cells in an ICAM-1-dependent manner and inhibit 
their activation by antigen-presenting cells, leading to apoptosis [26]. They also contribute 
to the induction of regulatory T (Treg) cell development by retinoic acid and TGF-β secre-
tion [28]. Kupffer cells can expand IL-10-producing antigen-specific Treg cells [29] and 
inhibit DC-induced antigen-specific T-cell activation [30], and this suppression of T-cell 
responses may be associated with the surface expression of PD-L1 [29]. LSECs induce 
CD4+ T cells to differentiate to Treg cells in an IL-10- and PD-1-dependent manner [31,32]. 
Furthermore, antigen presentation on LSECs can induce antigen-specific T-cell tolerance 

Figure 1. Characteristics of tissue-resident memory T (TRM) cells. TRM cells express CD69 and CD103, though CD103
expression is variable depending on the type of peripheral organ. These cells also downregulate KLF2 and S1PR1 and
cannot egress to the blood or secondary lymphoid organs; therefore, they reside in the peripheral tissues. TRM cells do not
express CCR7 and exhibit an effector memory T cell (TEM) phenotype or effector memory T cells re-expressing CD45RA
(TEMRA) phenotype. However, circulating memory T cells also have central memory T (TCM) cells that express CCR7 but
not CD45RA. CM, central memory; EM, effector memory; EMRA, effector memory re-expressing CD45RA.

3. Liver TRM Cells
3.1. General Features of Liver T Cells

Before the concept of TRM cells was established, reports described the characteristics of
liver T cells, focusing on the mechanism of trapping, activation, and tolerance. An old report
briefly but comprehensively showed the characteristics of hepatic T-cell responses [24].
Activated T cells were trapped in the liver but then underwent apoptosis, suggesting that
the liver accumulates T cells but also induces their tolerance [24].

The retention of circulating T cells within liver sinusoids is first induced by docking to
platelets, which can attach to sinusoidal hyaluronan in a CD44-dependent manner, and then
the T cells crawl along the liver sinusoids during hepatocellular antigen recognition [25].
Another report demonstrated that the trapping of T cells within liver sinusoids may occur
via liver sinusoidal epithelial cells (LSECs), Kupffer cells, and hepatic stellate cells (HSCs),
which upregulate adhesion molecules such as ICAM-1, VCAM-1, and VAP-1 [26]. Thus,
liver T-cell trapping and crawling within the sinusoids may allow communication with
other cell populations within the liver.

Under stable conditions, numerous gut-derived materials enter the liver via the portal
vein. Therefore, liver T cells are instructed by cells in the hepatic microenvironment to
be tolerant. HSCs can restrict hepatic T-cell responses via their enhanced expression of
programmed death-ligand 1 (PD-L1), which induces T-cell apoptosis [27]. Furthermore,
mouse HSCs can interfere with CD8+ T cells in an ICAM-1-dependent manner and inhibit
their activation by antigen-presenting cells, leading to apoptosis [26]. They also contribute
to the induction of regulatory T (Treg) cell development by retinoic acid and TGF-β se-
cretion [28]. Kupffer cells can expand IL-10-producing antigen-specific Treg cells [29] and
inhibit DC-induced antigen-specific T-cell activation [30], and this suppression of T-cell
responses may be associated with the surface expression of PD-L1 [29]. LSECs induce CD4+

T cells to differentiate to Treg cells in an IL-10- and PD-1-dependent manner [31,32]. Fur-
thermore, antigen presentation on LSECs can induce antigen-specific T-cell tolerance [33]
via the PD-1/PD-L1 interaction [34]. Hepatocytes can prime CD8+ T cells but induce
BIM-dependent clonal T-cell deletion [35]. Taken together, these features of liver T cells
induced by communication with other cells within the liver may be associated with the
tolerant characteristics of liver T cells.
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3.2. Mouse Liver TRM Cells

The term “liver-resident memory T cell” was first used in a murine study that per-
formed a microarray analysis to identify the unique transcriptional profile of liver CD8+ T
cells induced by malarial immunization [36]. This study revealed distinct transcriptional
profiles of liver T cells compared to the splenic CD8+ T cells, including downregulation of
KLF2, S1PR1, and CD62L, as well as upregulation of CD69 [36]. Another study by the same
group revealed that CXCR6 is important for shaping and maintaining hepatic memory
CD8+ T cells [37].

