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Abstract: Translation elongation factor eI[F5A binds to ribosomes to promote peptide bonds between
problematic amino acids for the reaction like prolines. elF5A is highly conserved and essential in
eukaryotes, which usually contain two similar but differentially expressed paralogue genes. The
human eIF5A-1 isoform is abundant and implicated in some cancer types; the e[F5A-2 isoform is
absent in most cells but becomes overexpressed in many metastatic cancers. Several reports have
connected eIlF5A and mitochondria because it co-purifies with the organelle or its inhibition reduces
respiration and mitochondrial enzyme levels. However, the mechanisms of e[F5A mitochondrial
function, and whether eIF5A expression is regulated by the mitochondrial metabolism, are unknown.
We analysed the expression of yeast eI[F5A isoforms Tif51A and Tif51B under several metabolic
conditions and in mutants. The depletion of Tif51A, but not Tif51B, compromised yeast growth under
respiration and reduced oxygen consumption. Tif51A expression followed dual positive regulation:
by high glucose through TORC1 signalling, like other translation factors, to promote growth and by
low glucose or non-fermentative carbon sources through Snfl and heme-dependent transcription
factor Hap1 to promote respiration. Upon iron depletion, Tif51A was down-regulated and Tif51B
up-regulated. Both were Hapl-dependent. Our results demonstrate e[F5A expression regulation by
cellular metabolic status.
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1. Introduction

Translation factor elF5A is a small protein that is essential and highly conserved
across eukaryotes, and with orthologues in prokaryotes and archaea. Interestingly, e[F5A
is the only known protein to contain the amino acid hypusine, which is formed by the
addition of a 4-aminobutyl group from polyamine spermidine to a specific conserved lysine
residue. Posttranslational eI[F5A hypusination occurs in two enzymatic steps: catalysed
by deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). DHPS
and DOHH are also highly conserved and essential in most eukaryotes but are dedicated
to modifying only one protein, which highlights the vital role of hypusinated elF5A [1].
Though it was initially classified as a translation initiation factor, later studies revealed that
elF5A acts as an elongation factor that binds ribosomes at the E-site to project the hypusine-
containing domain towards the P-site to promote the formation of peptide bonds between
amino acid residues that are bad acceptors/donors for the reaction. The polypeptide
motifs requiring elF5A for their synthesis include stretches of consecutive prolines but also
combinations of proline, glycine and charged amino acids ([2-6] and is reviewed in [7]).
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Most eukaryotes, including human and yeast, have two genes that encode two ex-
tremely similar isoforms of eI[F5A. Human genes EIF5A-1 and EIF5A-2 share 84% of amino
acid sequence identity between the corresponding eIF5A encoded isoforms; yeasts TIF51A
and TIF51B encode isoforms with 90% identity. Yeast and human elF5A proteins also share
more than 60% amino acid sequence identity and are functional homologues as heterolo-
gous human elF5A expression allows yeast to grow with the deletion of eIF5A genes [8-11].
Despite producing very similar eIF5A proteins, the expression of eIF5A paralogue genes is
dissimilar. In humans, only the eI[F5A-1 isoform is abundant in most cell types, whereas
elF5A-2 expression is limited to the testis and brain [12]. However, both isoforms have
been linked with different diseases in which they appear to be overexpressed. eIF5A-1 has
been implicated in diabetes, several cancer types, viral infections and neurological diseases.
On the contrary, elF5A-2 is highly expressed in many cancers and its overexpression in
certain cell types causes cellular transformation, for which it has been proposed to act as
an oncogene [13-16].

