
 International Journal of 

Molecular Sciences

Article

Transcriptomic Changes of Murine Visceral Fat Exposed to
Intermittent Hypoxia at Single Cell Resolution

Abdelnaby Khalyfa 1,* , Wesley Warren 2, Jorge Andrade 3, Christopher A. Bottoms 4, Edward S. Rice 4,
Rene Cortese 1, Leila Kheirandish-Gozal 1 and David Gozal 1

����������
�������

Citation: Khalyfa, A.; Warren, W.;

Andrade, J.; Bottoms, C.A.; Rice, E.S.;

Cortese, R.; Kheirandish-Gozal, L.;

Gozal, D. Transcriptomic Changes of

Murine Visceral Fat Exposed to

Intermittent Hypoxia at Single Cell

Resolution. Int. J. Mol. Sci. 2021, 22,

261. https://doi.org/10.3390/

ijms22010261

Received: 4 November 2020

Accepted: 24 December 2020

Published: 29 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Child Health, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
rene.cortese@health.missouri.edu (R.C.); gozall@health.missouri.edu (L.K.-G.);
gozald@health.missouri.edu (D.G.)

2 Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; warrenwc@missouri.edu
3 Kite Pharma, Santa Monica, CA 90404, USA; andrade.jorge@gmail.com
4 Informatics Research Core Facility, Life Sciences Center, Missouri School, Columbia, MO 65211, USA;

bottomsc@missouri.edu (C.A.B.); edsrice@gmail.com (E.S.R.)
* Correspondence: khalyfaa@health.missouri.edu; Tel.: +1-573-884-7685

Abstract: Intermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces
metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in
visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcrip-
tional pathways underlying these functional perturbations are unknown. Here, we applied single
nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the
cellular heterogeneity in vWAT following IH exposures mimicking OSA. C57BL/6 male mice were
exposed to IH and room air (RA) for 6 weeks, and nuclei from vWAT were isolated and processed
for snRNA-seq followed by differential expressed gene (DEGs) analyses by cell type, along with
gene ontology and canonical pathways enrichment tests of significance. IH induced significant tran-
scriptional changes compared to RA across 14 different cell types identified in vWAT. We identified
cell-specific signature markers, transcriptional networks, metabolic signaling pathways, and cellular
subpopulation enrichment in vWAT. Globally, we also identify 298 common regulated genes across
multiple cellular types that are associated with metabolic pathways. Deconvolution of cell types in
vWAT using global RNA-seq revealed that distinct adipocytes appear to be differentially implicated
in key aspects of metabolic dysfunction. Thus, the heterogeneity of vWAT and its response to IH at
the cellular level provides important insights into the metabolic morbidity of OSA and may possibly
translate into therapeutic targets.

Keywords: intermittent hypoxia; sleep apnea; OSA; single cell; snRNA-seq; bulk RNA-seq;
deconvolution

1. Introduction

Sleep disordered breathing (SDB), more specifically obstructive sleep apnea (OSA),
has been implicated as an important risk factor and potential cause of the metabolic
syndrome [1–3]. The pathophysiology of the cardiometabolic complications in OSA is still
incompletely understood; however, intermittent hypoxia (IH) as observed in OSA, and
characterized by repetitive short cycles of oxyhemoglobin desaturation and reoxygenation,
likely plays a pivotal role. Furthermore, emerging evidence of a relationship between OSA
and metabolic perturbations, and in particular with alterations in glucose metabolism such
as insulin resistance (IR) and type 2 diabetes (T2D) has been reproducibly reported across
a multitude of studies [4–15], including in healthy volunteers [16–18]. To elucidate the
potential mechanisms implicated in such metabolic derangements, murine models have
been developed that traditionally include one of the major perturbations of OSA, namely
IH [1,19,20].
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The visceral white adipose tissue (vWAT) has emerged as a highly active endocrine
organ, [19]. It plays a key role in metabolism, which is mediated predominantly through
the secretion of multiple hormones, cytokines, chemokines and other proteins, collectively
referred to as adipokines [21,22]. Evidence from the obesity literature has implicated
hypoxia in vWAT as a major driver of metabolic dysfunction and insulin resistance (IR) [23].
Thus, the level of hypoxia in WAT could be further aggravated and its patterning altered
when obese patients also suffer from OSA [19]. Adipose tissue is heterogeneous and
comprised of multiple cell types including adipocytes, preadipocytes, endothelial cells,
stromal cells, and several immune cell subtypes [24,25]. Adipocytes are the major functional
cell type in adipose tissues, making up 20% of total cells. However, about 80% of cells in
adipose tissues include a complex mixture of stromal cells such as fibroblasts, vascular
cells, adipocyte stem cells and immune cells [26–29]. The composition of stromal cells
varies across fat depots, which likely reflects tissue specialization and differences in energy
storage, vascularization, innervation, and metabolism [27,30]. By understanding better
the cellularity of adipose tissue, its variability in the population, and the individual and
collective roles played by these cellular subsets in both health and disease, we should gain
improved insights into the central role of vWAT in metabolic dysfunction induced by IH
mimicking OSA.

Recently, technologies have been developed that allow simultaneous single-nucleus
mRNA sequencing (snRNA-seq) of thousands of cells originating from adipose tissues,
and thereby provide information that is largely unbiased and far more comprehensive than
approaches based on bulk RNA transcriptomic analysis [31–33]. snRNA-seq has provided
unique information and insights into the developmental lineages underlying multicellular
organisms [34–36], has facilitated the discovery of novel cell types, and revealed the
intricacies of multicellular regulatory networks along with interactive gene networks in
both health and disease [37–41]. In addition, these technologies can effectively isolate the
gene regulatory signals from rare cell populations to infer potentially useful determinants
of specific phenotypes, and also serve as disease markers, and can be employed in studies
of cell lineage and regulation of differentiation [42,43]. Two recent studies have reported on
the use of snRNA-seq in adipocytes, either in isolated brown adipocytes or from inguinal
white adipocyte nuclei [44,45]. Furthermore, snRNA-seq was employed in adipose tissues
from murine models and in human subjects [45–50].

To improve our understanding of the perturbations occurring in chronic IH emulating
OSA that lead to insulin resistance, we combined snRNA-seq with bulk vWAT RNA-seq in
a mouse model. We hypothesized that the cell heterogeneity of vWAT in IH would differ
from the control conditions of normoxia, and that such changes within specific cell types
may provide important information that relates to the emergence of insulin resistance
in vWAT.