Mouse TRM cells have been shown to upregulate CD69, and they have common tran-
scriptional signatures, such as Hobit and Blimp1, in all types of peripheral tissues, including
liver TRM cells [17]. This report showed that liver TRM cells also share a transcriptional
signature with other TRM cells, but do not express CD103, which is commonly expressed
by TRM cells from other tissues [17].

A recent report by Fernandez-Ruiz et al. comprehensively showed the characteristics
of mouse liver TRM cells [18]. CD69+ liver TRM cells could be induced by malarial immu-
nization, persist in the liver sinusoids, and patrol the liver sinusoids [18]. Another recent
report revealed that upregulation of LFA-1 is responsible for the patrol and persistence
of liver TRM cells within liver sinusoids [38]. Furthermore, liver TRM cells were essential
for the protective immune responses following malarial immunization via production of
cytokines such as IFN-γ and TNF, and the expression of cytotoxic markers such as CD107a
and granzyme B, which was proven by depletion of liver TRM cells by targeting CXCR3 [18].
Phenotypically, liver TRM cells highly expressed CXCR6, CXCR3, and CD101 but did not
express CD62L and KLRG1 [18]. In addition, this study confirmed that mouse liver TRM
cells do not express CD103 [18]. The lack of CD103 expression in liver TRM cells, unlike
TRM cells from other tissues, may be due to their location in the liver sinusoids, which
is continuous with the blood stream. Furthermore, this characteristic may be associated
with the unique induction mechanism of liver TRM cells compared to other TRM cells; they
can be induced by vaccination or infection outside the epithelial tissues [18,39]. This was
proven by showing that adoptive transfer of in vitro activated T cells results in liver TRM
cells [39], which is reminiscent of the old report that activated T cells can be trapped within
the liver [24]. Taken together, liver TRM cells share core characteristics of the TRM-cell pop-
ulation, but have distinct phenotypic characteristics that may be related to their induction
mechanism and location.

3.3. Human Liver CD69+CD8+ T Cells

Stelma et al. briefly characterized human liver CD69+CD8+ T cells that have tissue-
resident phenotypes for the first time using liver tissue samples [40]. They observed
that >50% of liver CD8+ T cells expressed CD69, and the CD69+ subpopulation down-
regulated S1PR1 and KLF2 compared to the CD69− subpopulation [40]. These cells also
overexpressed CXCR6 and PD-1 and exhibited memory (CD45RA−CD27+) or effector
memory (CD45RA±CD27−) phenotypes. These phenotypic characteristics are consistent
with those of mouse liver TRM cells. However, this report observed different character-
istics than those of mouse liver TRM cells [40]. First, an average of 12.4% of human liver
CD69+CD8+ T cells expressed CD103, whereas the mouse liver CD69+ TRM cells do not
express CD103 [17,18]. Second, although a previous murine study showed that liver TRM
cells express more granzyme B, CD107a, IFN-γ, and TNF upon stimulation than non-TRM
liver TEM cells [18], this human study showed reduced expression of granzyme B and
perforin by liver CD69+CD8+ T cells, showing a hypofunctional cytotoxic capacity [40].
As next steps, we and others attempted to characterize human liver CD69+CD8+ T cells,
dividing them into CD103+ and CD103− subpopulations.

3.3.1. Human Liver CD69+CD103+CD8+ TRM Cells

Pallet et al. described the characteristics of human liver CD69+CD103+CD8+ T
cells (CD103+ subpopulation) in healthy donors and patients with chronic HBV infec-
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tion using samples from liver biopsies, perfusates obtained during liver transplantation
(LT), and tissues obtained during surgery for liver metastases of colorectal cancer [41].
This study investigated the CD103+ subpopulation compared to blood CD8+ T cells and
liver CD69−CD103−CD8+ T cells, and found that the CD103+ subpopulation comprised
~10% of memory CD8+ T cells within the healthy liver [41].

Following confirmation of their location within the liver sinusoids by immunoflu-
orescence, Pallet et al. found that CXCR6 was highly expressed in the CD103+ subpop-
ulation [41]. LSECs, Kupffer cells, and hepatocytes express CXCL16, which is a ligand
for CXCR6 and plays a role in the adhesion, accumulation, and maintenance of intra-
hepatic T cells [42–44]. Therefore, their observation confirmed that CXCR6 expression
may also be an important hallmark of the human liver TRM-cell population. Furthermore,
this report showed that the CD103+ subpopulation has a unique transcriptional signature,
T-betloEomesloBlimp-1loHobitlo [41]. Hobit expression had a converse pattern compared to
mouse liver TRM cells [17], suggesting that human liver TRM cells have distinct characteris-
tics from mouse liver TRM cells and emphasizing the need for detailed characterization of
human liver TRM cells.

