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Abstract: Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease caused by
mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Skeletal dysplasia and the related
clinical features of MPS IVA are caused by disruption of the cartilage and its extracellular matrix,
leading to a growth imbalance. Enzyme replacement therapy (ERT) with recombinant human GALNS
has yielded positive results in activity of daily living and endurance tests. However, no data have
demonstrated improvements in bone lesions and bone grow thin MPS IVA after ERT, and there is no
correlation between therapeutic efficacy and urine levels of keratan sulfate, which accumulates in
MPS IVA patients. Using qualitative and quantitative proteomics approaches, we analyzed leukocyte
samples from healthy controls (n = 6) and from untreated (n = 5) and ERT-treated (n = 8, sampled
before and after treatment) MPS IVA patients to identify potential biomarkers of disease. Out of
690 proteins identified in leukocytes, we selected a group of proteins that were dysregulated in MPS
IVA patients with ERT. From these, we identified four potential protein biomarkers, all of which may
influence bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-glucosidase
AB, and vitronectin. Further studies of cartilage and bone alterations in MPS IVA will be required to
verify the validity of these proteins as potential biomarkers of MPS IVA.

Keywords: biomarkers; enzyme replacement therapy; lysosomal disorders; proteomics

1. Introduction

Morquio A syndrome, or mucopolysaccharidosis type IVA (MPS IVA, OMIM #253000),
is an autosomal recessive disease caused by mutations in the GALNS gene. A deficiency of
N-acetylgalactosamine-6-sulfatase (GALNS, E.C.3.1.6.4) [1–3] leads to the accumulation
of keratan sulfate (KS) and chondroitin-6-sulfate (C6S) in multiple tissues, mainly bone,
cartilage, heart valves, and cornea. The classical phenotype is characterized by systemic
skeletal dysplasia with incomplete ossification and successive imbalance of growth [4],
including short stature and neck, cervical instability, spinal cord compression, tracheal
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obstruction, prominent chest, kyphoscoliosis, laxity of joints, hip dysplasia, and knock
knees [5,6]. Respiratory failure is the primary cause of death during the second and third
decades of life in untreated patients [7,8].

Currently, two therapies are available for MPS IVA in clinical practice, namely enzyme
replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) [1,9,10].
ERT and HSCT are based on the principle of cross-correction, whereby lysosomal enzymes
are taken up by deficient recipients’ cells and their lysosomes via the mannose-6-phosphate
receptor. ERT with recombinant enzyme GALNS (elosulfase alfa) is an established treat-
ment for MPS IVA. However, like other forms of ERT for lysosomal storage diseases (LSDs),
elosulfase alfa has several limitations. It requires weekly 4–6 h infusions; is cleared rapidly
due to its short half-life (35 min in human, 2 min in mouse) [11–13], it is expensive [13,14],
penetration of the avascular cartilage is limited; and patients can develop an immune
response against the infused enzyme [11,14,15]. In addition, clinical trials of elosulfase alfa
have shown little improvement in bone growth and pathology [16–19]. Recent studies have
demonstrated that the presence of KS, KS sulfation level, chondroitin-6-sulfate levels, and
the presence of collagen type II in blood are potential biomarkers [20] associated with bone
and cartilage disease in MPS IVA. Although urinary KS levels have been measured as a
potential biomarker in clinical trials, there is no proof that decreases in urinary KS reduction
correlate with clinical improvement. Urinary KS originates in the kidneys and does not
reflect the degree of impairment of bone and other relevant tissues in MPS IVA. Therefore,
urinary KS is considered a pharmacokinetic marker but not a surrogate biomarker [20].

Proteomics allows the large-scale identification and quantification of proteins in
biological fluids (serum, urine, saliva, tears, etc.), cells, tissues, or organisms in continuous
change. Among the first proteomic approaches developed are one and two-dimensional
polyacrylamide gel systems (1D SDS-PAGE and 2D SDS-PAGE). These methods provide
a means of monitoring protein purification, protein expression, and post-transcriptional
modifications [20]. Although 1D and 2D SDS-PAGE are commonly used to screen for
putative biomarkers in several disorders, particularly in animal studies [21,22], they have
not been applied to LSDs. Mass spectrometry (MS) is a more recent and accurate proteomics
technology, and allows high-through put protein identification [23,24]. This approach also
enables the characterization of post-transcriptional modifications, such as phosphorylation
and glycosylation, similar to the 2D-PAGE approach [25]. In the last decade, MS has led to
significant advances by increasing the number of potential protein biomarkers of different
diseases [26]. Liquid chromatography (LC) coupled with MS is widely used to search for
disease biomarkers [24] in different biological sample types [26–28].

Most quantitative methods using liquid chromatography-tandem mass spectrometry
(LC-MS/MS) involve labeling of proteins/peptides with heavy and light stable-isotope
pairs (SILAC, iTRAQ). More recently developed label-free quantification techniques rely
on advanced software analysis. One of these techniques is SWATH-MS (sequential window
acquisition of all theoretical mass spectra) analysis [29,30]. This method measures the
concentrations of peptide analytes (10 peptides per protein in SWATH analysis) in two or
more samples, using certain peptides in the samples as an internal standard. By contrast,
other absolute quantification techniques use external peptides as standards to create a
calibration curve. These external peptides are identified by searching using monitoring
methods (monitoring of selected reactions or multiple reactions) [23].

Given that MPS IVA is a dynamic entity that involves alterations in the expression of
multiple proteins, proteomics techniques can provide important biological information that
can help advance our understanding of the underlying pathophysiological mechanisms.
Moreover, proteomics could aid the identification of novel disease biomarkers [28,30,31],
which can facilitate disease diagnosis, prognosis, and monitoring [32–42].

To address the lack of disease-specific protein biomarkers in MPS IVA, we applied
quantitative and qualitative proteomics approaches to peripheral blood cell specimens from
treated and untreated patients with MPS IVA to systematically identify and biochemically
characterize new biomarker candidates.
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2. Results

Leukocytesamplesfrom13 patients with MPS IVA and 6 control subjects were classified
in the three following groups: healthy controls; untreated MPS IVA patients; and ERT-
treated MPS IVA patients, from whom samples were acquired before (ERT-a group) and
24 h after (ERT-b group) treatment. The demographic features of participating MPS IVA
patients are shown in Table 1.

Table 1. Demographics of MPS IVA patients.

Patient
ID Sex

Age at
Diagnosis

(y)
ERT

Age at Start
of Treatment

(y)

Current Characteristics

Age
(y)

Height
(cm)

6 Minute
Walk

Test (m)

FVC
(mL)

FEV1
(mL)

1 F 1 No - 31 98 250 600 500

2 M 2 No - 31 113 305 870 700

3 M 2 No - 21 95 ND * 380 260

4 M 2 No 40 99 ND * 480 360

5 F 4 No - 15 103 341 920 820

6 F 3 No - 29 99 ND * ND ** ND **

7 F 1 No - 18 119 272 110 900

8 M unknown No - 21 103 ND * 920 700

9 M 1 Yes 12 16 100 105 690 450

10 M 2 Yes 2 6 104 450 770 720

11 M 3 Yes 13 18 113.5 472 1390 1330

12 M 3 Yes 11 19 113 234 1350 1160

13 M 5 Yes 18 22 110 344 870 730
Patients 1 and 2 are twin brothers; patients 6 and 7 are brothers * patient cannot walk; ** patient undergoing
ventilation with tracheostomy. Abbreviations: ERT, enzyme replacement therapy; F, female; FEV1, forced
expiratory volume in 1 s; FVC, forced vital capacity; ID, identification, M, male; ND, not determined.

We first performed a qualitative analysis to identify the entire set of proteins expressed
in leukocyte samples using LC-MS/MS technology in data-dependent acquisition (DDA)
mode. Proteins were identified with only 1% error (false discovery rate (FDR) 1%). To
characterize the most significant proteins, we selected those commonly found in all or all
but one sample (n − 1) per group. Subsequently, quantitative analysis was performed
using the SWATH method.

2.1. Qualitative Analysis of Proteins

Table 2 shows the number of proteins identified by LC-MS/MS in individual samples
and the number of proteins commonly found in all or all but one samples. We identified
235 proteins in untreated patients, 164 proteins in health controls, 301 proteins in the ERT-a
group, and 222 proteins in the ERT-b group.
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Table 2. Number of proteins per sample and number of common proteins per group. Only proteins
with FDR < 1% were selected.

Patients and
Control Groups- Sample ID Proteins Identified

Per Sample (n)
Proteins Identified in All or

All but One Samples (n)

Untreated Group

UG 1 460

235

UG 2 330
UG 3 367
UG 4 612
UG 5 NA
UG 6 NA
UG 7 341
UG 8 304

ERT-a Group

ERT-a 1 480

301
ERT-a 2 338
ERT-a 3 369
ERT-a 4 406
ERT-a 5 400

ERT-b Group

ERT-b 1 492

222
ERT-b 2 190
ERT-b 3 437
ERT-b 4 252
ERT-b 5 557

Healthy Control
Group

CG 1 144

164

CG 2 470
CG 3 238
CG 4 286
CG 5 315
CG6 261

Abbreviations: ERT-a, patients sampled before enzyme infusion; ERT-b, patients sampled 24 h after enzyme
infusion; NA, not analyzed (due to very low quantity of leukocytes).