2. Results
2.1. snRNA-seq Analysis

We used vWAT for snRNA-seq and bulk RNA-seq as shown in Figure 1A, after
ascertaining sample quality that included nuclei purity imaging and cDNA library size
distribution (Figure S1A–C). A featured plot was applied to identify nuclei outliers, and
this plot showed the number of gene counts 20–4500 (Y-axis) and the number of RNA
reads 0−50,000 (X-axis) (Figure S2A). The percentage of measured gene expression in each
nucleus was attributed to mitochondrial genes (Figure S2B) and the number of unique genes
that was found for each nucleus was within expected values for each cell [51] (Figure S2C).
To identify low-quality cells and doublets, we looked at the distribution of the percentage
of mitochondrial genes expressed, unique molecular identifier (UMI) in each cell, and the
number of genes expressed in each cell.
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After quality control scrutiny and exclusion, ten cell types (0–9) were identified in
RA compared to 13 cell types (0–12) in IH (Figure 1B–C), and the heatmap for the top
five genes for each of the cell types is shown in Figure 1D–E. The cell types identified in
vWAT of mice exposed to IH were clearly distinct from mice exposed to RA. The anno-
tation of differentially expressed genes (DEGs) for each cell types (Table 1) showed that
unsurprisingly adipocytes were the most prevalent cell type in both IH and RA groups
(Figure 1B–C). In RA conditions, the following cell types were identified: neurons-1,
smooth muscle cells, adipocytes, fibroblasts, germ cells, macrophages-1, macrophages-2,
endothelial cells, neurons-2, and mesothelial cells. In IH conditions, the following cell types
were identified: germ cells, podocytes, and retinal ganglion cells, B cells, oligodendro-
cyte progenitor cells, macrophages, adipocytes-1, endothelial cells, neurons, adipocytes-2,
adipocytes-3, adipocytes-4, and pericytes.

To gain broader insight into the gene expression changes occurring in vWAT of mice
exposed to IH and RA within each cell type classification, we identified a total of 4810
DEGs across all cell types. Furthermore, to identify genes that are enriched in each specific
cell type, the mean expression levels of each gene were calculated across all cells, then each
gene from each cell was compared to the median expression of the same gene from cells in
all other cells types. The top 5 ranking markers revealed distinct signatures of vWAT as
shown in the heatmap among cell types (Figure 2A and Table 2).
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Figure 1. Single nuclei transcriptomic analysis (snRNA-seq) of murine epidydimal adipose tissues (vWAT) of mice exposed
to IH or RA for 6 weeks. (A) Schema illustrates study design for snRNA-seq and bulk RNA-seq experiments. (B) Uniform
manifold approximation and projection (UMAP) focuses on displaying the neighboring structure of the multidimensional
manifold in few dimensions in vWAT for mice exposed to RA, n = 2. (C) UMAP in vWAT for mice exposed to IH, n = 2. Each
dot corresponds to a single cell. (D) Heatmap for the 5 most enriched genes for each of the cell types in RA. (E) Heatmap for
the 5 most enriched genes for each of the cell types in RA IH. Each cell type is represented by the top 5 genes ranked by
false discovery rate (FDR) adjusted p-value of a Wilcoxon rank sum test between the average expression value for each cell
type against the other average expression of the other cell types. Each column represents the average expression value for
one cell type. Yellow color indicates the top 5 genes for each cell type.
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Table 1. Cell types with their top 5 gene markers for vWAT in mice as separately determined for mice exposed to IH or RA.

Cluster RA Cell Type Gene Markers IH Cell Type Gene Markers

0 Neurons-1 Rbfox1, lgn1, Dnajc6, xph1, Mark1 Germ cells Dgat2, Plin4, Pmepa1,
Adrb3, Acsl1

1 Smooth muscle cells Gpm6a, Il1rapl1, Muc16, Adamtsl1,
Rbfox1 Podocytes Arhgap24, Chrm3,

Egfr Thsd7a, Rtl4

2 Adipocytes Adrb3, Slc1a3, Atp1a2, Chst1, Lipe Retinal ganglion cells Upk1b, Dlgap1, Nkain2,
Asxl3, Lars2

3 Fibroblasts Nova1, Thsd7a, Lama2,
Abca8a, Arhgap24 B cells Dock2, Runx1, Mctp1,

Slc9a9, Rbpj

4 Germ cells Adrb3, Slc27a1, Smoc1, Acsl1, Tshr Oligodendrocyte progenitor
cells

Il1rapl1, Pkhd1l1, Kcnab1,
Rbfox1, Sntg1

5 Macrophages-1 Creb5, Fndc1, Opcml, Fbn1, Pi16 Macrophages Creb5, Gpc6, Fndc1,
Fbn1, Opcml

6 Macrophages-2 Mrc1, Mctp1, F13a1, Slc9a9, Rbpj Adipocytes-1 Adrb3, Plin4, Pmepa1,
Slc1a3, Chst1

7 Endothelial cells Adgrl4, Cyyr1, Mecom,
Cdh13, Etl4 Endothelial cells Cyyr1, Shank3, Adgrl4,

Etl4, Cdh13

8 Neurons-2 Arhgap15, Dock2, Ubash3b,
Ptprc, Alcam Neurons Muc16, Il1rapl1, Gpm6a,

Nlgn1, Rbfox1

9 Mesothelial cells Upk3b, Gas1, Igfbp6,
Igfbp5, Ap4e1 Adipocytes-2 Mctp1, Slc1a3, Chst1,

Adrb3, Slc27a1

10 NA Adipocytes-3 Pmepa1, Chst1, Adrb3,
Slc1a3, D5Ertd579e

11 NA Adipocytes-4 Lgals12, Vegfa, Adrb3,
Slc27a1, Clstn2

12 NA Pericytes Notch3, Abcc9, Sgip1,
Adgrl3, Cacna1c

NA, not available.
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Figure 2. snRNA-seq for the statistically significant differentially expressed genes (DEGs) in vWAT of mice exposed to RA
vs. IH for 6 weeks. (A) Heatmap of the 5 most differentially expressed genes (DEGs) of all 14 cell clusters. Each row of this
heatmap is a gene determined to be a marker for one or more clusters, and each column is a cell. The cells are grouped by
cluster. Each cell type is represented by the top 5 genes ranked by false discovery rate (FDR) adjusted p-value of a Wilcoxon
rank sum test between the average expression per cluster value for each cell type (RA) against the other average subject
expression of the other cell types for IH. Each column represents the average expression value for one cell type in RA vs. IH,
n = 2/condition. (B) Histogram illustrates the gene number, percentage and cell types per cluster in DEGs in RA and IH.
The heatmap shows the upregulated genes (ordered by decreasing p-value) in each cell type and selected enriched genes
used for biological identification of each cluster (scale: Log2 fold change). Yellow color indicates the top 5 genes for each
cell type.



Int. J. Mol. Sci. 2021, 22, 261 5 of 24

Table 2. Cell types with their top 5 gene markers for vWAT in mice as determined from the combined
data for mice exposed to IH or RA.

Cluster Cell Type Gene Markers

0 Smooth muscle cells Adamtsl1, Rbfox1, Il1rapl1, Mast4, Flrt2
1 Enterocytes Muc16, Ano1, Gpm6a, Pkhd1l1, Il1rapl1
2 Macrophages Creb5, Fbn1, Gpc6, Fndc1, Sdk1, Opcml
3 T memory cells, B cells Runx1, Arhgap15, Mctp1, Dock2, Slc9a9
4 Adipocytes-1 Vegfa, Adrb3, Slc7a10, Usp35, Slc1a3
5 Podocytes Arhgap24, Thsd7a, Lama2, Abca8a, Chrm3
6 Luteal cells Lgals12, Slc7a10, Snhg11, Dgat2, Plin4
7 Endothelial cells Shank3, Cyyr1, Adgrl4, Flt1, Nova2
8 Adipocytes-2 Slc1a3, Adrb3, Ghr, Fam13a, Tenm4
9 Germ cells Adrb3, Lgals12, Tshr, Bckdhb, Sorbs1