In yeast, the genes encoding elF5A isoforms TIF51A (also known as HYP2) and TIF51B
(also known as ANB1 and HYP1) are differentially expressed and reciprocally regulated
by oxygen. Under aerobic conditions, TIF51A is highly and TIF51B is poorly expressed.
TIF51A is essential, but TIF51B deletion has no effect on growth. On the contrary, TIF51B
is up-regulated and TIF51A down-regulated when oxygen is lacking. TIF51B repression
under aerobic conditions is triggered, similarly to other yeast genes induced by hypoxia,
via the synergic action of DNA-binding proteins Rox1 and Mot3 through mechanisms that
partially depend on the general repressor complex Ssn6/Tup1 [17-20]. The activation of
repressor Rox1 in the presence of oxygen is produced via increased levels of heme groups,
which are synthesised in mitochondria and serve as a secondary signal for oxygen. Then
heme binds and activates nuclear transcriptional factor Hap1, which permits Hap1 to bind
and promote the transcription of Rox1 and many genes required for oxygen utilisation
and to control oxidative damage [21]. Conversely, in the absence of heme/oxygen, Hapl
becomes a repressor down-regulating ROX1 and triggering the induction of TIF51B [22].
Unlike the known regulation of TIF51B by oxygen, knowledge about TIF51A regulation is
scarce. It is supposed to be constitutively expressed under oxygen conditions, and TIF51A
has been suggested to be positively regulated by Hap1 [17]. Additionally, the mechanism
of TIF51A repression under anaerobiosis remains unknown.

Despite the two genes encoding elF5A in both humans and yeast having clearly
differential expression patterns, no evidence for a different molecular functionality of
isoforms has been found. Indeed, in yeast cells, the expression of either elF5A paralogue
gene from a heterologous promoter restores yeast growth with the deletion of the TIF51A
gene in rich media under aerobiosis conditions [8,10,11,23]. However, the differential
expression of yeast TIF51A and TIF51B genes still suggests a functional specialisation
of each elF5A isoform, in which TIF51A would favour the metabolic adaptation to the
presence of oxygen.

In the last few years, several reports have pointed out a function of elF5A in the
regulation of mitochondrial activity. Firstly, studies in mammals have reported the co-
purification or localization of elF5A with mitochondria [24,25]. Interestingly, the existence
of an alternative human low expressed eIF5A-1 isoform, with an additional N-terminal
extension containing a putative mitochondrial targeting sequence, has also been described.
When overexpressed, this longer isoform co-purifies with mitochondria [26]. Secondly,
there is evidence for the role of elF5A in preserving mitochondrial morphology, distribution
and integrity, obtained in Schizosaccharomyces pombe and mammals [27,28]. Thirdly, the con-
nection between elF5A and mitochondria-mediated apoptosis has been described, where
elF5A overexpression in human cells increased reactive oxygen species (ROS) and yielded
loss of the mitochondrial transmembrane potential, and the release of cytochrome-c and
caspase activation [29,30]. Fourthly, several reports in mammals have linked elF5A with
both cellular metabolism and respiration. In these studies, the inhibition of hypusinated
elF5A seems to reduce mitochondrial respiration, while leaving glycolytic ATP synthesis
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operative, which improves ischaemic conditions and organ transplantation [31-33]. Finally,
and importantly, a recent report describes the modulation of mitochondrial respiration by
elF5A during macrophage activation [34]. Inhibiting the polyamine synthesis pathway and
the hypusination of eIF5A blocks mitochondrial oxidative phosphorylation (OXPHOS).
Moreover, hypusinated elF5A is necessary to maintain the tricarboxylic acid (TCA) cycle
and the electronic transport chain (ETC) integrity in macrophages by promoting the ef-
ficient translation of some mitochondrial enzymes with specific mitochondrial targeting
sequences. Hypusinated elF5A levels are modulated in response to immune stimuli, which
suggests that hypusinated elF5A activity is most critical in cells with increased respira-
tion [34]. Briefly, increasing evidence links eIF5A and mitochondrial function, but whether
the effect is direct or indirect, how elF5A may affect the expression of mitochondrial pro-
teins, and whether eIF5A expression is regulated by mitochondrial metabolism, and how,
are questions that still have no answer.

Yeast cells are a feasible eukaryotic model to study the regulation of mitochondrial
respiration as yeasts can grow aerobically or anaerobically, and the involved signalling
pathways are well-known. In the presence of glucose and oxygen, yeast cells prefer
fermentation to respiration because the former can proceed at much higher rates and
allows more competitive growth and survival. Nevertheless, glucose fermentation to
ethanol is energetically less efficient than aerobic respiration. Thus, under glucose and
oxygen conditions, glycolysis and fermentation genes are induced, and key mitochondrial
enzymes of the TCA cycle, ETC and OXPHOS, are subjected to glucose repression, as
are other genes involved in the utilisation of other alternative carbon sources [35-37]. As
yeast cultures in glucose media progress, sugar becomes limiting and yeast cells start
metabolising the ethanol produced during fermentation by switching to aerobic respiration,
which slows down growth. The transition from fermentation to respiration during this
diauxic shift is produced by the up-regulation of TCA cycle, ETC and OXPHOS genes. This
gene expression reprogramming involves different signalling pathways, such as protein
kinase A (PKA), the target of rapamycin complex I (TORC1), Sch9, Snfl and Mec1/Rad53,
and requires several transcription factors, including Hap1, Hap2/3/4/5, Cat8 and Rgt1/3,
as well as communication between the nuclear and mitochondrial genome, and crosstalk
between pathways [35-41].