To analyze the distribution of proteins expressed in leukocytes across the different
groups, a Venn diagram was generated (Figure 1). Supplementary Table S1 shows this
same list with the corresponding UniProt codes and names of the identified proteins.
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Figure 1. Venn diagram showing the distribution of proteins in the 4 study groups. Abbreviations:
CG: control group; ERT-a, patients sampled before enzyme infusion; ERT-b, patients sampled 24 h
after enzyme infusion; UG: untreated group.

These proteins were subjected to functional analysis using the FunRich program.
In this analysis, we evaluated proteins implicated in the endosome, lysosomal lumen,
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lysosomal membrane, lysosome, mitochondria, and vesicles, since these organelles are
affected in patients with MPS IVA [42–44] (Figure 2). The percentage of proteins involved
in endosome function was lower in untreated versus control samples, and was higher
in ERT-a and ERT-b samples than in untreated samples, although still lower than that of
control samples. A similar pattern was observed in proteins expressed in the lysosomal
membrane, mitochondrion, and vesicles. By contrast, the percentage of proteins expressed
in the lysosome and lysosomal lumen was lower in ERT-a and ERT-b.
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Further functional analyses performed using the Reactome program allowed us to
identify the metabolic pathways in which these proteins participate. In samples from ERT
treated patients we observed significant differences with respect to untreated patients in
the expression of proteins involved in inflammation pathways, including of leukotrienes,
eoxins, and thromboxane. Expression of proteins involved in the gluconeogenesis pathway
was also partially normalized in MPS IVA patients that received ERT compared to untreated
patients.

2.2. Quantitative Analysis of Proteins by SWATH

To identify dysregulated proteins in leukocyte samples, we performed a quantita-
tive analysis using SWATH. To this end, we generated a protein library consisting of
690 potential biomarker proteins expressed by leukocytes in all groups analyzed. Next, we
performed large-scale targeted protein analysis to quantify the levels of each protein in each
group. In this analysis, we only considered dysregulated proteins with a p-value < 0.05
and a fold change (FC) > 1.4. Table 3 shows the number of dysregulated proteins found for
each SWATH comparison. Also, see Supplementary Table S2.

Table 3. Dysregulated proteins in leukocyte samples from MPSIVA patients. Proteins considered
dysregulated are those with a p-value < 0.05 and a fold change (FC) > 1.4.

Comparison Proteins Downregulated
Compared with Controls

Proteins Upregulated
Compared with Controls

Control vs. Untreated 91 73

Control vs. ERT-a 64 55

Control vs. ERT-b 49 56
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Table 3. Cont.

Comparison Proteins down regulated
compared with untreated group

Proteins upregulated compared
with untreated group

Untreated vs. ERT-a 22 10

Untreated vs. ERT-b 10 23

Comparison Proteins down regulated
compared with ERT-a group

Proteins upregulated compared
with ERT-b group

ERT-a vs. ERT-b 4 12
Abbreviations: ERT-a, patients sampled before enzyme infusion; ERT-b, patients sampled 24 h after enzyme
infusion.

2.2.1. Proteins Down Regulated in MPS IVA Patients Relative to Healthy Controls

We next assessed the distribution of proteins that were downregulated in the untreated,
ERT-a, and ERT-b groups relative to controls (Figure 3).
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Table 4 shows the 91proteins that were down regulated in untreated patients relative
to healthy controls, and indicates the changes observed in these proteins in the ERT-a and
ERT-b groups. These proteins corresponded to the 36 proteins exclusively downregulated
in the untreated group, the 15 downregulated proteins common to the untreated and ERT-a
groups, the 6 proteins common to the untreated and ERT-b groups, and the 34 proteins
common to the untreated, ERT-a, and ERT-b groups (Figure 3). We observed partial
normalization (i.e., proteins remained dysregulated, p > 0.05) of the expression of proteins
involved in the pyruvate metabolic pathway (KPYM, G3P, LDHA, PGK1, LDHB, ODPB
and ALDOA; Table 4, gray rows) and complete normalization (protein expression was
fully restored with treatment; p < 0.05) in some proteins involved in glucose metabolism
(G6PI, PGM1 and G6PD; Table 4, green rows). Expression of most proteins involved in
cytoskeletal organization (MOES, DEST, ARPC3, CORO1A, ANXA1, TPM1, K1C9, K22E,
ARC1B, K2C1, K2C6A, TPM4, and K1C14) was normalized after ERT (Table 4, clear gray
rows), although some remained downregulated (ARP2, ARPC5, ACTB). The following
proteins are also involved in cytoskeletal organization: ADDB, a membrane-cytoskeleton-
associated protein that promotes the assembly of spectrin-actin in a network of actin
filaments (F-actin) and binds to actin monomers (G-actin); CNN2, which is involved in
the regulation and modulation of smooth muscle contraction (Table 4, clear gray rows);
SPTN1, which interacts with calmodulin in a calcium-dependent manner and regulates
the movement of the cytoskeleton in the calcium-dependent membrane; VASP, which is
involved in the remodeling of the cytoskeleton and all of them were normalized after ERT;
and SEPT7, which is required for the normal organization of the actin cytoskeleton, and
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WDR1, which is involved in chemotactic cell migration by restricting the protrusions of the
lamellipodial membrane, were further downregulated after ERT (Table 4, clear gray rows).
Our findings reveal dysregulation of proteins involved in the lysosome/endosome system
in untreated MPS IVA patients. Proteins involved in lysosomal membrane repair (LEG3
and VPS35) were normalized after ERT (Table 4, blue rows). Expression of STXB2 (Table 4,
dark blue rows), which promotes vesicle trafficking and vesicle fusion with membranes in
the SNARE position, was partially normalized in treated leukocytes (FC values decreased
from 2.4 in untreated patients to 1.8 and 1. 6 in ERT-a or ERT-b groups, respectively).
Expression of ubiquitin protein, UB2L3 (Table 4, clear blue rows), which is involved
in vesicle trafficking from the endoplasmic reticulum to the lysosome, it was partially
normalized. Expression of other proteins involved in membrane trafficking (ERP29 and
PICAL; Table 4, dark blue rows) was also normalized after ERT.

Table 4. Downregulated proteins in untreated and ERT-treated MPS IVA patients (ERT-a, ERT-b)
with respect to healthy controls. Proteins considered dysregulated are those with a p-value < 0.05
and a fold change (FC) > 1.4.

UniProt
Code

UniProt
Name Protein Name

Fold Change Relative to Healthy
Controls

Untreated ERT-a ERT-b
P14618 KPYM Pyruvate kinase PKM 0.0537 0.0770 0.1210

P04406 G3P Glyceraldehyde-3-phosphate
dehydrogenase 0.0539 0.0729 0.0632

P00338 LDHA L-lactate dehydrogenase A chain 0.0629 0.1039 0.1176
P00558 PGK1 Phosphoglycerate kinase 1 0.0902 0.1124 0.1742
P07195 LDHB L-lactate dehydrogenase B chain 0.2261 0.2049 0.2358

P11177 ODPB Pyruvate dehydrogenase E1 component
subunit beta. mitochondrial 0.3005 0.2520 0.3246

P04075 ALDOA Fructose-bisphosphatealdolase A 0.4012 0.5957 0.6128
P06744 G6PI Glucose-6-phosphate isomerase 0.1645 0.3401 0.3358
P36871 PGM1 Phosphoglucomutase-1 0.3284 0.2524 0.5816
P11413 G6PD Glucose-6-phosphate 1-dehydrogenase 0.3951 0.4585 0.5714
P26038 MOES Moesin 0.1282 0.1284 0.2848
P60981 DEST Destrin 0.3604 0.2756 0.4310
O15145 ARPC3 Actin-related protein 2/3 complex subunit 3 0.5094 0.4480 0.5276
P31146 CORO1A Coronin-1A 0.1283 0.1418 0.2020
P09493 TPM1 Tropomyosin alpha-1 chain 0.2997 0.6517 0.7882
P35527 K1C9 Keratin. type I cytoskeletal 9 0.3019 0.5949 0.6857
P35908 K22E Keratin. type II cytoskeletal 2 epidermal 0.2940 0.6149 0.8652

O15143 ARC1B Actin-related protein 2/3 complex subunit
1B 0.3132 0.4472 0.4072

P04264 K2C1 Keratin. type II cytoskeletal 1 0.3301 0.6055 0.7358
P02538 K2C6A Keratin. type II cytoskeletal 6A 0.4352 1.0918 2.2909
P67936 TPM4 Tropomyosin alpha-4 chain 0.4602 0.8777 0.5522
P02533 K1C14 Keratin. type I cytoskeletal 14 0.5186 0.8316 0.7752
P61160 ARP2 Actin-related protein 2 0.3608 0.3315 0.3566
O15511 ARPC5 Actin-related protein 2/3 complex subunit 5 0.4050 0.5206 0.4899
P60709 ACTB Actin. cytoplasmic 1 0.3010 0.2164 0.2500
Q99439 CNN2 Calponin-2 0.5653 1.2121 0.9130
P35612 ADDB Beta-adducin 0.4505 0.5356 0.7874
Q13813 SPTN1 Spectrin alpha chain. non-erythrocytic 1 0.6223 0.9501 0.9308
P50552 VASP Vasodilator-stimulated phosphoprotein 0.4809 0.7258 0.6589
O75083 WDR1 WD repeat-containing protein 1 0.6081 0.5059 0.4914
Q16181 SEPT7 Septin-7 0.3998 0.2507 0.3119
P17931 LEG3 Galectin-3 0.3903 0.4969 0.6100

Q96QK1 VPS35 Vacuolar protein sorting-associated protein
35 0.4053 0.3453 0.7819

Q15833 STXB2 Syntaxin-binding protein 2 0.4043 0.5382 0.6145
P68036 UB2L3 Ubiquitin-conjugating enzyme E2 L3 0.3696 0.6336 0.5254
P30040 ERP29 Endoplasmic reticulum resident protein 29 0.5751 0.8206 0.6180

Q13492 PICAL Phosphatidylinositol-binding clathrin
assembly protein 0.6298 0.6427 0.6980

P30049 ATPD ATP synthasesubunit delta. mitochondrial 0.5906 0.8645 0.9240
P25705 ATPA ATP synthasesubunit alpha. mitochondrial 0.3060 0.2776 0.5251
O75390 CISY Citrate synthase. mitochondrial 0.6794 0.5843 0.6636
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Table 4. Cont.