10 Enterocytes Ftl1, Fth1, mt-Nd2, mt-Nd3, mt-Nd4
11 Oligodendrocytes Notch3, Abcc9, Gipr, Tmem273, Aspn
12 Mesothelial cells Dpp6, Cfap77, Dnah7c, Dnah7b, Crip1
13 Pericytes Pkhd1, Rdh16, Dcdc2a, Adcy8, Ank3

2.2. vWAT Cell Type Composition Following IH and RA Exposures

Following cluster identification across all samples, cellular putative identities were
integrated and resulted into a clear delineation of 14 cell types. These analyses defined the
baseline adipose tissue matrix from largest to smallest as luteal cells (12.3%), endothelial
cells (12.1%), enterocytes (11.3%), oligodendrocytes (10.2%), T memory cells, B cells (10.1%),
germ cells (9.6%), podocytes (7.3%), adipocytes (7.3%), enterocytes (5.3%), smooth muscle
cells (3.5%), mesothelial cells (2.8%), and pericytes (2.8%) (Figure 2B). We found that
adipocytes and endothelial cells constitute the largest proportion (19.4%), while mesothelial
and pericytes cells account for only a small percentage (2.8%) of cells. These findings
suggest that tissue cellularity and metabolic responsiveness may be intimately dependent
on the cross talk between the cells making up vWAT.

2.3. Gene Ontology and KEGG Enrichment Analyses of snRNA-seq Genes

To infer the biological properties of each of the cell types within vWAT in the context
of IH exposures, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment assessments (Tables S1 and S2). GO analysis was performed
on three different aspects including biological process (BP), cellular component (CC) and
molecular function (MF) for all DEGs in all cell types (Table S1A). We also performed
KEGG pathway enrichment analysis for DEGs, and the significant KEGG pathways and
their genes are shown in (Table S2A). For the sake of brevity, we highlight here some of
the salient pathways with potential biological significance in IH, such as: Rap1 signaling
pathway (KEGG:04015), p-value 2.21 × 10−20; focal adhesion (KEGG:04510), p-value 5.04
× 10−20; platelet activation (KEGG:04611), p-value, 9.64 × 10−16; phospholipase D sig-
naling pathway (KEGG:04072), p-value 5.58 × 10−14; regulation of actin cytoskeleton
(KEGG:04810), p-value 1.86 × 10−12, pathways in cancer (KEGG:05200), 2.08 × 10−12; and
PI3K-Akt signaling pathway (KEGG:04151), p-value 3.16 × 10−12 (Table S2A).

We also performed GO and KEGG for each of the cell types, and as would be antici-
pated different cell types exhibited functions that were distinct from each other following
IH exposure. However, some pathways were shared across multiple subpopulations
(Table S1A–O and Table S2A–O). Thus, there appeared to be little functional overlap
between the cell clusters, thereby indicating that each cell subpopulation had a unique
array of functions. For example, cell types (clusters 0–3, smooth muscle cells; entero-
cytes; macrophages; and T memory cells, B cells) exhibited enrichment in genes related to
ECM-receptor interactions, focal adhesion, regulation of actin cytoskeleton, Ras signaling
pathway. However, macrophages in this group also manifested heightened expression
of pathways such as PI3K-Akt signaling, Rap1 signaling, Ras signaling, ECM-receptor
interaction, MAPK signaling, TGF-beta signaling, and EGFR tyrosine kinase inhibitor
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resistance. Cluster 3 (T memory cells) in IH revealed recruitment of pathways underlying
natural killer cell-mediated cytotoxicity, phosphatidylinositol signaling system, cancer,
leukocyte trans-endothelial migration, T cell receptor signaling, VEGF signaling path-
way, MAPK signaling pathway, sphingolipid metabolism and signaling, calcium signaling
pathway, inositol phosphate metabolism, non-small cell lung cancer, and cAMP signaling.
In IH-exposed mice, clusters 4 and 8 (adipocytes) expressed gene pathways specifically
related to metabolic pathways, AMPK signaling, regulation of lipolysis in adipocytes,
insulin resistance and signaling, glucagon signaling, PPAR signaling, adipocytokine sig-
naling, cAMP signaling, beta-alanine metabolism, fatty acid biosynthesis and metabolism,
pyruvate metabolism, PI3K-Akt signaling, sphingolipid signaling, adrenergic signaling,
and HIF-1 signaling. When exploring specific genes within specific relevant pathways
related to metabolic deregulation induced by IH in adipocytes clusters (4 and 8), a high
enrichment of genes involved in the regulation of lipolysis (mmu04923) such as ADRB3,
PLIN1, ADCY5, PDE3B, TSHR, LIPE, and insulin signaling pathway (mmu04910) such as
PRKAR2B, SORBS1, ACACA, PDE3B, LIPE, PCK1. Similarly, in cluster 2 (macrophages)
genes associated with pI3K-Akt signaling pathway (mmu04151), such as AKT3, COIIA2,
CREB5, CSF1, EGFR, FIGF, FN1, and ITGA11 were highly regulated in IH. Similar enhance-
ments in functionally relevant pathways were also identified in other clusters. These data
indicated that IH exposures targeted distinct, highly metabolically active macrophage and
adipocyte populations in vWAT. A comprehensive list of the highly regulated genes for
each pathway is provided in Table S2.

To find cell-type specific gene expression changes in vWAT of mice exposed to IH
compared to RA, genes from each cell type were compared. We found genes associated
with adipogenic differentiation, including master regulators Pparg (cluster 4) and Cebpa
(cluster 10), several genes underlying adipogenesis, such as Klf2 (cluster 7, 10, 11), Ebf1
(clusters 2, 5, 6, 9), and Ebf2 (clusters 2, 5) and common adipocyte markers, including
Pparg (cluster 4, Cebpa (cluster 10), Adipoq (cluster 6, 9, 10), and Lep (clusters 6, 8, 9, 10).
Examples of genes that correlated positively with adipocytes include Pparg, and genes
involved in lipid synthesis, such as Fabp4, Acsl1, and Lpin1, as well as those involved in
mitochondrial electron transport, i.e., Atp5b. Indeed, the KEGG and GO analyses show
that vWAT in IH was enriched in many pathways related to metabolic processes, especially
of lipids, such as oxidative phosphorylation, glycerolipid metabolism, and arachidonic acid
metabolism. Furthermore, when examining adipocyte subtypes (1 and 2) and we found that
DEGs in these cells play an important role in pathways related to metabolic processes such
as AMPK signaling pathway and regulation of lipolysis in adipocytes. In addition, despite
differentiation of transcriptomes, i.e., separate clustering (cell types), for both adipocyte
subtypes, we find overlapping enrichment of genes involved in insulin signaling pathway
such as PRKAG2, HK2, ACACA. Interestingly, we also identified several genes involved in
adipogenesis such as Fabp4 among nonadipocyte cell types (endothelial cells, enterocytes,
and oligodendrocytes), Fasn (enterocytes), Pparg (adipocytes-1, luteal cells, endothelial
cells, adipocytes-2, and germ cells) and Lpl (luteal cells, adipocytes 2, and enterocytes).
In addition, several genes that are involved in lipid mobilization, such as Adrb3, Lipe,
and Pnpla2, and genes associated with adipocytes, such as Nrip1, Lpl, Zbtb20, and pan-
adipocyte genes such as Cd36, Fabp4, and Aqp1 were also highly expressed, suggesting
that these cells may be involved in lipid mobilization and metabolic dysfunction induced
by IH in vWAT.