Under high glucose conditions, glucose repression is executed mainly by transcription
factor Migl, together with the Ssn6/Tupl complex. Snfl, the yeast homologous to mam-
malian AMP-activated kinase, is the master kinase that removes glucose repression. Snfl
is inhibited by glucose and stimulated when glucose is limiting. Activated Snfl inhibits
Migl-mediated repression by its phosphorylation and subsequent translocation to the
cytoplasm [35-37,42]. High glucose maintains the PKA and TORCI signalling pathways
active and promotes proliferation by inducing the expression of the ribosome and transla-
tion machinery genes, and by inhibiting mitochondrial respiration. Thus, the activity of
PKA and TORC1 acts conversely to that of Snfl. Indeed, negative reciprocal regulation
between PKA and Snfl, and between the TORC1 and Snfl signalling pathways, has been
documented [43-47].

Under glucose depletion, or with non-fermentative carbon sources, the expression of the
TCA cycle, ETC and OXPHOS genes requires transcription complex Hap2/3/4/5 [35,48,49].
HAP complex activity depends on heme cellular levels and, independently, on PKA and
Snfl, which suggests that separate pathways can control mitochondrial respiration [21,50].
Activation subunit Hap4 is the only one of the HAP complexes to be up-regulated upon
glucose depletion [51]. Part of this Hap4 up-regulation is mediated by transcription factor
Cat8, which is induced and activated by Snfl [35,38]. It is noteworthy that lowering glucose
levels in aerobic growing yeast increase the amounts of pyruvate directed to mitochondria
which, in turn, provides substrates for heme biosynthesis. Consequently, the increased
heme cellular level stimulates Hap4 transcriptional activity in a Hap1-dependent manner
and independently of Snfl. These results suggest that the glucose repression of respiration
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is partly due to the low metabolic flux in the TCA cycle and, therefore, to the low cellular
heme level under high glucose [52].

To deepen in the putative role of eI[F5A in mitochondrial function, we studied the need
for eIF5A to metabolise non-fermentative carbon sources through respiration and elF5A
expression regulation under fermentative and respiratory conditions. We herein document
that isoform Tif51A, but not Tif51B, is required for growth in media with glycerol and
ethanol as carbon sources. Under these conditions, TIF51A was up-regulated in a Hap1-
and Snfl-dependent manner, and the depletion of TIF51A reduced oxygen consumption,
but full e[F5A hypusination was not required to maintain high respiration levels. Our
results suggest that during the diauxic shift, TIF51A is initially repressed by reduced
TORC1 activity, but later it is Hap1l-induced due to the increase in the metabolic flux in
the TCA cycle and, consequently, in heme cellular levels. Altogether, our results suggest
that the Tif51A isoform of yeast eIF5A responds to the metabolic state of cells to promote
mitochondprial respiration.

2. Results
2.1. The Tif51A Isoform of Yeast eIF5A Is Required for Respiration and Growth with
Non-Fermentative Carbon Sources