UniProt
Code

UniProt
Name Protein Name

Fold Change Relative to Healthy
Controls

Untreated ERT-a ERT-b
P30044 PRDX5 Peroxiredoxin-5. mitochondrial 0.4486 0.6043 0.5455
P06576 ATPB ATP synthase subunit beta. mitochondrial 0.4890 0.7480 0.7076
Q99798 ACON Aconitatehydratase. mitochondrial 0.5100 0.4129 0.6735

P13804 ETFA Electron transfer flavoprotein subunit alpha.
mitochondrial 0.2472 0.1565 0.1542

P10809 CH60 60 kDa heat shock protein. mitochondrial 0.1905 0.4708 0.3593
P61604 CH10 10 kDa heat shock protein. mitochondrial 0.3779 0.3537 0.3176
P00505 AATM Aspartate aminotransferase. mitochondrial 0.5693 0.4255 0.3930
P40926 MDHM Malate dehydrogenase. mitochondrial 0.6669 0.5397 0.6540
P69905 HBA Hemoglobin subunit alpha 0.2772 0.6311 0.4201
P68871 HBB Hemoglobin subunit beta 0.2063 0.6678 0.3896
P55072 TERA Transitional endoplasmic reticulum ATPase 0.2347 0.1977 0.3911
Q14697 GANAB Neutral alpha-glucosidase AB 0.5454 0.4364 0.4613
P08133 ANXA6 Annexin A6 0.4899 0.7086 0.9723
P09525 ANXA4 Annexin A4 0.4646 0.6825 0.7587
P04083 ANXA1 Annexin A1 0.2010 0.5650 0.6752

P52209 6PGD 6-phosphogluconate dehydrogenase
decarboxylating 0.1136 0.1570 0.2218

P05089 ARGI1 Arginase-1 0.2834 0.4069 0.4421
P29401 TKT Transketolase 0.3432 0.3358 0.2993
Q16762 THTR Thiosulfate sulfurtransferase 0.4924 0.7856 0.8081
P30566 PUR8 Adenylosuccinatelyase 0.2364 0.1361 0.7371
Q00013 EM55 55 kDa erythrocyte membrane protein 0.4414 0.4275 0.6262
P02766 TTHY Transthyretin 0.4808 0.4167 0.5573

Q9H2U2 IPYR2 Inorganic pyrophosphatase2.mitochondrial 0.5533 0.6667 0.7373
Q7L5Y6 DET1 DET1 homolog 0.3518 0.5613 0.6315
P19971 TYPH Thymidine phosphorylase 0.2521 0.2706 0.4983
P00488 F13A Coagulation factor XIII A chain 0.2992 0.3087 0.3043
P06737 PYGL Glycogen phosphorylase. liver form 0.1167 0.1441 0.2094

P62136 PP1A Serine/threonine-protein phosphatase
PP1-alpha catalytic subunit 0.5690 0.4578 0.5951

P30101 PDIA3 Protein disulfide-isomerase A3 0.5598 1.0088 1.1788
P55786 PSA Puromycin-sensitive aminopeptidase 0.4389 0.6256 0.6560
P07741 APT Adenine phosphoribosyltransferase 0.2659 0.2516 0.3201
Q06323 PSME1 Proteasome activator complexsubunit 1 0.3035 0.4744 0.4342
P08571 CD14 Monocyte differentiation antigen CD14 0.4434 0.3594 1.0551
P02652 APOA2 Apolipoprotein A-II 0.3696 0.2974 0.8084

P30086 PEBP1 Phosphatidylethanolamine-binding protein
1 0.5324 0.6353 0.8049

P17612 KAPCA cAMP-dependent protein kinase catalytic
subunit alpha 0.2921 0.2831 0.4253

P01860 IGHG3 Immunoglobulin heavy constant gamma 3 0.5132 0.4999 0.4892
Q5VTE0 EF1A3 Putative elongation factor 1-alpha-like 3 0.3466 0.3686 0.4249
Q9NTK5 OLA1 Obg-like ATPase 1 0.1099 0.3431 0.2186
P62826 RAN GTP-binding nuclear protein Ran 0.1277 0.1178 0.3363
O00299 CLIC1 Chloride intracellular channel protein 1 0.2541 0.4800 0.6103
P38606 VATA V-type proton ATPase catalytic subunit A 0.3386 0.4063 0.3411
P31948 STIP1 Stress-induced-phosphoprotein 1 0.3071 0.5992 0.5741
Q15366 PCBP2 Poly(rC)-binding protein 2 0.4584 0.3282 0.4541
P61978 HNRPK Heterogeneous nuclear ribonucleoprotein K 0.5087 0.5807 0.6304

P09651 ROA1 Heterogeneous nuclear ribonucleoprotein
A1 0.5798 0.6174 0.6532

P26583 HMGB2 High mobility group protein B2 0.1873 0.4159 0.6264
P16402 H13 Histone H1.3 0.0761 0.2883 0.2277
P16401 H15 Histone H1.5 0.0896 0.7384 1.0462

P40199 CEAM6 Carcinoembryonic antigen-related cell
adhesion molecule 6 0.2537 0.4984 0.7378

Q92882 OSTF1 Osteoclast-stimulating factor 1 0.2963 0.6296 0.9094
Fold-change values in red indicate proteins that were not significantly dysregulated compared with healthy
controls (p > 0.05). For more details, Supplementary Table S3. Protein related to metabolic pathway of pyruvate
is shown in grey, glucose metabolism in green, cytoskeleton organization in clear gray, lysosome membranes
reparation in blue, vesicle traffic and vesicle fusion in dark blue, oxygen transport in dark pink, mitochondrial
organelle in pink, N-glycan metabolism pathway in yellow, DNA binding in clear orange, metabolite interconver-
sion activity in dark green, metabolic and cellular process in dark orange, catalytic activity or proteins related to
transport in purple and other proteins in white.
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We observed post-treatment normalization of the expression of several proteins in-
volved in mitochondrial energy activity, assembly, or function (Table 4, pink rows) (ATPD,
ATPA, CISY, PRDX5, ATPB), although others remained downregulated after ERT (ETFA,
CH60, CH10, AATM, MDHM). TERA, which is involved in the formation of the transi-
tional endoplasmic reticulum (tER), it was partially normalized only in the ERT-b group.
GANAB, a catalytic subunit of glucosidase II of Glc2Man9GlcNAc2 oligosaccharide, acts
as an immature precursor of glycoproteins involved in the N-glycan metabolism pathway,
and was down regulated relative to healthy controls in all MPS IVA patient groups (Table 4,
yellow rows). We also observed normalization after ERT of the expression of cytoplasmic
and extracellular proteins (HBA, HBB) involved in oxygen transport and of proteins impli-
cated in DNA binding (H13, H15). Proteins involved in the interconversion of metabolites,
including hydrolases, dehydrogenases, transketolases, and isomerases (6PGD, ARGI1,
TKT, THTR, PUR8, EM55, TTHY, IPYR2, DET1) were normalized after ERT (Table 4, dark
gray rows). Among proteins involved in metabolic and cellular processes we observed
normalization of PDIA3 and PSA; partial normalization of APT, PSME1, CD14, APOA2,
PEBP1, and KAPCA; and no change in the expression of IGHG3 and EF1A3 (Table 4, dark
pink rows). Several proteins with catalytic activity or transport-related functions showed
partial normalization of expression after ERT (OLA1, RAN, CLIC1), although one such
protein (VATA) showed no changes in expression (Table 4, orange rows). Proteins with
DNA-binding functions (STIP1, PCBP2, HNRPK, ROA1, HMGB2) were partially or fully
normalization after ERT (Table 4, clear red rows). Similarly, partial normalization of ex-
pression was observed for CEAM6, which belongs to the carcinoembryonic antigen-related
cell adhesion molecule family, and OSTF1, which participates in bone resorption, interacts
with secretion factors during bone formation, and participates in osteoclast development
(Table 4, white rows).