2.4. Transcription Factors Enrichment by Cell Type

A catalog of transcription factors involved in coordinating metabolic response to IH
and RA is another level of information necessary for disease interpretation. To reveal key
transcription factors associated with DEGs in RA compared to IH of each cell type, we
queried the gene regulatory networks TRANSFAC (https://biit.cs.ut.ee/gprofiler/gost)
database. We first calculated the number of TFs per cell type, and plotted the number of
genes and TFs that were detected in individual and all combined cell types (Figure 3A).

https://biit.cs.ut.ee/gprofiler/gost


Int. J. Mol. Sci. 2021, 22, 261 7 of 24

As shown in Figure 3A, endothelial cells and oligodendrocytes have the highest number
of TFs compared to other cell types. Across all 618 TFs associated with all DEGs, we
found 125 TFs for both adipocyte subtypes in both clusters (Figure 3B). Next, we used the
DEGs that were identified in adipocyte cells (clusters 4 and 8), and inserted them into the
WEB-based GEne SeT AnaLysis Toolkit, WebGestalt, [52] to identify candidate genes for
a disease or set of abnormal phenotypes. The data showed the frequency of each KEGG
(Figure 3C) and phenotypes (Figure 3D) in the feature subset and displayed the ratio of
the number of each KEGG term to the scale of the number of diseases. In adipocyte cell
clusters, several phenotype-based predictions of disease-related genes are associated with
genes in adipocytes, including regulation of lipolysis, adipocytokine signaling, and insulin
resistance (Figure 3D).
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(C) Association of adipocyte DEGs and disease phenotypes in vWAT. (D) Association of adipocyte DEGs and metabolic
KEGG pathways in vWAT.

2.5. Adipocytes and Adipogenesis Genes

Of a set of 25 known adipocyte and adipogenesis genes, we found that 20 genes are
associated with different clusters as shown in Figure 4A. We also show individual gene
expression comparisons for several genes (Figure 4B). We found that LpI, Fabp4, Insr, and
Pparg were ubiquitously expressed in most cells, while Adipoq and Lep were expressed
only in adipocytes subtype.

To further interrogate the cell types and functions within cell types, we used GO and
KEGG pathways. Several KEGG pathways were identified (p < 0.05): signaling pathway;
PPAR signaling pathway; nonalcoholic fatty liver disease (NAFLD); insulin resistance;
insulin signaling pathway; regulation of lipolysis in adipocytes; adipocytokine signaling
pathway; fatty acid biosynthesis; pathways in cancer; and transcriptional mis-regulation in
cancer. The top four significant GO pathways for CC included extracellular space, RNA
polymerase II transcription factor complex, membrane-bounded organelle, lipid droplet,
and for BP: regulation of lipid localization, fatty acid metabolic process, response to organic
substance, and response to endogenous stimulus. For MF pathways, signaling receptor
binding, hormone receptor binding, monocarboxylic acid binding, and carboxylic acid
binding emerged (Table S3). The DEGs of the selected genes were further analyzed using
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pathway functional analysis, and found that these genes are involved in various highly
significant KEGG pathways (p-value 9.80 × 10−10 to low 6.0 × 10−12). Among those highly
significant pathways, AMPK signaling pathway, PPAR signaling pathway, nonalcoholic
fatty liver disease (NAFLD), insulin resistance, insulin signaling pathway, regulation of
lipolysis in adipocytes, adipocytokine signaling pathway, and fatty acid biosynthesis are
noteworthy. Furthermore, we constructed gene networks of adipocyte-selected genes using
the STRING tool (https://string-db.org/) as shown in Figure 4C. We found Cebpa, Fabp4,
lep, Adipoq and pparg were connected as the main network, while klf3 and Retnl3 were
not connected to the same network suggesting differential roles.
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Figure 4. Selected adipocyte and adipogenesis genes in curated list reported in the literature. (A) Heatmap of the selected
gene expression in each snRNA-seq cell type. (B) Violin plots for selected genes and their expression in snRNA-seq in each
cell type, assigned by SingleR, using the expression profiles of individual cells. On the x axis, cluster number and y-axis the
differentially expressed in RA vs. IH. (C) Gene networks of selected genes expressed in adipocytes and metabolic genes in
vWAT of mice exposed to IH compared to RA.

2.6. RNA-seq Analysis of vWAT in RA and IH Mice

To identify and characterize the global differentially expressed genes in vWAT of
mice exposed to IH, we used bulk RNA-seq approaches. We identified a total of 617
DEGs using 1.5-fold changes and Q-value < 0.05 criteria. Of the 617 genes, there were 299
upregulated and 318 downregulated genes between IH vs. RA conditions. Heatmap for
the expression values of the two groups revealed accurate group assignment, indicating
the presence of uniquely and significantly different expression patterns for the DEGs
(Figure 5A). To evaluate the biological roles of the DEGs, GO including MF, BP, and CC;
and KEGG pathway enrichment analyses were applied (Figure 5; Table S4). The GO and
KEGG for the upregulated DEGs is shown in Figure 5B, and for the downregulated DEG is
shown in Figure 5C. In addition, the GO and KEGG for all DEGs are shown in Table S4A,B.
These DEGs are involved in various KEGG pathways, including metabolic pathways, ECM-
receptor interaction, nonalcoholic fatty liver disease (NAFLD), focal adhesion, PI3K-Akt
signaling pathway, regulation of lipolysis in adipocytes, AMPK signaling pathway, insulin
resistance, and sphingolipid metabolism. The list of genes involved in each pathway is
shown in Table S4.

https://string-db.org/
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Figure 5. Bulk RNA-seq in vWAT of mice exposed to IH and RA for 6 weeks. The differentially expressed genes were used
for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and gene network interactions.
(A) Hierarchical clustering analysis of gene expression profiles. Each column indicates a sample, whereas each row indicates
a gene. Red color indicates upregulation and blue color downregulated genes. (B) Gene Ontology (GO) and KEGG for
the upregulated differentially expressed bulk RNA-seq in vWAT from mice exposed to RA or IH for 6 weeks. (C) GO and
KEGG for the downregulated differentially expressed genes. GO analysis was used to assess cellular components (CC),
biological processes (BP), and molecular functions (MF). (D) Gene networks of the top 30 DEGs (15 upregulated and 15
downregulated) to construct gene-gene interactions using the STRING software. n = 3/condition.

We used the top 30 DEGs (15 upregulated and 15 downregulated) to construct gene-
gene interactions using the STRING software. This analysis showed 426 nodes with
1235 edges and average node degree of 7.1, average local clustering coefficient of 0.363,
and protein−protein interaction (PPI) enrichment p < 1.58 × 10−12 (Figure 5D). In this
network, leptin was located at the center of the networks and connected with many other
metabolic genes.

2.7. Transcription Factor Analysis in Bulk RNA-Seq

Next, we also used the TRANSFAC software to identify transcription factors (TFs) for
the DEGs in the bulk RNA-seq data (Figure 6A). First, we used the 617 DEGs, then only
upregulated genes, and thirdly, we used only downregulated genes (Figure 6A). We found
292 TFs in all DEGs, 221 in upregulated and 15 in downregulated genes (Figure 6A). In all
DEGs, we found that the TFs (SP, E2F, and Ap2) were more abundant compared to other
TFs (Figure 6B). In upregulated DEGs, we found TFs (SP, E2F, AP2, and EGR) as being
more abundant (Figure 6C), while in downregulated DEGs, we found that TFs (SP1 and
CTCF) were most abundant (Figure 6D).
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Figure 6. Transcription factors (TFs) in vWAT of the differentially expressed genes (DEGs) in mice exposed to RA and IH in
individual cell types and in all cell types combined. (A) TFs for the DEGs for each cell type. (B) The major TFs identified for
all cell types and adipocytes that were found in adipocyte cell types (clusters 4 and 8). (C) The major TFs were identified in
the up regulated genes. (D) The major TFs were identified in the down regulated genes.