S. cerevisiae preferentially ferments glucose, even in the presence of oxygen but, upon
glucose deprivation and during growth with non-fermentable carbon sources, many res-
piratory genes are derepressed and highly induced for energy production [35-37]. As
different studies suggest a role of el[F5A in mitochondrial functioning and based on the
recently described participation of hypusination and polyamines in modulating the ex-
pression of the mitochondrial proteins involved in respiration [34], we were interested in
investigating whether elF5A is actually needed for yeast respiration. To do so, we carried
out some experiments on non-fermentable substrates, such as glycerol and ethanol, or a
mainly respiratory substrate as galactose, to show different degrees of respiratory rates [39].
Under these conditions, mitochondrial oxidative phosphorylation processes are mandatory
for cell growth and proliferation. At semi-restrictive temperatures, growth defects of the
temperature-sensitive tif51A-1 mutant, carrying a single (Pro83 to Ser) mutation in the
yeast Tif51A isoform of e[F5A, and more severe defects of the tif51A-3 mutant, carrying a
double (Cys39 to Tyr, Gly118 to Asp) mutation, but not of strain tif61BA, were observed
(Figure 1a). Next, we assessed the expression of the two elF5A isoforms upon growth
under non-fermentative conditions, and we observed regulation in opposite ways. While
the mRNA levels of TIF51A significantly increased, TIF51B levels lowered compared to
glucose (Figure 1b).

In order to more directly explore the requirement of eIF5A in mitochondrial respiration,
we measured the oxygen consumption rate in both wild-type (WT) and elF5A temperature-
sensitive mutant cells. The relative oxygen consumption in both mutant cells at a non-
permissive temperature was significantly reduced compared to the WT strain, especially
in mutant tif51A-3 (Figure 1c). Minor differences were also observed at the permissive
temperature between the wild type and mutants in line with the expected slight loss of
function of these Tif51A mutations [4,53]. To take advantage of the fact that the last eI[F5A
hypusination step is not essential in yeast cells [54], we investigated the implication of full
hypusination in the requirement of eIF5A for cell respiration. However, no differences
in the oxygen consumption rate were observed between the wild type and the DOHH
(LIAT) mutant cells (Figure 1le). Collectively, these results indicate that mitochondrial
respiration is compromised when the yeast Tif51A isoform of eIF5A is lacking, regardless
of its hypusination state.



Int. ]. Mol. Sci. 2021, 22, 219

WT wr LA
tif51A-1 . tif51A-1 PG
tif51A-3 tif51A-3 4
tif51BA tif51BA
WT WT
R ll ya  1P1AL YPEtOH
tif51A-3 tif51A-3
tif51BA tif51BA
(a)
5—
< baied 3 7Ir51A
E 3 47 = T1IF51B
E % *kk
34
o2
Q2
n @
= L s
0 = | = =
YPD  YPGal YPGly YPEtOH
(b)
1.5 25°C 37°C
*h O 25°C
dekk
g 0 ,_I @ 37°C \V.'\ \y?) \?}\ Y;’
s o N *k Y
E‘ -§ 10 Fededke - \ @ \&) ig, é \A}Q .g’
2 o
é ’E ek r—
< % 0.5 elF5A — — R
o <
00 i G6PDH | st s e o =
WT tif51A-1 tif51A-3
(0 (d)
157
4
£z & ¢
B > 1.0
g 2
2 o H
g .2 elF5A -
S & h
;" \—'g 05
G6PDH — a——
0.0
WT lialA
(e) (f)

Figure 1. TIF51A is required for respiration independently of hypusination. (a) Growth of the WT, tif51A-1, tif51A-3 and
tif51BA strains was tested in YEP medium containing 2% glucose (YPD), 2% galactose (YPGal), 2% glycerol (YPGly) or 2%
ethanol (YPEtOH) at the indicated temperatures. (b) The WT cells were grown in YPD, YPGal, YPGly or YPEtOH to the
exponential phase (ODgq of 0.5). Relative TIF51A and TIF51B mRNA levels were determined. (c) The WT, tif51A-1 and
tifb1A-3 strains were grown in YPGal at permissive temperature (25 °C) and transferred to non-permissive temperature
(87 °C) for 4 h until an ODg of 1.5-2 was reached. Relative oxygen consumption rates are shown. (d) Western blotting
of eIF5A in the WT, tif51A-1 and tif51A-3 cells at 25 °C and 37 °C showing eIF5A depletion. Glucose-6-phosphate
dehydrogenase (G6PDH) protein levels were used as loading controls. tif51A-3 mutated protein migrates slightly more
slowly than the wild-type Tif51A and tif51A-1 mutant due to the mutation of glycine 118 to aspartic. (e) The WT and lia1A
strains were grown in YPGal at 30 °C until an ODgq of 1.5-2 was reached. Relative oxygen consumption rates are shown.
(f) Western blotting of hypusinated elF5A in the WT and lialA showing differences in hypusination. GGPDH protein levels
were used as the loading controls. (b,c,e) The results are shown as the means £ SD of three independent experiments
and expressed in relation to the value for the 2% glucose condition or the WT. Statistical significance was measured by a
Student’s t-test in relation to the 2% glucose condition or WT. ** p < 0.01, *** p < 0.001.
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2.2. Snfl and Hap1 Signalling Pathways Are Involved in TIF51A Induction under
Respiratory Conditions

