Table S1. Yeast strains used in this study

Name	Genotype	Source
BY4741	MATa ura $3\Delta0$ leu $2\Delta0$ his $3\Delta1$ met $15\Delta0$	Euroscarf
$hap1\Delta$	BY4741 MATa ura3 \varDelta 0leu2 \varDelta 0 his3 \varDelta 1 met15 \varDelta 0 YLR256w::kanMX6	This study
$hap4\Delta$	BY4741 MATa ura3 $\varDelta0$ leu2 $\varDelta0$ his3 $\varDelta1$ met15 $\varDelta0$ YKL109w::kanMX4	Euroscarf
lia1∆	BY4741 MATa ura3 $\varDelta0$ leu2 $\varDelta0$ his3 $\varDelta1$ met15 $\varDelta0$ YJR070c::kanMX4	Euroscarf
$mpc1\Delta$	BY4741 MATa ura3 $\varDelta 0$ leu2 $\varDelta 0$ his3 $\varDelta 1$ met15 $\varDelta 0$ YGL080w::kanMX4	Euroscarf
$msn2\Delta$	BY4741 MATa ura3 $\varDelta0$ leu2 $\varDelta0$ his3 $\varDelta1$ met15 $\varDelta0$ YMR037c::kanMX4	Euroscarf
pda1∆	BY4741 MATa ura3 $\varDelta0$ leu2 $\varDelta0$ his3 $\varDelta1$ met15 $\varDelta0$ YER178w::kanMX4	Euroscarf
$snf1\Delta$	BY4741 MATa ura3 $\varDelta0$ leu2 $\varDelta0$ his3 $\varDelta1$ met15 $\varDelta0$ YDR073w::kanMX4	Euroscarf
tif51A-1	BY4741 MATa ura3 \varDelta 0leu2 \varDelta 0 his3 \varDelta 1 met15 \varDelta 0 tif51A-1::kanR	(Li et al. 2011)
tif51A-3	BY4741 MATa ura3 \varDelta 0leu2 \varDelta 0 his3 \varDelta 1 met15 \varDelta 0 tif51A-3::kanR	(Li et al. 2011)

Table S2. Oligonucleotides used in this study

Primer	Sequence (5'-3')	
Gene expression detection by RT-qPCR		
ACT-F	TCGTTCCAATTTACGCTGGTT	
ACT-R	CGGCCAAATCGATTCTCAA	
CYC1-F	AGATGTCTACAATGCCACACC	
CYC1-R	CCCTTCAGCTTGACCAGAGT	
eIF2A-F	ATTCTACTCCGGCCCCATCT	
eIF2A-R	TCTAGTTTGTCACCGACGGC	
HAP1-F	TTGGACCTTCCTCACGAATC	
HAP1-R	CAGGATCTTCACTGCCCATT	
SDH1-F	CTCCAAGTTGACTTTGCTCAGAA	
SDH1-R	ACGCGGAACCGTTTACAGA	
TIF51-1	TCGACAATCTTACATGGTCT	
TIF51A-1	CGATTCTACTTCTGTAGCCA	
TIF51B-1	CTACACTTTAGTTCCCTTAC	
Gene disru	ption by PCR	
HAP1-F1	GAAATAGAAGAAAAAAAAAAAAAAAAAAGGGAACAATAGGTTAGCGGATCCCCGGGTTAATTAA	
HAP1-R1	TTACATTATCAATCCTTGCGTTTCAGCTTCCACTAATTTAGATGAGAATTCGAGCTCGTTTAAAC	

Supplementary Figures

Supplementary Figure S1. Metabolic switch from fermentation to mitochondrial respiration yields a rapid drop of eIF5A but later recovery. WT and *hap1* Δ cells were grown in YPD medium during 96 hours and samples were collected at indicated time points. Relative *TIF51B* mRNA levels were determined. Results are shown as means±S.D. from three independent experiments and expressed relative to the value at time 0. Statistical significance was measured by Student's t-test relative to time 0. *p < 0.05, **p < 0.01, ***p < 0.001.

Supplementary Figure S2. Western blotting of eIF5A and hypusinated eIF5A in WT cells cultured in SC Complete medium with or without the addition of BPS ($100 \mu M$) for six hours. Red ponceau was used as loading control.

Supplementary Figure S3. Growth of the WT, *tif51A-1* and *tif51A-3* strains was tested in SC Complete medium with or without the addition of BPS at 25 μ M or 50 μ M at the indicated temperatures.

Supplementary Figure S4. Distribution of eIF5A-dependent motifs in the proteins of TCA and OXPHOS. Distribution of the 43-highest score eIF5A-dependent ribosome pausing motifs [2] in the proteins of TCA (a), OXPHOS (b), TCA + OXPHOS (c) and total proteins of yeast genome (d).