2.8. Comparison of DEGs in snRNA-seq and Bulk RNA-seq

DEGs identified in snRNA-seq and in bulk RNA-seq were compared using a Venn
diagram (Figure 7A). Out of the 617 DEGs in bulk RNA-seq and 4810 DEGs in snRNA-
seq, 319 genes were uniquely expressed in bulk RNA-seq, while 2659 were exclusively
expressed in snRNA-seq, and 298 genes were common DEGs between the two approaches.
Next, we identified the KEGG pathways in these three groups (Figure 7A), and found
that insulin resistance and PI3K-AKT pathways were highly enriched. We further used
gene network analyses to illustrate the molecular regulator and connections for each of
these pathways, insulin resistance (Figure 7B), and PI3K-AKT (Figure 7C). Interestingly, in
PI3K-AK, their three different networks were not connected to one another indicating that
those genes may act individually or can be connected under different conditions.

2.9. Deconvolution of Bulk RNA-seq

We estimated cell-type proportion utilizing CIBERSORTx using the bulk RNA-seq
gene expression data to construct a tissue-specific signature matrix. The cell proportion
estimates produced by CIBERSORTx are shown in Figure 8. Th adipocyte proportions
were 0.51 for RA and 0.73 for IH (p < 0.03). Proportions of the other estimated cell types
ranged from 0.173 for RA and 0.216 for IH for macrophage (M0; p < 0.04), 0.188 for RA and
0.242 for IH for monocytes (p < 0.005), while B-cell displayed 0.072 for RA and 0.186 for IH
(p < 0.007). n = 3/condition.
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Figure 7. Comparison of the DEGs in bulk RNA-seq and snRNA-seq. (A) Venn diagram shows the comparison and overlap
between the two transcriptomic analysis paradigms. The KEGG for 319 genes in bulk RNA-seq, 2659 genes in snRNA-seq
and the overlap between the two systems 298 genes. (B) Gene networks for insulin resistance pathway. (C) Gene networks
for PI3K-Akt signaling pathway. The gene−gene network analysis revealed that the DEGs are involved in various KEGG
functional pathways, such as the AMPK signaling pathway, PPAR signaling pathway, and insulin resistance pathway.
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Figure 8. Deconvolution of bulk RNA-Seq of vWAT in mice exposed to IH compared to RA for
6 weeks. Bar graphs depict the frequency of each cell type in each condition from bulk RNA-seq data,
as proportions of total cells inferred from markers of adipocytes; monocytes; dendritic cells resting;
macrophages (M0); B cells; naïve; mast cells resting; NK cells resting; T cells regulatory (Tregs); T
cells CD4; memory resting; and macrophages M1. Y-axis indicates the estimation of cell subtype
proportion fraction of each cell type, X-axis indicates cell types. A comparison of decomposition
estimates 547 genes from mouse immune system and 712 of mouse adipocytes as described in
the Methods.
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2.10. Verification of Bulk RNA-seq and snRNA-seq Using qRT-PCR

To validate the DEGs of bulk RNA-seq in vWAT, qRT-PCR was performed. The genes
used for validation were identified from the overlap between bulk RNA-seq and snRNA-
seq that were involved in insulin resistance as shown in the Venn diagram (Figure 7A).
We selected six genes that displayed underlying insulin resistance of which three genes
were upregulated and three were downregulated in IH vs. RA conditions (Figure 9).
For the upregulated genes, namely Slc27a1, PIK3CB, and Pik3r1, findings were highly
significant (p-value < 0.001), and for downregulated genes, confirmatory findings were
also corroborated (p-value < 0.05), with estimates similar and concordant with the same
DEGs from bulk RAN-seq data.
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Figure 9. Validation of differentially expressed genes in bulk RNA-seq and snRNA-seq clusters involved in insulin resistance
using qRT-PCR as shown in Venn diagram (Figure 7A). Total RNA was isolated from vWAT and analyzed by qRT-PCR
analysis for 6 genes (3 upregulated and 3 downregulated). qPCR data were normalized to β-actin as an internal control.
Data are presented as mean ± SD; n = 4/experimental condition; * indicates a significant difference at the p < 0.05 level.
n = 4/condition.

3. Discussion

Adipose tissue contains different cell types that play a prominent role in tissue
homeostasis and are susceptible to major perturbations leading to insulin resistance and
metabolic dysfunction following IH exposure mimicking sleep apnea. SnRNA-seq revealed
an unexpectedly broad repertoire of cells that appear to mediate complex functions and
are altered by chronic IH during sleep. Indeed, using snRNA-seq, bulk RNA-seq, and
deconvolution of bulk RNA-seq to investigate the cell-type composition of tissue and
heterogeneity, we clearly identified 14 cell types and among those, 3 specific subpopu-
lations, namely macrophages, adipocytes, and endothelial cells appeared to participate
in a distinct metabolic pathway. In each of the cell types, we identified numerous genes,
which aligned with known GO terms, KEGG enrichment for each cell type, and identified
candidate transcription factors for each cell type. In addition, the deconvolution of bulk
RNA-seq allowed us to identify several cell types that were related to adipocytes, B-cell
macrophages, and T cells. Furthermore, we found that the overlapping DEGs between
snRNA-seq and bulk RNA-seq that enlighten the unique advantages of snRNA-seq relative
to bulk RNA-seq approaches while revealing robust concordance on metabolic function and
insulin resistance pathways. Our findings provide novel cell heterogeneity characterization
of vWAT in mice exposed to IH, and propose that interrogation of complex tissues at the
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level of individual cells is essential to gain increased understanding of alterations in organ
homeostasis and the pathological changes induced by OSA.