As previously described, TIF51A expression was induced in the cells grown with
non-fermentable carbon sources glycerol and ethanol, which are used for the oxidative
metabolism of mitochondria. We aimed to investigate the mechanism exerted to achieve
distinct modulations in eIlF5A abundance. PKA, Snfl and the heme responsive Hapl
and Hap2/3/4 complex are the main factors involved in the metabolic reprograming
between two alternative physiological states: fermentation and respiration. PKA affects
gene expression, mostly by proteins Msn2 and Msn4, known as general stress-responsive
transcription factors. The activators Msn2/Msn4 are down-regulated by PKA under high
glucose, and up-regulated by Snfl under respiratory conditions, which contribute to the
adaptive response to respiration [55-57]. We, hence, used mutants hap1A, snflA and msn2A,
which grew well in 2% glucose media and still grew in the media with a non-fermentative
carbon source, although snfIA displayed a major growth defect (Figure 2a). However, we
were unable to work with the hap4A mutant in the media with ethanol or glycerol as the
deletion of any Hap complex subunit did not enable cells to grow under these conditions
(Figure 2a and [48]). We determined the mRNA levels of TIF51A when cells were grown
under non-fermentable substrates. Mutants haplA and snflA showed no increase in the
TIF51A levels compared to the WT or msn2A (Figure 2b). We established the expression of
the flavoprotein subunit of the mitochondrial enzyme succinate dehydrogenase (SDH1)
as an additional control, which is induced under respiratory conditions. We found that
the mRNA levels were affected only in hapIA and snflA (Figure 2c). These results indicate
that in the cells grown in the non-fermentable carbon sources, the Haplp and Snflp
pathways play a role in the up-regulation of el[F5A expression. Based on these results, we
hypothesised that Hap1l could influence respiration through elF5A activation, among its
other already known target genes.

Glucose Ethanol

(a)
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Figure 2. The Hap1 and Snfl signalling pathways are required for TIF51A induction under respiratory conditions. (a)

Growth of the WT, hap1A, snflA, msn2A and hap4A strains on YEP medium plates containing 2% glucose or 2% ethanol. (b,c)

The WT, hap1A, snflA and msn2A strains were grown in YEP medium containing 2% glucose, 2% glycerol or 2% ethanol to
the exponential phase (ODgg of 0.5). Relative TIF51A (b) and SDH1 (c) mRNA levels were determined. The results are
shown as the means + SD of three independent experiments and expressed in relation to the value for the 2% glucose

condition. Statistical significance was measured by a Student’s ¢-test in relation to the 2% glucose condition or WT. * p < 0.05,
**p <0.01, **p < 0.001.
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2.3. TIF51A Expression Drops during the Diauxic Shift But Subsequently Increases in a
Hap1-Dependent Manner