Dysregulated proteins for which partial or complete normalization was observed
after ERT are shown in the interaction diagrams in Figure 4. Figure 4A depicts the string
network analysis of all 91 proteins that were downregulated in untreated MPS IVA patients
relative to healthy controls. The results of the same analysis performed after treatment
reveal a less complex network, given that many proteins were normalized by ERT.
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Coronin 1A (CORO1A) is a crucial component of the cytoskeleton of highly mobile
cells. This protein is involved in the invagination of large pieces of the plasma membrane
and in the formation of protrusions of the plasma membrane, thereby contributing to cell
locomotion. We carried out an interactome study using STING. As shown in Figure 5,
we observed that CORO1A interacts with other specific proteins such as OSTF1, which
participates in bone resorption and enhances osteoclast formation. In bone, CORO1A also
regulates cathepsin K, which promotes degradation of collagen I and II.
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Figure 5. STRING analysis of the CORO1A interactome. Interactions among proteins found CORO1A
and OSTF1, where participated ARP family proteins.

Figure 6 shows the mean values of the area obtained for each individual sample in each
group for CORO1A and GANAB proteins. GANAB is a catalytic subunit of glucosidase
II that sequentially cleaves the two innermost alpha-1,3-linked glucose residues from
the Glc(2)Man(9)GlcNAc(2) oligosaccharide precursor of immature glycoproteins. This
protein is associated with the N-glycan metabolism pathway, which in turn is involved in
glycan metabolism.
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2.2.2. Proteins Upregulated in Untreated MPS IVA Patients Relative to Untreated Patients
and Controls

We next identified proteins that were upregulated in the healthy control, ERT-a, and
ERT-b groups relative to the untreated MPS IVA group (Figure 7).
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Table 5 lists the 73 proteins that were upregulated in MPS IVA patients relative to
healthy controls. We quantified the FC in the expression of these proteins relative to
healthy controls to determine whether their expression was normalized with treatment.
Expression of proteins involved in the organization of cellular components (Table 5, light
blue rows) was normalized after treatment (except for ARAP1). Similar effects were
observed for proteins involved in the cellular response to stimulus (Table 5, light green
rows) and proteins expressed in components of the lysosome (Table 5, light pink rows).
Other proteins that showed normalization of expression after ERT included those involved
in extracellular matrix (ECM) binding and cellular adhesion (Table 5, light orange rows),
and in the function of organelles such as the endoplasmic reticulum, Golgi apparatus,
and mitochondria (Table 5, purple rows). Similarly, ERT resulted in normalization of the
expression of proteins expressed in secretory granules and in small subcellular vesicles
formed in Golgi apparatus (Table 5, dark blue rows), and partial or complete normalization
of proteins involved in transport (Table 5, dark green rows).

Table 5. Proteins upregulated in untreated and ERT-treated MPS IVA patients relative to healthy
controls. Proteins considered dysregulated are those with a p-value < 0.05 and a fold change
(FC) > 1.4.

UniProt
Code

UniProt
Name Protein Name

Fold change Relative to Healthy
Controls

Untreated ERT-a ERT-b

P30405 PPIF Peptidyl-prolylcis-transisomerase F.
mitochondrial 1.8656 0.9764 1.2728

P62318 SMD3 Small nuclear ribonucleoproteinSm D3 2.1112 1.8227 1.5860
Q9H4B7 TBB1 Tubulin beta-1 chain 2.6765 1.4412 1.5400
P61224 RAP1B Ras-related protein Rap-1b 2.8033 1.2182 1.1940
P14780 MMP9 Matrix metalloproteinase-9 3.1051 1.7732 1.5370
P08567 PLEK Pleckstrin 1.4669 1.0482 1.0934

Q6DRA6 H2B2D Putative histone H2B type 2-D 8.3208 2.3169 1.3557
Q9BTM1 H2AJ Histone H2A.J 8.8293 2.3197 1.3487
Q99879 H2B1M Histone H2B type 1-M 9.9891 2.1137 1.4663
P62805 H4 Histone H4 12.0044 3.0822 2.1018

Q6UX71 PXDC2 Plexin domain-containing protein 2 2.0905 1.0293 1.0988
Q8WWA1 TMM40 Transmembrane protein 40 4.9507 1.5721 1.2002
P62314 SMD1 Small nuclear ribonucleo protein Sm D1 2.3589 1.9495 1.7400
P20338 RAB4A Ras -related protein Rab-4A 1.5322 2.1434 1.0633

Q96P48 ARAP1 Arf-GAP with Rho-GAP domain. ANK
repeat and PH domain-containing protein 1 2.036 1.8559 1.3848
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Table 5. Cont.

UniProt
Code

UniProt
Name Protein Name

Fold change Relative to
Healthy Controls

Untreated ERT-a ERT-b
P01137 TGFB1 Transforming growth factor beta-1 proprotein 2.336 1.0245 1.2298
P05106 ITB3 Integrin beta-3 1.6777 1.0676 0.9028
P02775 CXCL7 Platelet basic protein 3.1669 1.0947 1.0450
P41218 MNDA Myeloid cell nuclear differentiation antigen 3.2656 1.7116 0.7412
P02776 PLF4 Platelet factor 4 3.9596 1.3654 1.3027
P11234 RALB Ras-related protein Ral-B 2.004 1.1184 1.0789
P12838 DEF4 Neutrophil defensin 4 2.4608 2.3711 1.2386
P59666 DEF3 Neutrophil defensin 3 8.9484 3.7253 1.5188
O14773 TPP1 Tripeptidyl-peptidase 1 1.4441 1.1461 1.0245
Q8NBS9 TXND5 Thioredoxin domain-containing protein 5 1.5722 1.0267 1.2345
P24158 PRTN3 Myeloblastin 2.0115 1.8480 1.4986
P50990 TCPQ T-complexprotein 1 subunittheta 2.0416 1.2148 1.2408
P12724 ECP Eosinophil cationic protein 2.4191 1.0259 0.5594
P17213 BPI Bactericidal permeability-increasing protein 3.3966 1.5635 1.2036
P05164 PERM Myeloperoxidase 5.511 2.0122 1.2871
P20160 CAP7 Azurocidin 7.2103 2.0481 1.1568
Q13231 CHIT1 Chitotriosidase-1 2.1411 2.0308 1.7411
P00387 NB5R3 NADH-cytochrome b5 reductase 3 2.4463 1.7933 1.2666
P23229 ITA6 Integrin alpha-6 1.8854 1.0913 0.6926
P21926 CD9 CD9 antigen 1.9864 1.0081 0.9969

Q9Y6C2 EMIL1 EMILIN-1 2.4765 1.1540 1.2063
P04004 VTNC Vitronectin 4.0358 3.1389 4.1505
P07996 TSP1 Thrombospondin-1 2.0331 1.0455 1.0711

Q6UX06 OLFM4 Olfactomedin-4 2.8132 2.4717 2.1722
Q15084 PDIA6 Protein disulfide-isomerase A6 1.4635 1.0387 1.1286
P04839 CY24B Cytochrome b-245 heavy chain 1.5946 1.6427 1.2274

Q9HDC9 APMAP Adipocyte plasma membrane-associated protein 1.615 1.3920 1.3258
P61769 B2MG Beta-2-microglobulin 1.6224 1.1067 0.8221
P24557 THAS Thromboxane-A synthase 1.7477 1.6320 1.4601

P04844 RPN2 Dolichyl-diphospho-oligosaccharide—
proteinglycosyltransferasesubunit 2 1.8642 1.3634 1.2661

Q9NQC3 RTN4 Reticulon-4 1.9867 1.5387 1.0570
Q14165 MLEC Malectin 2.1586 1.0898 0.9708
Q9BSJ8 ESYT1 Extended synaptotagmin-1 2.4649 1.2970 1.2265
Q8TC12 RDH11 Retinol dehydrogenase 11 3.061 1.3400 0.8831
P23219 PGH1 Prostaglandin G/H synthase 1 3.6929 1.5669 1.3489
P02774 VTDB Vitamin D-binding protein 2.4327 1.4855 1.6653
P41240 CSK Tyrosine-protein kinase CSK 3.4288 1.8739 3.5935
P02749 APOH Beta-2-glycoprotein 1 5.374 2.4436 3.0788
Q00325 MPCP Phosphate carrier protein. mitochondrial 2.2758 2.5252 1.3470

Q9UFN0 NPS3A ProteinNip Snap homolog 3ª 1.6409 1.3436 1.3143

Q96P48 ARAP1 Arf-GAP with Rho-GAP domain. ANK repeat and
PH domain-containing protein 1 2.036 1.8559 1.3848

P20061 TCO1 Transcobalamin-1 1.7894 1.2442 1.2795
P80188 NGAL Neutrophil gelatinase-associated lipocalin 1.983 1.5798 1.2060
P08246 ELNE Neutrophil elastase 2.9474 2.0215 0.9159
P00747 PLMN Plasminogen 3.3382 1.2731 1.4806