The pathophysiology of metabolic complications among OSA patients remains un-
clear; however, the repetitive short cycles of desaturation and reoxygenation, i.e., IH, clearly
play a pivotal role [53]. Hypoxia causes vasoconstriction in the systemic and pulmonary
circulation due to sympathetic nervous system activation, and recurrent hypoxia triggers
systemic inflammation; alteration in transmural, intrathoracic, and cardiac pressure [8,54].
Furthermore, upper airway anatomy and collapsibility remain a fundamentally impor-
tant pathophysiological factor. However nonanatomical factors, such as impaired muscle
responsiveness, low arousal threshold, high loop gain, rostral fluid shifts, lung volume,
additionally play a variable role [55,56]. Recent focused studies in murine models and in
humans indicate that IH mediates some of its detrimental effects through adipose tissue
inflammation and dysfunction [1,20,28,57–65]. However, adipose tissues are comprised
of a heterogeneous collection of cell types [24], such that traditional microarray and bulk
RNA-seq technologies, which provide the average gene expression level of all cells in
each tissue, may not necessarily reflect the unique transcriptomic changes that occur
in each individual cell and as such may provide misleading information as to the roles
played by critical cellular subsets in the emergence of metabolic dysfunction. In contrast,
snRNA-seq enables the quantification of the gene expression distribution across cells and
in individual cells [66,67]. snRNA-seq has been used to study different organs [68–70]
including various regions of the brain [71,72], immune cells [73], and hematopoiesis [74],
as well as interrogate and classify aortic macrophage heterogeneity at the single-cell level
in atherosclerosis [75]. It has been reported that adipocytes are raised from distinct devel-
opmental lineages and exhibit depot-specific differences in adipokine release, lipolysis,
and inflammation [76,77]. Recently, two studies have reported on distinct inguinal white
adipose tissue adipocytes, i.e., brown adipocytes or white adipocytes using scRNA-seq or
snRNA-seq, respectively [44,45]. Here, using snRNA-seq, we identified adipocytes in two
clusters (4 and 8) and macrophages in cluster 2. The cells in cluster 10 were identified as
enterocytes, which are part of the immune system and contain the intracellular organelles,
such as mitochondria, lysosomes, and endoplasmic reticulum, common to all cells. These
enterocytes support normal cellular functions, and enterocytes exist in close association
with tissue macrophages, whose activation during inflammatory processes leads to the re-
lease of nitric oxide (NO) [78]. Endothelial cells (ECs) are well known to play an important
role in adipose tissue inflammation [79], and scRNA-seq approaches used to study ECs
heterogeneity confirm this role [80–82]. Cluster 13 was identified as pericytes, and these
cells are associated with endothelial cells and to stabilize nascent vascular networks [83].

scRNA-seq was also used in the study of mouse adipose tissue progenitor cells [50,84],
and subcutaneous adipose tissues [45]. Mesothelial-like cells were identified in scRNA-
seq [46,50]. These mesothelial cells are within thin membranes containing a layer of
epithelial-like cells surrounding some internal organs, including visceral vWAT depots
which act as a source of adipocyte progenitors during development [85–87]. Furthermore,
mesothelial cells are highly responsive to inflammatory signals and secrete high levels of
IL-6 and IL-8 following stimulation, suggesting a potential role for mesothelial-derived
adipocytes in the inflammatory response in visceral fat [88]. scRNA-seq was used to
characterize immune cell populations during vWAT remodeling, either following ADRB3
stimulation or during diet-induced obesity [49,89]. ADRB3-induced remodeling in vWAT is
associated with the rapid accumulation of adipose tissue macrophages that are involved in
phagocytosis and lipid clearance [90,91]. Recruitment of macrophages exhibit heterogeneity
in phenotypes depending on the type and duration of the stimulus [91,92]. In addition,
macrophages support angiogenesis in other organs, promoting blood vessel formation
or expansion, providing survival and migratory cues to endothelial cells, and facilitating
bridging of vascular growth. In our study, we identified PDGFRA in podocyte cells, and
this marker was identified in cells undergoing active adipogenesis [50]. Furthermore, we
identified retinol-binding protein 4 (RBP4) in germ cells and enterocytes cells as being
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upregulated in IH compared to RA. RBP4 is produced by visceral adipocytes and other
tissues, and can activate and promote adipose tissue inflammation, which contributes to
insulin resistance [93,94]. Furthermore, FN1 gene was found in macrophages, T memory
cells, and B cells and is considered as an extracellular matrix glycoprotein that participates
in cell differentiation, growth, and migration, and is involved in tissue remodeling and
wound healing [95].

Smooth muscle cells (SMCs) play an essential role in maintaining the structural and
functional integrity of blood vessels, and thus are a critical element for blood vessel
construction via tissue engineering approaches. We found that SMCs share similarity with
gene markers such as Adamtsl1, Rbfox1, Il1rapl1, and Mast4. One of the KEGG pathways
that was identified in SMCs was extracellular matrix (ECM)-receptor interaction, and this
ECM in vWAT is associated with insulin resistance, diabetes and obesity, and is crucial
for the expansion of the vWAT to allow necessary and proper structural changes [96,97].
Furthermore, in our bulk RNA-seq data, we found that ECM is the top of KEGG pathway
with highly significant and fold changes. We also found that ECM in other cell types
indicating that ECM may play an important role in metabolic dysfunction.

Bulk RNA-seq profiling is widely used for biomarker discovery, genetics of gene
expression studies, and differential expression analysis [98,99], and can also be used for
identifying cell-type heterogeneity which can play an important role in understanding the
interrelationship between cell-type proportions and complex diseases [100]. Furthermore,
due to the complexity of cell-type composition deconvolution, algorithms can be applied
to computationally estimate cell-type proportions from gene expression data of tissues
or blood [101]. Several studies have utilized cell-type specific gene expression profiles
derived from scRNA-seq for cell composition deconvolution and among those methods
CIBERSORT is highly utilized [102–105]. Accordingly, we used CIBERSORTx to estimate
the fraction of immune systems and adipocytes in RA and IH, and established regulatory
coexpression patterns based on correlation analyses between immune cells, genes, and
signaling pathways. We found that adipocytes were the highly significant cells in IH
compared to RA. The majority of the data that was used in deconvolution was related to
referenced profiles of gene expression from other studies which did not take into account
the fact that the reference expression profiles were often disturbed by microenvironment or
developmental effects or were simply obtained under different conditions or with different
technologies or platforms. In our studies, we used vWAT derived from the same mice for
both snRNA-seq and bulk RNA-seq. Therefore, current findings indicate that cell-type
deconvolution algorithms can be used to make inferences about cell-type composition
at the macrophage and adipocyte level and therefore acquire improved insights into the
perturbations elicited by IH in this setting. Furthermore, another method has been used
to provide cell composition in different tissue using immunohistochemistry, however, im-
munohistochemistry is useful for studying cell type composition and spatial organization,
but is limited by its use of only preselected marker genes, and cannot be used for further
genome-wide expression analysis [106]. It has been reported that some discrepancies
between cell composition revealed by scRNA and deconvolution of bulk RNA-seq. For
example, several methods have been used for a decomposing bulk expression such as
CIBERSORTx, originally designed for microarray data, that utilizes a reference generated
from purified cell populations. A major limitation of this approach is the reliance on sorting
cells to estimate a reference gene expression panel [107]. Most bulk RNA-seq datasets do
not have corresponding snRNA-seq data in the same set of samples. Another limitation
is that the identification of cell-type methods, because of the differences in the capture
of mRNA for bulk RNA-seq and the chemistry used for snRNA-seq technologies, may
present an issue for decomposition models that assume a directly proportional relationship
between the snRNA-seq based reference and observed bulk mixture [107,108]. Recently,
Bisque was suggested for better deconvolution as it is a highly efficient tool for mea-
suring cellular heterogeneity in bulk expression through robust integration of single-cell
information, accounting for biases introduced in the snRNA-seq methods [109].
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Since transcriptional regulation of gene expression plays a critical role in many cellular
processes [110–112], and since identification of functional transcription factors is essential
for understanding gene regulatory mechanisms, we sought to explore putative TFs poten-
tially involved in our gene expression findings. Here, we are identifying candidate TFs in
each cell type and further studies will be followed on their function and epigenetic changes.
In addition, we should emphasize that one TF can regulate different genes in different cell
types [113]. In our current study, we identified all known TFs in both snRNA-seq, either
at the single cell level or in the bulk RNA-seq data. We found that the most abundant
Ts in each cell type were specificity protein (SP). E2F transcription factors which regulate
adipocyte differentiation [114] were also abundantly represented. The zinc finger transcrip-
tion factor early growth response-1 (EGR1) is expressed in adult adipose tissues, where
its overexpression has been linked to obesity in both humans and mouse models [115].
Consistently, EGR1 inhibits lipolysis and promotes fat accumulation in cultured adipocytes
by directly repressing the transcription of the adipose triglyceride lipase gene [116].