Consistent with the TRM cells in other tissues, human liver CD69+CD103+CD8+ TRM
cells highly express PD-1 [41]. As noted above, LSECs and hepatocytes express PD-L1,
which can interact with PD-1, thereby inhibiting the function of T cells. Although the role
of PD-1 expression in liver TRM cells needs to be elucidated, it may be associated with
T-cell-induced liver injury. This is supported by a recent report that PD-L1 expression of
liver-resident NK cells attenuates liver T-cell-induced liver injury [45]. However, regardless
of PD-1 expression, they found similar production of IFN-γ and superior production of IL-2
by the CD103+ subpopulation compared to blood CD8+ T cells and liver CD69−CD8+ T
cells in functional analyses using in vitro stimulation [41]. In ex vivo analyses, the CD103+

subpopulation expressed more perforin than the other subpopulation [41], suggesting that
they were ready to respond to local antigenic simulation and perform cytotoxic functions.
Pallet et al. thoroughly analyzed the characteristics of the human liver CD69+CD103+CD8+

TRM cells, but the characteristics of human liver CD69+CD103−CD8+ T cells—which com-
prise most of the human liver CD69+CD8+ T cells—were not addressed.

3.3.2. Human Liver CD69+CD103−CD8+ TRM-Like Cells

Recently, our group reported the characteristics of human liver CD69+CD103−CD8+

cells (CD103− subpopulation) using liver tissues and perfusates from healthy donors and
LT recipients [46]. Table 1 compares the CD103+ and CD103− subpopulations in terms of
transcription factors, protein expression, function, survival, and antigen specificity. We in-
vestigated the phenotypes of the CD103− subpopulation and found similar expression of
CXCR6 as the CD103+ counterpart, in addition to a similar lack of expression of S1PR1 and
KLF2, suggesting that the CD103− subpopulation also has tissue-resident phenotypes [46].
Distinctively, LFA-1 was significantly upregulated in the CD103− subpopulation, which is
consistent with findings in mouse liver TRM cells [38]. Using immunofluorescence, we con-
firmed that they were also located in the liver sinusoids [46]. These findings indicate that
the CD103− subpopulation has phenotypic characteristics of liver TRM cells. However,
they had intermediate expression of CD49a and high expression of Eomes compared to
their CD103+ counterparts; therefore, whether this population is a bona fide TRM cell
population needs to be elucidated [46]. For this reason, Swadling et al. referred to the
CD103− subpopulation as human liver CD69+CD103−CD8+ “TRM-like” cells [47].

In subsequent functional analyses, the CD103− subpopulation had less cytokine pro-
ductive capacity compared to the CD103+ subpopulation upon anti-CD3 stimulation [46],
which is in line with the tolerant feature of hepatic immune responses. The CD103−

subpopulation highly expressed PD-1, which is similar to their CD103+ counterparts [46],
suggesting that these cells may be affected by PD-L1-expressing cells within the liver.
It may be of interest to investigate whether targeting the PD-1/PD-L1 axis can improve
the function of human liver TRM cells, including the CD103− subpopulation. However,
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the CD103− subpopulation was the major functioning T-cell population in the liver in
terms of numbers, although they are hypofunctional on a per-cell basis. Furthermore,
the CD103− subpopulation was less susceptible to activation-induced cell death than the
CD103+ subpopulation, and presented a terminally differentiated phenotype and shorter
telomere length [46], suggesting that it may be a persisting population over the long term.
Apparently, they may play a role as an immunological sentinel of the liver in terms of their
overall functionality and sustainability.

Table 1. Comparison of the CD103+ and CD103− subpopulations among human liver-resident
CD69+CD8+ T cells.