Q8NBM8 PCYXL Prenylcysteine oxidase-like 3.8514 1.0675 1.1120
P02788 TRFL Lactotransferrin 7.6776 2.2862 1.4302
Q5SQ64 LY66F Lymphocyte antigen 6 complex locus protein G6f 2.1107 1.3705 1.0059
P54108 CRIS3 Cysteine-rich secretory protein 3 1.7124 1.7709 1.2384
P54578 UBP14 Ubiquitin carboxyl-terminal hydrolase 14 1.6928 0.8851 1.3075
Q7L5Y6 DET1 DET1 homolog 2.8429 0.6266 0.5570
P19971 TYPH Thymidine phosphorylase 3.9674 3.6955 0.5058
P00488 F13A Coagulation factor XIII A chain 3.3421 3.2396 0.9832
P06737 PYGL Glycogen phosphorylase. liver form 8.5721 6.9374 0.5571

P62136 PP1A Serine/threonine-protein phosphatase PP1-alpha
catalytic subunit 1.7576 2.1843 0.9561

P30101 PDIA3 Protein disulfide-isomerase A3 1.7864 0.5549 0.4749
P55786 PSA Puromycin-sensitive aminopeptidase 2.2783 0.7016 0.6691
P07741 APT Adenine phosphoribosyltransferase 3.7614 3.9742 0.8305
Q99623 PHB2 Prohibitin-2 1.7628 2.1771 1.6235

Fold-change values in red indicate proteins that were not significantly dysregulated compared with healthy
controls (p > 0.05). Proteins involved in cellular components organization are shown in clear blue, proteins
involved in the cellular response to the stimulus in clear green, components of lysosome in clear pink, extracellular
matrix binding and cellular adhesion in orange, proteins involved in constitution and organelles function in
purple, secretory granules in dark blue and other proteins involved in transport in dark green.
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Normalization of the expression of proteins involved in the transit of vesicles to
lysosomes was also observed (Table 5, purple rows), including RAB4A, which modulates
the remodeling of the actin cytoskeleton; ARAP1, which mediates cholesterol biosynthesis
and drug metabolism; NB5R3, which is normally found in lysosomes; and DEF3 and TRFL,
which may be implicated in oxidative stress.

Figure 8 shows the mean values obtained in each group for TRLF (lactotransferrin) and
VTNC (vitronectin) proteins, which are implicated in bone reabsorption and mineralization.
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2.2.3. Proteins Not Detected in Healthy Controls but Are Detected in MPSIV Patients

Table 6 shows proteins that were not detected in healthy controls and were downregu-
lated in ERT-treated MPS IVA patients (ERT-a and/or ERT-b groups) relative to untreated
patients. RNAS2 was common to the ERT-a and ERT-b groups. This protein is a non-
secretory ribonuclease, which exerts selective chemotactic effects on dendritic cells. It is
secreted by a range of innate immune cells, from blood cells to epithelial cells. Levels
of this protein correlate with infection and inflammation processes. Recent studies have
demonstrated that RNases in the extracellular space can exert immuno-modulatory effects.

Table 6. Proteins downregulated in ERT-treated versus untreated MPS IVA patients. Proteins considered dysregulated are
those with a p-value < 0.05 and a fold change (FC) > 1.4.

UniProt Code UniProt Name Protein Name CG
Fold Change Relative to

Untreated Group

ERT-a ERT-b

Q96AG4 LRC59 Leucine-rich repeat-containing protein 59 ND 0.5690 0.6684

Q12913 PTPRJ Receptor-type tyrosine-protein phosphatase eta ND 0.4456 0.5427

P10153 RNAS2 Non-secretory ribonuclease ND 0.4025 0.1628

Q06323 PSME1 Proteasome activator complex subunit 1 ND 0.6398 0.6990

P27695 APEX1 DNA-(apurinic or apyrimidinic site) endonuclease ND 0.7912 0.5368

P02042 HBD Hemoglobin subunit delta ND 0.3031 0.5340

O43684 BUB3 Mitotic check point protein BUB3 ND 0.5946 0.4602

Q9Y2Y8 PRG3 Proteoglycan 3 ND 0.5416 0.3759

Fold-change values in red indicate proteins that were not significantly dysregulated because the p value was >0.05 (p > 0.05). Abbreviations:
CG, control group; ERT-a: ERT-a, patients sampled before enzyme infusion; ERT-b, patients sampled 24 h after enzyme infusion; MPS IVA,
Mucopolysaccharidosis type IVA; ND, not detected.
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3. Discussion

Variation in GALNS enzymatic activity has been proposed as a biomarker of MPS
IVA: low levels are observed in more severe phenotypes and higher levels in attenuated
forms [45,46]. However, enzymatic activity cannot be used as a biomarker to evaluate the
therapeutic efficacy of ERT.

Other classical biomarkers in MPS IVA include levels of glycosaminoglycan (GAG).
One such example is KS, which can be easily measured in blood and urine samples [3,45].
However, KS levels decrease with age and can be normalized in older patients with
MPS IVA, especially after 12 years of age when the growth plate is entirely closed or
destroyed [47,48]. C6S is another GAG that accumulates in MPS IVA, but is not widely
used as a biomarker as it can be masked by other GAGs that appear in the same position
in the MS/MS analysis spectrum [47]. The identification of definitive biomarkers of bone
and cartilage disease in MPS IVA remains an unmet challenge, and is essential to monitor
disease progression and treatment response.

Until now, no biomarker has been identified that can adequately reflect bone and carti-
lage pathology MPS IVA patients of all ages and at all disease stages. Detection of proteins
that are dysregulated in MPS IVA constitutes a significant advance in our understanding
of the mechanism underlying the disease. Using a proteomics-based approach, we have
identified biomarkers with potential diagnostic and prognostic utility that are expressed in
leukocytes in MPS IVA patients.

Previous reports have described the relationship between lysosomes with other
organelles such as the transGolgi reticulum, mitochondrion, vesicles, and cytoskele-
ton [49–53]. Lysosomal activity is regulated by the activation of mTORC1 and CLEAR
promotors [49]. The lysosome requires the cellular cytoskeleton in order to move and main-
tain its membrane structure. The main cellular impairment found in lysosomal disorders is
the storage of undegraded substrates. This abnormal accumulation leads to alterations in
proteins that participate in the interconnection between organelles. Ubiquitin proteins [54]
and cholesterol [55] play important roles in this process; their principal function is the
degradation or elimination of components and the biosynthesis of new ones [56]. Unde-
graded substrates can also modulate the function and location of cell receptors such as
Toll-like receptors [57], activation of this receptor by ligands as AMP-activated protein
kinase [58], It can reduce activity mTOR affection (this effect reduced the activation CLEAR
promotors) [59] and insulin signaling [60], leading to cellular damage.

Using qualitative and quantitative proteomic methods to analyze proteins in leuko-
cytes from MPS IV patients, we identified proteins that show altered expression relative
to healthy controls, and then examined changes in their expression MPS IV patients that
received ERT. Qualitative studies revealed that ERT resulted in normalization of dysregu-
lated proteins in all parts of the cell. However, quantitative analyses showed only partial
restoration of the expression of proteins involved in pyruvate metabolism, the cytoskeleton,
vesicle trafficking, the mitochondrion, the Golgi-lysosome interaction, and repair of the
lysosomal membrane, and no restorative effect on proteins involved in iron transport.
Analysis of proteins involved in DNA binding showed that ERT resulted in partial nor-
malization or had no effect. Interestingly, the inflammation pathway was activated only in
samples from untreated MPS IV patients. In a previous study, we demonstrated qualita-
tive and quantitative changes in proteins expressed by fibroblasts from MPS IVA patients
following ERT and encapsulated ERT in nanoparticles [61].

The protein biomarker candidates identified in our quantitative analysis were TRFL,
CORO1A, GANAB, and VTNC. In MPS IVA cellular inflammatory processes are affected.
We demonstrated activation of inflammation factors in samples from untreated MPS IVA pa-
tients. Oxidative stress is caused by the accumulation of substrates in lysosomes. Therefore,
the combination of anti-oxidants with ERT treatment can improve therapeutic efficacy [62].
We found that TRFL was upregulated in untreated MPS IVA patients compared with
healthy controls, and that this effect was corrected after ERT. However, TRFL is easily
dysregulated, possibly due to a lack of enzyme before the next dose of ERT is weekly
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administered. TRFL is transferred during lactation from mothers to infants, helping to
improve the infant’s immune system, and exerts immune regulatory functions, decreasing
the release of interleukin-1 (IL-1), IL-2, IL-6, IL-12, and tumor necrosis factor-α (TNF-α),
and enhancing the cytotoxicity of natural killer cells and monocytes [63]. This protein
is also implicated in iron metabolism [64] and bone regeneration [65]. In MPS IVA, the
constant activation of this protein may be linked to more severe disease [66].