We aimed to investigate whether the up-regulation of TIF51A expression under non-
fermentative carbon sources would also be reflected by up-regulation when the cells
grown in glucose media underwent a metabolic shift from fermentation to respiration,
and whether this regulation would also be mediated by Hap1. To test this, we measured
and compared the mRNA levels of the two elF5A isoforms in the WT and haplA mutant
cells in the exponential and post-diauxic growth phases in a YPD batch culture for up to
4 days before reaching the stationary phase and entering the quiescent state (Figure 3a).
Figure 3b shows how the mRNA levels of TIF51A significantly increased to almost 2-fold
in the WT after 48 h vs. the expression under exponential growth (time 0), but remained
constant, or even slightly lowered, in haplA. However, the TIF51B levels significantly
and continuously decreased (Supplementary Figure S1). To compare the regulation of
TIF51A with that of another translation factor, we studied translation initiation factor eIF2A
expression levels. In the WT strain, with no differences in the hapIA strain, the elF2A
mRNA levels slowly lowered from 24 h, which continued up to 96 h of incubation in
YPD (Figure 3c). Our result with elF2A agrees with previous results, which show that
the expression of most translation factors decreases as cells enter the post-diauxic phase
and face lack of glucose [51]. To confirm the transition to a respiratory metabolism, we
measured TCA enzyme subunit SDHI expression and observed a substantial increase after
the metabolic switch in both strains: WT and hap1A (Figure 3d). An increase in genes
TCA, ETC and OXPHOS under respiratory conditions occurs mainly under the control
of Hap2/3/4, and Hap1 activity is also required for some genes [21,35,48,49,58]. The
up-regulation of Hap4 upon glucose depletion has also been documented [51]. In our
experiment, we observed a marked increase in the HAP4 mRNA levels at 24 h of culture
in the WT cells (Figure 3e). Interestingly, HAP1 also showed a 5-fold increase at 24 h and
remained significantly up-regulated for longer times (Figure 3f). Finally, we also checked
any variation in the eIF5A protein levels, although using the anti-eIF5A antibody cannot
discriminate between isoforms Tif51A and Tif51B, and the eIlF2A protein as the control. As
shown in Figure 3g,h, the eIF5A protein level dropped to almost undetectable levels after 24
h of growth in YPD, which corresponds to the diauxic shift. This level returned to the initial
levels at 72 h. This result may reflect, on the one hand, the observed reduction in TIF51B
expression but, given the much higher TIF51A expression under the basal conditions [10],
and as TIF51A mRNA does not drop at 24 h, this scenario suggests the down-regulation of
Tif51A at the translation or protein stability levels. On the other hand, the later recovery
of the Tif51A protein level may result from the increase in its mRNA levels after 48 h
(Figure 3g,h).

Altogether, these results point out the specific requirement of Hap1 for inducing
TIF51A after a shift from fermentation to respiratory growth, but also indicate that eIF5A
regulation clearly differs from other translation factors. While the expression of most trans-
lation factors, if not all, decreased after the metabolic shift, Tif51A showed a very different
and, possibly dual, regulation. On the one hand, its expression drastically dropped imme-
diately after the diauxic change, which suggests a rapid response to lowering glucose levels.
On the other hand, this decrease was followed by a progressive increase in expression,
which may imply that this eI[F5A isoform is likely to play a role in the respiratory process.
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Figure 3. Tif51A expression drops during glucose exhaustion but recovers in a Hap1-dependent manner in the post-diauxic
phase. (a) The WT and hap1A cells were grown in YPD medium for 96 h and samples were collected at the indicated time
points. (b—f). Relative TIF51A (b), eIlF2A (c), SDH1 (d), HAP4 (e) and HAP1 (f) mRNA levels were determined. (gh). A
representative Western blotting experiment (g) and quantification analysis (h) of the eI[F5A and eIF2A protein levels in the
WT cells at the indicated time points. GGPDH protein levels were used as loading controls. The results are shown as the
means £ SD of three independent experiments and are expressed in relation to the value at time 0. Statistical significance
was measured by a Student’s ¢-test in relation to time 0. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. Glucose Availability and TORC1 Regulate eIF5A Expression

In an effort to understand elF5A regulation at the YPD incubation times when the
glucose level drops, we decided to study the conceivable TORC1-mediated regulation. Like
most organisms, yeast coordinates protein biosynthetic capacity to nutrient availability
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through the TORC1 signal transduction pathway. Under unfavourable growth conditions,
TORC1 is inactive, which leads to a slow reduction in translation and synthesis of ribosomal
components [59-61].

We confirmed that TORC1 signalling inhibition by rapamycin treatment led to the
rapid and pronounced down-regulation of the mRNA levels of the two elF5A isoforms
(TIF51A and TIF51B) and of that of elF2A (Figure 4a). Likewise, upon TORC1 deactiva-
tion, the protein levels of both eIF5A and elF2A translation factors significantly lowered
(Figure 4b). To further prove the regulation upon glucose availability, we studied the
mRNA levels of TIF51A in three different scenarios (described in the Materials and Meth-
ods section): (1) glucose concentration drops from 2 to 0.1%; (2) glucose concentration rises
from 0.1 to 2%; (3) the same increase in glucose concentration as (2) but supplemented
with rapamyecin. The results showed that the TIF51A levels lowered after a drop in glucose
concentration to 0.1%, but were rescued when glucose was added back to cells at regular
levels (Figure 4c,d). Moreover, rapamycin treatment, even with excess glucose, did not
rescue the higher levels reached in scenario 2, which implies a TORC1-mediated response
to glucose availability (Figure 4e). No big differences were observed between the TIF51A
and eIF2A mRNA levels in the three scenarios, which means that both translation factors
are regulated in the same way upon changes in nutrient accessibility.