CD103+ TRM CD103− TRM-like

Frequency among CD69+ cells ~5% ~95%
PD-1 ++ ++

HIF-2α + +++
Tissue residency

S1PR1 − −
KLF2 − −

CXCR6 +++ +++
LFA-1 ++ +++
CD49a ++ +
RUNX3 +++ −
Memory

CCR7 − −
CD45RA − ++

Terminal differentiation
CD57 + ++

KLRG1 − ++
Eomes + +++

Telomere length ++ +
Activation

CD38 + ++
HLA-DR + +

TCR-dependent function, per cell
basis

Cytokine ++ +
Cytotoxicity ++ +

TCR-dependent function, overall
Cytokine + +++

Cytotoxicity + +++
TCR-independent function, per

cell basis
Proliferation ++ +
Cytotoxicity ++ +

TCR-independent function,
overall

Cytotoxicity + ++
Survival

Activation-induced cell death ++ +
FAS ++ +

Antigen specificity
HBV + +
IAV − +
RSV − +
CMV − +
EBV − +

CMV, cytomegalovirus; EBV, Epstein–Barr virus; HBV, hepatitis B virus; HIF-2α, hypoxia-induced factor-2 alpha;
IAV, influenza A virus; PD-1, programmed cell death-1; RSV, respiratory syncytial virus; TCR, T-cell receptor;
TRM, tissue-resident memory T cell. Relative expression or frequency is presented from minimal − to highest +++
for each marker among the CD103+ and CD103− subpopulations.

Interestingly, we found that CD8+ T cells specific for non-hepatotropic viruses such as
cytomegalovirus (CMV), herpes simplex virus (HSV), and Epstein–Barr virus (EBV) were
present in the CD103− subpopulation but not the CD103+ subpopulation [46]. Although
the mechanism is unclear, it may be linked to older studies showing that mouse liver TRM
cells can be induced from activated T cells by antigens that are not located within the liver
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as in the adoptive transfer experiment noted above [18,39]. These findings suggest that
the CD103− subpopulation consists of T cells of heterogeneous origin and may contribute
to bystander T-cell activation and the immunopathogenesis of liver diseases. We recently
showed that bystander-activated CD8+ T cells are associated with liver damage in acute
hepatitis A via IL-15 [48]. Therefore, we investigated whether this major intrahepatic T-cell
population is activated by IL-15, finding that the IL-15-stimulated CD103− subpopulation
can exert cytotoxicity [46]. These findings of bystander activation suggest that the CD103−

subpopulation can act as a double-edged sword in liver immunity.
Considering the unique environment of the liver, we hypothesized that human liver

CD69+CD103−CD8+ TRM-like cells may also be regulated by a distinct transcriptional reg-
ulator. In the transcriptome analyses, we found that hypoxia-induced factor-2α (HIF-2α)
was upregulated in the CD103− subpopulation compared to the CD103+ subpopulation,
and its expression was associated with the function and survival of the CD103− subpopu-
lation [46]. It is possible that the liver also has an hypoxic microenvironment [49], and it
might be associated with the HIF-2α upregulation in the CD103− subpopulation. How-
ever, HIF-1α, which is also upregulated by hypoxia, was not upregulated in the CD103−

subpopulation, suggesting that there may be a distinct mechanism underlying HIF-2α
induction [46]. In addition, although the role of HIF-1α in effector T-cell responses has been
reported previously [50,51], the role of HIF-2α is still unclear. Intriguingly, ex vivo HIF-2α
inhibition reduces function and survival, specifically in the CD103− subpopulation [46].

4. Liver TRM Cells in Chronic HBV Infection

T-cell responses play a crucial role in the clinical outcome of chronic HBV infec-
tion [52]. However, with chronic antigenic stimulation, HBV-specific T cells are functionally
exhausted, and inhibitory molecules such as PD-1, T-cell immunoglobulin and mucin-
domain containing-3 (TIM-3), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4)
are upregulated [53,54]. Serum HBsAg clearance in mice [55] and decreased viral load
by nucleoside analogue (NUC) treatment [56] had a limited effect on the HBV-specific
T-cell responses. In addition, in vivo treatment of anti-PD-1 in patients with chronic HBV
infection resulted in a small degree of HBsAg reduction, and only 1 of 12 patients achieved
HBsAg seroconversion [8], suggesting that additional immunotherapeutic strategies are
needed to improve HBV-specific T-cell responses.

Importantly, studies seeking immunological targets for the treatment of chronic HBV
infection beyond the traditional immune-checkpoint inhibitors are actively under investiga-
tion. Among them, one study reported that CXCL13-mediated intrahepatic CXCR5+CD8+

T-cell accumulation was correlated with a decrease in HBsAg level in a HBV mouse
model [57]. In addition, a recent report using the HBV mouse model revealed that hep-
atic priming of intrahepatic CD8+ T cells induced dysfunctional CD8+ T-cell responses,
which could be restored by IL-2 treatment but not by anti-PD-L1 blockade [58]. These find-
ings suggest liver T cells as a possible treatment target for chronic HBV infection.