CORO1A is another protein that was downregulated in untreated MPS IVA patients
compared with healthy controls, and was partially normalized after ERT. CORO1A reg-
ulates actin cytoskeleton-dependent processes (cytokinesis), cell polarization, migration,
and phagocytosis, and plays an important role in Ca2+ signaling in macrophages [67].
These effects could correct the pro-inflammatory processes that occur in MPS IVA. In bone,
CORO1A regulates cathepsin k [66–69] and exerts significant effects on bone resorption
through degradation of bone-matrix proteins and type I and type II collagen [70]. The
third protein identified that may serve as a biomarker in MPSIVA was GANAB. Although
not well described, GANAB has one catalytic subunit of glucosidase II that sequentially
cleaves 2 alpha-1,3-linked glucose residues from the Glc2Man9GlcNAc2 oligosaccharide,
which in turn is a precursor of immature glycoproteins and participates in the N-glycan
metabolic pathway [71]. VTNC is a glycoprotein predominantly produced by the liver, and
expressed in the blood and ECM. VTNC, which binds to GAGs, collagen, plasminogen,
and the urokinase-receptor, participates in stabilization of the inhibitory conformation of
plasminogen activation inhibitor-1, and in the ECM can potentially regulate proteolytic
degradation of this matrix. VTNC also participates in homeostatic processes, binding to
complement, heparin, and thrombin–antithrombin III complexes, and exerts effects on the
immune response. This protein can modulate multiple biological functions, influencing
proteolytic enzyme activity and modulating protein kinases. In addition, the presence of
the sequence RGD (Arg-Gly-Asp) in VTNC allows it to bind to the integrin receptor VnR
(αvβ3) and modulate cell attachment [72]. αvβ3 is found in many cell types, including
endothelial cells, chondrocytes, fibroblasts, monocytes, and activated blymphocytes [73].
In bone, VTNC is present in the bone matrix at low levels and at higher levels in the
unmineralized osteoid, and participates in bone regeneration and mineralization. VTNC is
degraded by the matrix metalloproteinases (MMP) collagenase-1 (MMP-1), gelatinase A
(MMP-2), matrilysin (MMP-7), metalloelastase (MMP-12), and MT1-MMP (MMP-14) [74].

Given their involvement in bone metabolism, we consider TRFL, CORO1A, GANAB
and VTNC to be candidate biomarkers of bone impairment in MPS IVA. We postulate
that these proteins expressed in leukocytes may also be expressed in bone cells, given
that macrophages and osteoclasts originate from the same cell line and may share similar
proteins [65]. In a previous proteomic analysis of fibroblasts, we observed upregulation of
TRFL in untreated MPS IVA patients and upregulation of GANAB in ERT-treated versus
untreated MPS IVA patients [61].

One protein that was downregulated in MPS IVA patients that received ERT was
RNAS2. This specific pyrimidine nuclease shows a slight preference for cytotoxin and
helminthotoxin, is located in the lysosome, and is described as a chemotactic factor for
dendritic cells. Several other proteins showed partial or complete normalization of expres-
sion after ERT, including proteins implicated in the pyruvate metabolic pathway (LDHA,
LDHB) and in cytoskeletal organization (MOES) [61]. Inflammation-associated proteins
that were dysregulated in untreated patients included OLFM4, TGFB1, THAS, PGH1,
CAP7, andCHIT1 [70,75]. PRTN3, which is involved in collagen I and II degradation, was
also dysregulated in untreated patients, in line with the well described impairment of
collagen I and II biosynthesis and catabolism in MPS IVA [76,77].

A qualitative study conducted using the Funrich program produced similar results to
our quantitative analysis in terms of ERT-mediated normalization of dysregulated protein
expression. While the quantitative study allowed precise quantification of proteins whose
expression was normalized after ERT, the qualitative study gives us only an identification
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of proteins expressed in all conditions combining these two approaches allowed us to
confirm the effect of ERT on the expression of dysregulated proteins in MPS IVA [76,77].

3.1. Limitations of the Study

In our cohort we identified and analyzed 690 proteins with 99% reliability. The SWATH
method is a specific, reproducible, and sensitive approach, allowing relative or absolute
protein quantification. However, some limitations of this approach should be noted. First,
the number of proteins identified/quantified is largely limited by the composition of the
spectral library. In this study, the library was generated with a pool of proteins for each
condition, and consisted of a total of 690 proteins, all with a FDR < 1%. In contrast to
the selected reaction monitoring (SRM) technique, in which only three transitions are
quantified, in the SWATH technique, seven transitions are quantified for each peptide.
Therefore, 10 peptides per protein must be identified in order to extract the peak areas
necessary for quantification. Despite the precision of this technique, this also constitutes
a limitation, as proteins in the library for which less than 10 peptides are identified will
not be quantified. Due to this limitation, the SWATH method may be unable to detect
collagens, pro-inflammatory factors and lysosomal enzymes that degrade substrates in
the lysosome. Interestingly, our analysis detected TRFL, which modulates interleukins,
and PRTN3, which degrades collagen, but failed to detect any collagens, interleukins, or
lysosomal enzymes.

Another limitation of our study is that normalization of protein expression in leuko-
cytes does not necessarily correlate with normalization in chondrocytes in the avascular
region. The enzyme is easily taken up by the leukocytes, restoring the function of dysregu-
lated metabolic pathways in these cells while the infused enzyme circulates in the blood. It
is critical to understand whether these proteins are dysregulated in bone and cartilage in
MPS IVA patients in order to identify potential diagnostic biomarkers of disease severity.
When a bone-penetrating drug becomes available, surrogate biomarkers will be essential.

3.2. Conclusions

Lysosomal disorders are characterized by significant alterations in proteins caused
by the accumulation of undegraded substrate. We have identified a large set of proteins
that are dysregulated in leukocytes from untreated MPS IVA patients, and many of which
are fully or partially normalized following ERT. Several of these proteins are implicated in
bone metabolism and are therefore potential biomarkers of the severity of bone disease in
MPS IVA. These candidate proteins should be investigated in bone and cartilage specimens
in MPS IVA patients to determine the extent to which they truly reflect bone pathology.

4. Materials and Methods
4.1. Study Work Flow

The graphic below outlines the workflow used to identify dysregulated proteins in
leukocytes. Analyses consisted of both qualitative (LC-MS/MS) and quantitative (SWATH-
MS) proteomic methods (Figure 9).

Blood samples were collected from 3 groups of participants: untreated MPS IVA
patients; ERT-treated MPS IVA patients (sampled before ERT and 1day after), and healthy
controls. Blood samples were separated into plasma and leukocytes. The leukocytes were
lysed, and proteomic analyses performed. The workflow in Figure 9 depicts the qualitative
analysis (left), which identified proteins expressed in leukocytes, and the quantitative
analysis (right), which determined the number of specific proteins expressed in leukocytes.
After these two distinct proteomics approaches, bioinformatics analyses were performed
to obtain more information about the identified/quantified proteins.
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4.2. Samples

Cell samples for proteomic analyses were obtained from MPS IVA patients in 3 hos-
pitals in Spain after receiving informed consent: 8 untreated patients and 5 patients who
underwent weekly ERT. In the ERT group, blood samples were obtained before (ERT-a)
and 24 h after (ERT-b) treatment. All patients presented the classical MPS IVA phenotype.
For the control group, blood samples were obtained from 6 healthy donors.

4.3. Protein Extraction

Leukocytes were sonicated to rupture the membrane and release proteins, and then
centrifuged for 10 min at 10,000× rpm and 4 ◦C. Protein extracts were recovered from the
supernatant and subsequently frozen at −20 ◦C.

4.4. Enzyme Activity Test

An enzyme activity test was used to analyze GALNS enzymatic activity in samples [78].
Results are shown in Table 7 (physiologicalrange, 1.8–20.0 nM/h/mg).

Table 7. Enzymatic activity of GALNS.

UG EA
nM/h/mg

Before
ERT

EA
nM/h/mg

After
ERT

EA
nM/h/mg

Healthy
Controls

EA
nM/h/mg

1 0.2 ERT-a 1 0.7 ERT-b 1 1.8 CG 1 4.8
2 0.2 ERT-a 2 0.6 ERT-b 2 2.1 CG 2 14.2
3 0.2 ERT-a 3 0.7 ERT-b 3 2.2 CG 3 2.7
4 0.0 ERT-a 4 1.0 ERT-b 4 2.8 CG 4 3.6
5 0.1 ERT-a 5 1.6 ERT-b 5 6.7 CG 5 3.1
6 0.2 - - - - CG 6 4.8
7 0.1 - - - - - -
8 0.2 - - - - - -

EA, enzymatic activity; ERT, enzyme replacement therapy; ERT-a, MPS IVA patients sampled before ERT; ERT-b,
MPS IVA patients sampled 24 h after ERT; UG, untreated group.

4.5. Proteomic Analysis

Protein identification and quantification were performed as described in bibliog-
raphy [61,79–82]. For protein identification, digested peptides from each sample were
separated using reverse phase chromatography. The gradient was developed using a micro
liquid chromatography system (Eksigent Technologies nanoLC 400, Sciex, Redwood City,
CA, USA) coupled to a high-speed Triple TOF 6600 mass spectrometer (Sciex, Redwood
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City, CA, USA) with a microflow source. The analytical column used was a Chrom XP
C18 silica-based reversed-phase column (150 × 0.30 mm) with a 3mm particle size and
120Å pore size (Eksigent, Sciex Redwood City, CA, USA). The trap column was a YMC-
TRIART C18 (YMC Technologies Teknokroma Analítica, Barcelona, Spain), with a 3mm
particle size and 120Å pore size, that was switched on-line with the analytical column.
Data were acquired with a TripleTOF 6600 System (Sciex, Redwood City, CA, USA) using a
data-dependent workflow (DDA).

For the SWATH analysis a spectral library was created using pooled samples from
each group (healthy controls, untreated patients, and the ERT-a and ERT-b groups) using a
DDA. Next, peak extraction was performed using the MS/MSALL add-in for PeakView
Software (v. 2.2., Sciex, Redwood City, CA, USA) with the SWATH Acquisition MicroApp
(v. 2.0., Sciex, Redwood City, CA, USA). Only peptides with a confidence score > 99% (as
obtained from a Protein Pilot database search) were included in the spectral library.