The strength of our study was for the first time to show the cell types of eWAT in
mice exposed to IH using both bulk RNA-seq and snRNA-seq technologies from the same
tissues, and comparing and identifying DEGs in both technologies as well as identifying
candidate TFs for each cell type. However, there were some limitations, such as animal
numbers and quantity of adipose tissue for further validation of targets using qRT-PCR.

We also compared DEGs in snRNA-seq and bulk RNA-seq from vWAT of mice ex-
posed to IH, and found a considerable overlap in gene expression between both approaches
in the same tissues from the same mice. These overlapping genes were mainly involved in
metabolic dysfunction and insulin resistance pathways, suggesting a transcriptional mani-
festation of tissue-specificity in adipose tissues that was established during IH exposure.

4. Materials and Methods
4.1. Animals

Non-obese C57BL/6 male mice (Jackson Laboratory, Bar Harbor, ME, USA) were
housed 5/cage at 24 ± 1 ◦C for 12-h light/dark cycle with unrestricted ad libitum access to
standard chow and water.

4.2. Intermittent Hypoxia (IH)

IH was performed according to our standard published protocols [20,62,117,118]. Mice
were exposed to IH or normoxia (room air, RA) for 6 weeks (5 mice/cage) using standard
environmental chambers operated by a commercial system and software (Oxycycler A44XO,
BioSpherix, Parish, NY, USA). The pattern of IH consisted of alternating cycles of 90 s (6.5%
FiO2 followed by 21% FiO2) for 12 h per day (7:00 a.m. to 7:00 p.m.), while RA mice were
exposed to 21% FiO2 throughout. The oxyhemoglobin saturation at the end of the hypoxic
period was reaching 68–75%, mimicking values commonly experienced by OSA patients.

4.3. Epidydimal Visceral White Adipose Tissues (vWAT)

vWAT were dissected from mice exposed to IH or RA for 6 weeks and tissues were
immediately stored at −80 ◦C until processing.

4.4. Single Nuclei RNA-Sequencing (snRNA-seq)

Single nuclei were prepared from vWAT samples (100 mg of tissue each), and nuclei
were isolated using a Dounce homogenizer (VWAR, Batavia, IL, USA) in RNase-free
lysis buffer (10mM Tris-HCl, 10mM NaCl, 3mM MgCl2, 0.1% NP40), followed by lysis
at 4 ◦C for 5 min. The samples were centrifuged at 500× g for 7 min, the supernatant
was removed, and the cell pellet was resuspended in 1 mL resuspension buffer (1xPBS
with 1% BSA and 0.2U/ul RNase Inhibitor). The cells were filtered through a 40 µm
filter (pluriSelect Life Science, El Cajon, CA, USA) and centrifuged at 500× g for 7 min at
4 ◦C. Nuclei counts were performed using a Countess II Automated Cell Counter (Life
Technologies, Carlsbad, CA, USA) to determine the volume suspension to be used in the
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10x Chromium Single Cell Library protocol. A dilution of collected nuclei were also stained
with DAPI (4′,6-diamidino-2-phenylindole, 10 ug/mL) to perform differential interference
phase microscopy (DIC) visualization.

We targeted ~4000 nuclei for each sample, which is consistent with prior studies [119,120],
n = 2/condition. snRNA-seq libraries were constructed using the Chromium Single Cell 3′

library with gel beads in emulsion (GEMs), v3.1 (10× Genomics, Pleasanton, CA, USA),
according to the manufacturer’s protocol. Nuclei suspensions, reverse transcription master
mix, and partitioning oil were loaded on a single-cell chip, and then run on the Chromium
Controller. Libraries were sequenced on an Ilumina NextSeq (Illumina, San Diego, CA,
USA) with target reads per cell of 25,000. cDNA libraries were sequenced using NextSeq
600 (Illumina, San Diego, CA, USA).

4.5. snRNA-seq Bioinformatics Analysis

Reads from single nuclei were initially aligned against the mouse reference (GRCm38)
and quantified using Cell Ranger v3.0.2, and thereafter all analyses were performed with
various R modules of Seurat v3.0 [121]. The quality of raw reads was assessed by FastQC,
followed by trimming of adapters using TrimGalore, and reads that passed the raw data QC
were used for mapping using STAR [122]. A transcript compatibility count per sample was
then calculated. Nuclei with high mitochondrial expressed genes (>20%) were removed, as
high mitochondrial expression often indicates cells undergoing apoptosis. High outliers
for the UMI count per nuclei were also removed as possibly multiple nuclei captured in
a single GEM. Nuclei were filtered based on a minimum number of 200 and a maximum
number of 5000 expressed genes per nuclei.

Aggregated data were subjected to Louvain cluster analysis for cell type identification
using the R package Seurat (v3.0). Each cluster was labeled as the most frequent cell
type across all its marker genes, with each label associated with a gene weighted by
the average log fold change. Dimensionality reduction was then performed using T-
distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation
and projection (UMAP) tools. The detection of differentially expressed genes (DEGs)
was performed using FindMarkers function in Seurat with p-value adjustment using the
Bonferroni correction with p-value < 0.05. DEGs in each cluster were defined by log2 fold
change of ≥ 2 compared with expression in all other clusters. Fold changes of DEGs were
calculated using Seurat log2 (avg. of RA/avg. of IH). The selection of the top 5 DEGs for
each cluster was based on the lowest adjusted p-value in order to identify cell types for
each cluster in both RA and IH conditions. To partition cells into clusters, we used the
smart local moving (SLM) algorithm for modularity-based clustering, and for each data
set, we computed a cell–cell distance matrix constructed on selected aligned canonical
correlation vectors [123]. We constructed a shared nearest neighbor (SNN) graph based
on this distance matrix to use as input to the SLM algorithm, implemented through the
FindClusters function in Seurat. To visualize the resulting clusters in two dimensions,
we used Barnes–Hut implementation of the t-distributed stochastic neighbor embedding
(t-SNE) algorithm) [124]. We used the mouse PanglaoDB39 [125] database to identify cell
type for the top 5 DEG from each cluster.

4.6. RNA-seq Analysis of vWAT

Total RNAs were isolated from vWAT using RNeasy Lipid Tissue Mini Kit with
DNase treatment (Qiagen, Valencia, CA, USA) as described [126]. The RNA quality and
integrity were assessed using the Eukaryote Total RNA Nano 6000 LabChip assay (Agilent
Technologies, Santa Clara, CA, USA) on an Agilent 2100 Bioanalyzer (Thermo Fisher
Scientific, Waltham, MA, USA). RNA samples were quantified by measuring A26 0 nm
on a UV−vis spectrophotometer (ND-1000, NanoDrop Technologies, Wilmington, DE,
USA). The RNA quality was 1.9–2.0 using NanoDrop, and the RNA integrity was 9.8–
9.9 based on the RNA Integrity Number (RIN). The RIN is a software tool that scans
the peaks of RNA electropherograms for RNA intactness (Figure S3). Poly-A enriched
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mRNASeq libraries were prepared following Illumina’s TruSeq Stranded mRNA LT library
preparation protocol (Illumina Inc., San Diego, CA, USA) using 1 µg of total RNA. The
cDNA sequencing libraries were generated from poly-A selected RNA using a TrueSeq
library preparation kit (Illumina, Inc., San Diego, CA, USA). All sequencing was performed
on an Illumina HiSeq 2500 (Illumina, Inc., San Diego, CA, USA).