The characteristics of HBV-specific CD8+ TRM cells in humans were reported recently.
Pallet et al. [41] first investigated the characteristics of human liver HBV-specific CD8+

T cells and found that the CD103+ subpopulation was enriched in patients with chronic
infection. More than 80% of HBV-specific CD8+ T cells in the liver mostly expressed
CD69, and the proportion was similar for the CD103+ and CD103− subpopulations [41].
Importantly, the frequency of the CD103+ subpopulation inversely correlated with the HBV
viral load [41], suggesting that this subpopulation may play a role in the control of HBV.
Compared to blood CD8+ T cells, liver CD69−CD8+ T cells, or the CD103− subpopulation,
the CD103+ subpopulation produced high levels of IL-2 upon HBV-peptide stimulation [41],
which may further enhance HBV-specific T-cell responses [58]. Furthermore, the CD103+

subpopulation in patients with chronic HBV infection was upregulated PD-1 compared to
healthy controls [41]. Thus, this study emphasized that human liver CD69+CD103+ TRM
cells are a promising target for the treatment of chronic HBV infection [59].
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Our group also recently reported the characteristics of human liver HBV-specific
CD8+ T cells, focusing on the CD69+CD103−CD8+ TRM-like cells [46]. Consistent with the
study by Pallet et al., the CD103− and CD103+ subpopulations had similar frequencies
within liver HBV-specific CD8+ T cells [46]. Importantly, upon HBV-peptide stimulation,
the CD103− subpopulation poorly produced cytokines such as IFN-γ, TNF, and IL-2, on a
per-cell basis [46], though they were the major population producing cytokines in terms
of numbers. Thus, an investigation into the mechanism underlying its hypofunction is of
interest. It is also important to question whether enhancing the function of HBV-specific
CD69+CD103−CD8+ TRM-like cells can control HBV in patients with chronic HBV infection.

Although we focused on the possible protective roles of liver TRM cells in chronic
HBV infection, their pathological features during HBV infection should also be considered.
For example, bystander activation of CD8+ T cells is associated with the liver damage in
acute HAV infection [48], and liver TRM cells comprise non-hepatotropic virus-specific
cells and can be activated and function via IL-15 stimulation [46]. Therefore, liver TRM
cells might also be associated with the liver damage in HBV infection via bystander
activation. Furthermore, our recent study also implicated that the activation of liver
CD69+CD103− TRM-like cells were correlated with the impairment of liver function of LC
patients [46]. As lung TRM cells induced age-associated chronic lung fibrotic sequelae after
viral pneumonia in a mouse experimental study [60], whether liver TRM cells are linked to
the liver fibrosis or cirrhosis in chronic HBV infection should also be proved mechanistically.
Finally, accumulation of tumor-localizing TRM cells predicted survival of patients better
than the frequency of total CD8+ T cells in melanoma [61] and breast cancer [62], although
there is limited data available from HCC patients. Because most HCCs are developed from
the background LC or liver fibrosis in chronic HBV infection, whether liver TRM cells might
be protective or not will be of great importance for the future research.

5. Conclusions

Current NUCs effectively suppress HBV replication. Nevertheless, after successful
NUC treatment, cccDNA persists in infected hepatocytes. Currently, novel targeted antivi-
rals such as HBV entry inhibitors, nucleocapsid assembly modulators, RNA interference
agents, HBsAg release inhibitors, and cccDNA inhibitors are being investigated [60]. Im-
munomodulatory treatments, including interferons, Toll-like receptor agonists, therapeutic
vaccines, and immune-checkpoint inhibitors, are also important to achieve durable viral
clearance and a functional cure [60]. Immunomodulatory strategies are supported by a
recent in vitro study showing that cccDNA can be reduced by IFN-γ and TNF produced
by T cells [61].

The recent studies discussed in this review suggest that HBV-specific liver TRM cells
have unique characteristics, and other strategies in addition to immune-checkpoint in-
hibitors may be needed to improve their function. Furthermore, we need to consider
not only the CD8+ TRM cells discussed in the present review, but also other liver-resident
immune cells, including CD4+ TRM cells and tissue-resident B cells, to understand the intra-
hepatic HBV-specific immune responses and to develop a cure for chronic HBV infection.
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