SWATH–MS acquisition was performed on a TripleTOF® 6600 LC-MS/MS system
(Sciex, Redwood City, CA, USA). Samples from each group were analyzed using the
data-independent acquisition (DIA) method. Targeted data extraction of the fragment ion
chromatogram traces from the SWATH runs was performed in PeakView (v. 2.2) using the
SWATH Acquisition MicroApp (v. 2.0). The integrated peak areas (processed mrkvw files
from PeakView) were directly exported to MarkerView software (Sciex, Redwood City, CA,
USA) for relative quantitative analysis.

Unsupervised multivariate statistical analysis using principal component analysis
(PCA) was performed to compare data across the samples using a range scale. The average
MS peak area for each protein was derived from the biological replicates of the SWATH-MS
of each sample, followed by analysis using a Student’s t-test (MarkerView software, sciex,
Redwood City, CA, USA) to compare between samples based on the averaged total area of
all transitions for each protein. The t-test result (p-value) indicates how well each variable
distinguishes the two groups. Candidate proteins were selected for each library based on
t-test results (p-value < 0.05 and FC (increase or decrease) > 1.4).

Functional analysis was performed by FunRich (Functional Enrichment analysis tool)
open-access software for functional enrichment and interaction network analysis (http:
//funrich.org/index.html).Reactome (https://reactome.org). STRING (https://string-db.
org).PANTHER (http://pantherdb.org).
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on the Contribution of the Process to the Pathogenesis and Possible Therapeutic Applications. Neuromol. Med. 2020, 22, 25–30.
[CrossRef] [PubMed]

45. Morrone, A.; Tylee, K.L.; Al-Sayed, M.; Brusius-Facchin, A.C.; Caciotti, A.; Church, H.J.; Coll, M.J.; Davidson, K.; Fietz, M.J.; Gort,
L.; et al. Molecular Testing of 163 Patients with Morquio A (Mucopolysaccharidosis IVA) Identifies 39 Novel GALNS Mutations.
Mol. Genet. Metab. 2014, 112, 160–170. [CrossRef]

46. Shimada, T.; Tomatsu, S.; Yasuda, E.; Mason, R.W.; Mackenzie, W.G.; Shibata, Y.; Kubaski, F.; Giugliani, R.; Yamaguchi, S.; Suzuki,
Y.; et al. Chondroitin 6-sulfate as a novel biomarker for mucopolysaccharidosis IVA and VII. JIMD Rep. 2014, 16, 15–24.

47. Shimada, T.; Tomatsu, S.; Mason, R.W.; Yasuda, E.; Mackenzie, W.G.; Hossain, J.; Shibata, Y.; Montaño, A.M.; Kubaski, F.; Giuliani,
R.; et al. Di-sulfated Keratan Sulfate as a Novel Biomarker for Mucopolysaccharidosis II, IVA, and IVB. JIMD Rep. 2015, 21, 1–13.

http://dx.doi.org/10.1016/j.aca.2017.01.059
http://dx.doi.org/10.1002/jcp.27723
http://dx.doi.org/10.1016/j.colsurfb.2019.01.056
http://dx.doi.org/10.1074/mcp.T600050-MCP200
http://dx.doi.org/10.1002/pmic.201400515
http://dx.doi.org/10.1080/20013078.2017.1321455
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://dx.doi.org/10.1016/j.recesp.2013.04.010
http://dx.doi.org/10.1002/pmic.201300432
http://www.ncbi.nlm.nih.gov/pubmed/24723472
http://dx.doi.org/10.1002/pmic.201700242
http://dx.doi.org/10.1016/j.dib.2018.02.062
http://dx.doi.org/10.1002/pmic.201800164
http://www.ncbi.nlm.nih.gov/pubmed/30536821
http://dx.doi.org/10.1021/acs.jproteome.7b00505
http://dx.doi.org/10.1002/prca.201700179
http://dx.doi.org/10.21873/cgp.20114
http://dx.doi.org/10.1016/j.neuint.2015.04.004
http://dx.doi.org/10.1002/jcsm.12188
http://www.ncbi.nlm.nih.gov/pubmed/28296247
http://dx.doi.org/10.7150/thno.21727
http://www.ncbi.nlm.nih.gov/pubmed/29158831
http://dx.doi.org/10.1016/j.bbamcr.2008.12.001
http://www.ncbi.nlm.nih.gov/pubmed/19111581
http://dx.doi.org/10.1007/s12017-019-08559-1
http://www.ncbi.nlm.nih.gov/pubmed/31372809
http://dx.doi.org/10.1016/j.ymgme.2014.03.004


Int. J. Mol. Sci. 2021, 22, 226 21 of 22

48. Khan, S.A.; Mason, R.W.; Giugliani, R.; Orii, K.; Fukao, T.; Suzuki, Y.; Yamaguchi, S.; Kobayashi, H.; Orii, T.; Tomatsu, S.
Glycosaminoglycans analysis in blood and urine of patients with mucopolysaccharidosis. Mol. Genet. Metab. 2018, 125, 44–52.
[CrossRef]

49. Marques, A.R.A.; Saftig, P. Lysosomal storage disorders—Challenges, concepts and avenues for therapy: Beyond rare diseases. J.
Cell Sci. 2019, 132, jcs221739. [CrossRef]

50. Anding, A.L.; Baehrecke, E.H. Cleaning House: Selective Autophagy of Organelles. Dev. Cell. 2017, 41, 10–22. [CrossRef]
51. Bartel, K.; Pein, H.; Popper, B.; Schmitt, S.; Janaki-Raman, S.; Schulze, A.; Lengauer, F.; Koeberle, A.; Werz, O.; Zischka, H.; et al.

Connecting lysosomes and mitochondria—A novel role for lipid metabolism in cancer cell death. Cell Commun. Signal 2019,
17, 87. [CrossRef] [PubMed]

52. Styers, M.L.; Salazar, G.; Love, R.; Peden, A.A.; Kowalczyk, A.P.; Faundez, V. The Endo-Lysosomal Sorting Machinery Interacts
with the Intermediate Filament Cytoskeleton. Mol. Biol. Cell. 2004, 15, 5369–5382. [CrossRef]

53. Kurz, T.; Terman, A.; Gustafsson, B.; Brunk, U.T. Lysosomes in iron metabolism, ageing and apoptosis. Histochem. Cell Biol. 2008,
129, 389–406. [CrossRef] [PubMed]

54. Osellame, L.D.; Duchen, M.R. Quality control gone wrong: Mitochondria, lysosomal storage disorders and neurodegeneration.
Br. J. Pharmacol. 2014, 171, 1958–1972. [CrossRef] [PubMed]

55. Fraldi, A.; Annunziata, F.; Lombardi, A.; Kaiser, H.J.; Medina, D.L.; Spampanato, C.; OlindFedele, A.; Polishchuk, R.; Sorrentino,
N.C.; Simons, K.; et al. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage
disorders. EMBO J. 2010, 29, 3607–3620. [CrossRef]

56. Cooper, G.M. Lysosomes. In The Cell: A Molecular Approach, 2nd ed.; Sinauer Associates: Sunderland, MA, USA, 2000.
57. Fiorenza, M.T.; Moro, E.; Erickson, R.P. The pathogenesis of lysosomal storage disorders: Beyond the engorgement of lysosomes

to abnormal development and neuroinflammation. Hum. Mol. Genet. 2018, 27, R119–R129. [CrossRef]
58. Carroll, B.; Dunlop, E.A. The lysosome: A crucial hub for AMPK and mTORC1 signalling. Biochem. J. 2017, 474, 1453–1466.

[CrossRef]
59. Bar-Peled, L.; Sabatini, D.M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014, 24, 400–406. [CrossRef]
60. Langeveld, M.; Ghauharali, K.M.; Sauerwein, H.P.; Ackermans, M.T.; Groener, C.; Aerts, J.M.; Serlie, M.J. Type I Gaucher Disease,

a Glycosphingolipid Storage Disorder, Is Associated with Insulin Resistance. J. Clin. Endocrinol. Metab. 2008, 93, 845–851.
[CrossRef]

61. Álvarez, J.V.; Bravo, S.B.; García-Vence, M.; De Castro, M.J.; Luzardo, A.; Colón, C.; Tomatsu, S.; Otero-Espinar, F.J.; Couce, M.L.
Proteomic Analysis in Morquio A Cells Treated with Immobilized Enzymatic Replacement Therapy on Nanostructured Lipid
Systems. Int. J. Mol. Sci. 2019, 20, 4610. [CrossRef]

62. Donida, B.; Marchetti, D.P.; Jacques, C.E.D.; Ribas, G.; Deon, M.; Manini, P.; da Rosa, H.T.; Moura, D.J.; Saffi, J.; Giugliani, R.; et al.
Oxidative profile exhibited by Mucopolysaccharidosis type IVA patients at diagnosis: Increased keratan urinary levels. Mol.
Genet. Metab. Rep. 2017, 11, 46–53. [CrossRef] [PubMed]

63. Caccavo, D.; Pellegrino, N.M.; Altamura, M.; Rigon, A.; Amati, L.; Amoroso, A.; Jirillo, E. Antimicrobial and immunoregulatory
functions of lactoferrin and its potential therapeutic application. J. Endotoxin Res. 2002, 8, 403–417. [PubMed]

64. Adlerova, L.; Bartoskova, A.; Faldyna, M. Lactoferrin: A review. Vet. Med. 2008, 53, 457–468. [CrossRef]
65. Cornish, J.; Callon, K.E.; Naot, D.; Palmano, K.P.; Banovic, T.; Bava, U.; Watson, M.; Lin, J.M.; Tong, P.C.; Chen, Q.; et al.