The raw RNA-seq data were analyzed by using the FastQ Screen Trimmomatic to
remove the adaptor and low-quality sequences, and the filtered reads were mapped
to GRCm38 with HISAT2 [127]. The expression level of each gene was quantified as
FPKM https://toppgene.cchmc.org/ (fragments per kilobase of exon per million mapped
fragments) and counts, and the DESeq2 algorithm ((http://cole-trapnell-lab.github.io/
cufflinks/install/) was applied to filter the different expression genes (DEGs). The sig-
nificance of the differentially expressed genes was identified based on the adjusted raw
p-values to false discovery rate (FDR), <0.05, and fold changes (log2 FC > 1). Gene ontology
(GO, http:\\ www.geneontology.org\) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG, http:\\www.genome.jp\kegg\analyses) were explored to evaluate the biological
function of DEGs [128].

4.7. Functional Annotation and Gene Network Analysis

Gene ontology (GO) enrichment analysis and DAVID annotation were used for func-
tional annotation and pathway analysis, such as for the molecular function (MF), biological
process (BP), and cellular component (CC), and the Kyoto Encyclopedia of Genes and
Genomes (KEGG, http:\\www.genome.jp\kegg\analyses) was consulted to evaluate the
biological functions of DEGs. GO terms with FDR (q < 0.05) were considered significantly
enriched within the gene set. We performed protein−protein network analysis for all the
DEGs using the STRING 10.5 database (https://string-db.org/), a useful tool for under-
standing metabolic pathways, and for predicting or developing genotype−phenotype
associations.

4.8. Deconvolution of RNA-seq to Cell Type Composition

The mean expression levels of the signature genes from bulk RNA-seq were used as
input for CIBERSORTx (http://cibersortx.stanford.edu) to calculate the relative distribution
of the cell populations in vWAT derived from RA and IH conditions. For the CIBERSORTx
cell-type reference we used information provided for leukocyte subtypes [129] and adipose
tissues [25,50]. The deconvolution method generates absolute scores that can be interpreted
as cell fractions for both inter- and intrasample comparisons.

4.9. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated from vWAT of RA and IH mice (n = 4/group) and qRT-
PCR was performed using TaqMan gene expression. Briefly, total RNAs (1µg) were used
to generate cDNA templates using High-Capacity cDNA Fast advance Master Mix, (#
4374966, Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s
instructions in 20 µL reaction as the following conditions: 25 ◦C for 10 min, 37 ◦C for
2 h, 85 ◦C for 5 min and the reaction could remain at 4 ◦C. The cDNA reaction contained
the following: 2 µL of 10 RT Buffer, 0.8 µL of 25X dNTP Random Primers, 1.0 µL of
MultiScribe Reverse Transcriptase, 1.0 µL of RNase inhibitor and 10 µL of nuclease-free
water. Thirty-five ng of cDNA was used in each reaction in a total 25 µL reaction. Reaction
conditions consisted of preincubation at 50 ◦C for 2 min and 95 ◦C for 10 min, followed
by 40 cycles of 95 ◦C for 15 s and 60 ◦C for 1 min. The PCR reaction mix contained the
following: 10 µL of TaqMan fast Advanced Master Mix (2×), 1.25 µL of TaqMan Assay
primer (20×), 9.25 µL nuclease-free water. A series of genes were selected due to their roles
in insulin resistance such as TBC1 domain family, member 4 (Tbc1d4) Mm00557659_m1);
solute carrier family 27 (fatty acid transporter), member 1 (Slc27a1; Mm00449511_m1);
phosphatidylinositol 3-kinase, catalytic, beta polypeptide (Pik3cb; Mm00659576_m1); phos-
phatidylinositol 3-kinase, regulatory subunit, polypeptide 1 (p85 alpha; Mm01282781_m1);

https://toppgene.cchmc.org/
http://cole-trapnell-lab.github.io/cufflinks/install/
http://cole-trapnell-lab.github.io/cufflinks/install/
https://string-db.org/
http://cibersortx.stanford.edu
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insulin receptor substrate 1 (IRS1; Mm01278327_m1); cAMP responsive element bind-
ing protein 3-like 2 (Creb3l2; Mm00618366_m1); phosphoenolpyruvate carboxykinase
1, cytosolic (Pck1; Mm01247058_m1); glutamine fructose-6-phosphate transaminase 2
(Gfpt2); Mm00496565_m1); integrin beta 5 (Itgb5); Mm00439825_m1). qRT-PCR analysis
was performed for these selected transcripts using QuantStudio 3 Real-Time PCR Systems
(ThermoFisher Park, Berkeley, MO, USA). Three housekeeping genes (Thermo Fisher Scien-
tific) were used including mouse B-actin (Mm00607939_s1), mouse 18s (Mm03928990_g1)
and mouse TBP, TATA-Box Binding Protein, (Mm00446971_m1), and B-actin was used
for normalization. We used B-actin in the normalization due to the very minor or no
changes in eWAT between IH versus RA conditions compared to the other 2 housekeeping
genes. Negative controls were used during cDNA reaction including no RNA and also
no polymerase. All experiments were performed in triplicate. The quantification cycle
(Cq) values were averaged and the difference between the housekeeping gene, Cq, and
the gene of interest Cq was calculated to determine the relative expression of the gene of
interest [62,118,130]. Several negative controls were used including: (a) no total RNA to
monitor contamination and a primer-dimer formation that could produce false-positive
results, (b) No reverse transcriptase control to monitor genomic DNA contamination, and
(c) no amplification control to monitor background signal and probe stability. We also
performed amplification efficiency of the genes by dilution of different concentrations of
cDNA (1, 0.2, 0.04, 0.008, and 0.00016) from the same sample using the same qRT-PCR
conditions (Figure S4).

4.10. Statistical Analysis

Data were expressed as means ± standard error (SE) and analyzed by t-tests. Two-
group comparisons were made using two-tailed unpaired Student’s t-tests. Multiple
comparisons were performed by one-way analysis of variance (ANOVA) following Tukey’s
post hoc test (cite). For consistency in comparisons, significance in all figures were denoted
as follows: * p < 0.05, ** p < 0.01, *** p < 0.001. Specific statistical analysis for each experiment
is detailed in the corresponding figure legends.

5. Conclusions

Adipose tissue, an important endocrine organ, is involved in many cardiometabolic
diseases including OSA-induced metabolic morbidities. Current snRNA-seq transcriptomic
data revealed that vWAT heterogeneous cell population is altered by IH and the findings
provide a framework for understanding the role of vWAT in metabolic disease in the
context of OSA. Furthermore, deconvolution of bulk RNA-seq data should also contribute
to our understanding of how IH influences cell-type heterogeneity and its impact in OSA
and metabolic diseases. Our findings revealed a series of selected and integrative pathways
that may possibly translate to identify therapeutic targets for patients with OSA.
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