Lactoferrinis a Potent Regulator of Bone Cell Activity and Increases Bone Formation in Vivo. Endocrinology 2004, 145, 4366–4374.
[CrossRef]

66. Kruzel, M.L.; Zimecki, M.; Actor, J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017, 8, 1438.
[CrossRef]

67. Pick, R.; Begandt, D.; Stocker, T.J.; Salvermoser, M.; Thome, S.; Böttcher, R.T.; Montanez, E.; Harrison, U.; Forné, I.; Khandoga,
A.G.; et al. Coronin 1A, a novel player in integrin biology, controls neutrophil trafficking in innate immunity. Blood 2017, 130,
847–858. [CrossRef]

68. Ohmae, S.; Noma, N.; Toyomoto, M.; Shinohar, M.; Takeiri, M.; Fuji, H.; Takemoto, K.; Iwaisako, K.; Fujita, T.; Takeda, N.; et al.
Actin-binding protein coronin 1A controls osteoclastic bone resorption by regulating lysosomal secretion of cathepsin K. Sci. Rep.
2017, 7, 41710. [CrossRef]

69. Arnett, T.R. Osteoclast Biology. In Osteoporosis, 4th ed.; Marcus, R., Dempster, D., Cauley, J., Feldman, D., Eds.; Elsevier Enhanced
Reader: London, UK, 2013; Chapter 8; pp. 149–160.

70. Wilson, S.; Brömme, D. Potential role of cathepsin K in the pathophysiology of mucopolysaccharidoses. J. Pediatr. Rehabil. Med.
2010, 3, 139–146. [CrossRef]

71. Pelletier, M.F.; Marcil, A.; Sevigny, G.; Jakob, C.A.; Tessier, D.C.; Chevet, E.; Menard, R.; Bergeron, J.J.; Thomas, D.Y. The
heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 2000, 10,
815–827. [CrossRef]

72. Schvartz, I.; Seger, D.; Shaltiel, S. Vitronectin. Int. J. Biochem. Cell Biol. 1999, 31, 539–544. [CrossRef]
73. Cattaneo, M. Inherited Disorders of Platelet Function. In Platelets, 4th ed.; Michelson, A.D., Ed.; Academic Press: Cambridge, MA,

USA, 2019; Chapter 57; pp. 877–904.
74. Boskey, A.L.; GehronRobey, P. The Regulatory Role of Matrix Proteins in Mineralization of Bone. In Osteoporosis, 4th ed.; Marcus,

R., Dempster, D., Cauley, J., Feldman, D., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 35–255.

http://dx.doi.org/10.1016/j.ymgme.2018.04.011
http://dx.doi.org/10.1242/jcs.221739
http://dx.doi.org/10.1016/j.devcel.2017.02.016
http://dx.doi.org/10.1186/s12964-019-0399-2
http://www.ncbi.nlm.nih.gov/pubmed/31358011
http://dx.doi.org/10.1091/mbc.e04-03-0272
http://dx.doi.org/10.1007/s00418-008-0394-y
http://www.ncbi.nlm.nih.gov/pubmed/18259769
http://dx.doi.org/10.1111/bph.12453
http://www.ncbi.nlm.nih.gov/pubmed/24116849
http://dx.doi.org/10.1038/emboj.2010.237
http://dx.doi.org/10.1093/hmg/ddy155
http://dx.doi.org/10.1042/BCJ20160780
http://dx.doi.org/10.1016/j.tcb.2014.03.003
http://dx.doi.org/10.1210/jc.2007-1702
http://dx.doi.org/10.3390/ijms20184610
http://dx.doi.org/10.1016/j.ymgmr.2017.04.005
http://www.ncbi.nlm.nih.gov/pubmed/28487826
http://www.ncbi.nlm.nih.gov/pubmed/12542852
http://dx.doi.org/10.17221/1978-VETMED
http://dx.doi.org/10.1210/en.2003-1307
http://dx.doi.org/10.3389/fimmu.2017.01438
http://dx.doi.org/10.1182/blood-2016-11-749622
http://dx.doi.org/10.1038/srep41710
http://dx.doi.org/10.3233/PRM-2010-0116
http://dx.doi.org/10.1093/glycob/10.8.815
http://dx.doi.org/10.1016/S1357-2725(99)00005-9


Int. J. Mol. Sci. 2021, 22, 226 22 of 22

75. Sperb-Ludwig, F.; Heineck, B.L.; Michelin-Tirelli, K.; Alegra, T.; Schwartz, I.V.D. Chitotriosidase on treatment-naïve patients with
Gaucher disease: A genotype vs. phenotype study. Clin. Chim. Acta 2019, 492, 1–6. [CrossRef] [PubMed]

76. De Franceschi, L.; Roseti, L.; Desando, G.; Facchini, A.; Grigolo, B. A molecular and histological characterization of cartilage from
patients with Morquio syndrome. Osteoarthr. Cartil. 2007, 15, 1311–1317. [CrossRef] [PubMed]

77. Bank, R.A.; Groener, J.E.M.; van Gemund, J.J.; Maaswinkel, P.D.; Hoeben, K.A.; Schut, H.A.; Everts, V. Deficiency in N-
acetylgalactosamine-6-sulfate sulfatase results in collagen perturbations in cartilage of Morquio syndrome A patients. Mol. Genet.
Metab. 2009, 97, 196–201. [CrossRef] [PubMed]

78. Camelier, M.V.; Burin, M.G.; De Mari, J.; Vieira, T.A.; Marasca, G.; Giugliani, R. Practical and reliable enzyme test for the detection
of mucopolysaccharidosis IVA (Morquio Syndrome type A) in dried blood samples. Clin. Chim. Acta 2011, 412, 1805–1808.
[CrossRef]

79. Varela-Rodríguez, B.M.; Juiz-Valiña, P.; Varela, L.; Outeiriño-Blanco, E.; Bravo, S.B.; García-Brao, M.J.; Mena, E.; Noguera, J.F.;
Valero-Gasalla, J.; Cordido, F.; et al. Beneficial Effects of Bariatric Surgery-Induced by Weight Loss on the Proteome of Abdominal
Subcutaneous Adipose Tissue. J. Clin. Med. 2020, 9, 213. [CrossRef]

80. Camino, T.; Lago-Baameiro, N.; Bravo, S.B.; Sueiro, A.; Couto, I.; Santos, F.; Baltar, J.; Casanueva, F.; Pardo, M. Vesicles Shed by
Pathological Murine Adipocytes Spread Pathology: Characterization and Functional Role of Insulin Resistant/Hypertrophied
Adiposomes. Int. J. Mol. Sci. 2020, 21, 2252. [CrossRef]

81. Hermida-Nogueira, L.; Barrachina, M.N.; Izquierdo, I.; García-Vence, M.; Lacerenza, S.; Bravo, S.; Castrillo, A.; García, A.
Proteomic analysis of extracellular vesicles derived from platelet concentrates treated with Mirasol® identifies biomarkers of
platelet storage lesion. J. Proteom. 2020, 210, 103529. [CrossRef]

82. Chantada-Vázquez, M.P.; López, A.C.; Vence, M.G.; Vázquez-Estévez, S.; Acea-Nebril, B.; Calatayud, D.G.; Jardiel, T.; Bravo, S.B.;
Núñez, C. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer
serum protein biomarkers. J. Proteom. 2020, 212, 103581. [CrossRef]

http://dx.doi.org/10.1016/j.cca.2019.01.018
http://www.ncbi.nlm.nih.gov/pubmed/30695688
http://dx.doi.org/10.1016/j.joca.2007.04.008
http://www.ncbi.nlm.nih.gov/pubmed/17548214
http://dx.doi.org/10.1016/j.ymgme.2009.03.008
http://www.ncbi.nlm.nih.gov/pubmed/19394256
http://dx.doi.org/10.1016/j.cca.2011.06.001
http://dx.doi.org/10.3390/jcm9010213
http://dx.doi.org/10.3390/ijms21062252
http://dx.doi.org/10.1016/j.jprot.2019.103529
http://dx.doi.org/10.1016/j.jprot.2019.103581

	Introduction 
	Results 
	Qualitative Analysis of Proteins 
	Quantitative Analysis of Proteins by SWATH 
	Proteins Down Regulated in MPS IVA Patients Relative to Healthy Controls 
	Proteins Upregulated in Untreated MPS IVA Patients Relative to Untreated Patients and Controls 
	Proteins Not Detected in Healthy Controls but Are Detected in MPSIV Patients 


	Discussion 
	Limitations of the Study 
	Conclusions 

	Materials and Methods 
	Study Work Flow 
	Samples 
	Protein Extraction 
	Enzyme Activity Test 
	Proteomic Analysis 

	References