2.5. An Increase in the Metabolic Flux in the TCA Cycle and at Heme Cellular Levels
Up-Regulates TIF51A in a Hap1-Dependent Manner

The respiratory process is controlled by the carbon source, together with oxygen and
heme levels. The above-stated experiments indicate TIF51A regulation under respiratory
conditions by Hap1, which is consistent with previous observations [17]. Hap1 is known to
respond to both heme and non-fermentable energy. As Zhang et al. described [52], marked
pyruvate transport into mitochondria results in high heme levels and, thus, enhanced Hap1
and Hap2/3/4/5 complex activities. Heme synthesis starts in mitochondria and is limited
by TCA and succinyl-CoA availability. To better understand the possible regulation of
elF5A by Hapl, we investigated whether the heme levels and flux into the TCA cycle are
critical for TIF51A transcriptional regulation.

We examined the TIF51A expression in the WT, hap1A, mpcl1A and pdalA cells. Pdal
is a subunit of the pyruvate dehydrogenase complex which catalyses the conversion of
pyruvate into acetyl-CoA in mitochondria, while Mpcl is a pyruvate transporter localised
in the inner mitochondrial membrane. We observed that both the TIF51A and SDH1
expression levels in galactose medium significantly lowered in hap1A, mpclA and pdalA
compared to the WT (Figure 5a,b). We interpret these results to mean that the metabolic flux
into the TCA cycle regulates elF5A expression, most likely by regulating Hap1 expression.

As Zhang et al. stated [52], the effect of increasing heme levels on HAP transcription
appears to be more significant in those cells grown in glucose than in galactose. To
determine whether the heme level is limiting for TIF51A transcription in WT cells, we
added 5-aminovulenic acid (ALA, the second metabolite of the heme biosynthesis pathway)
or hemin (heme derivative) to the cells grown in the rich media containing glucose. We
found that the addition of extracellular ALA or hemin increased TIF51A expression almost
2-fold, and a similar increase was observed for HAP1 and SDH1 expression (Figure 5c—e).
Altogether, these results suggest that TIF51A transcription is regulated by Hap1 which,
in turn, is regulated by heme and by the metabolic flux into the TCA cycle. This could
also explain the increase in TIF51A expression that took place during the diauxic shift
(Figure 3b) when the metabolic flux into mitochondria increased upon glucose exhaustion.
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Figure 4. eIF5A expression is regulated by glucose concentration and TORC1 pathway. (a,b) WT cells were grown in YPD
medium with the addition of 200 ng/mL rapamycin for 4 h. (a) The relative TIF51A, TIF51B, and eIF2A (from left to right)
mRNA levels were determined. (b) Western blotting and quantification analysis of proteins eIF5A and elF2A (from left to
right). G6PDH protein levels were used as loading controls. A representative experiment is shown of three independent
experiments. (c¢) The WT cells were grown in the YEP medium containing 2% glucose and transferred to the YEP medium
containing 0.1% glucose for 1 h. (d,e) The WT cells were grown in the YEP medium containing 0.1% glucose and transferred
to the YEP medium containing 2% glucose without (d) or with (e) the addition of rapamycin for 1 h. (c—e) The relative
TIF51A (up) and elF2A (down) mRNA levels were determined. (a—e) The results are shown as the means + SD of three
independent experiments and are expressed in relation to the value for time 0. Statistical significance was measured by a
Student’s t-test in relation to time 0. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 5. eIF5A expression is regulated by the metabolic flux into the TCA cycle and heme cellular levels. (a,b) The WT,
hap1A, mpclA and pdalA strains were grown in YPGal medium for 24 h. The relative TIF51A (a) and SDHI (b) mRNA
levels were determined. The results are expressed in relation to the WT value. (c—e) The WT cells were grown in YPD
medium with or without the addition of ALA (300 ug/mL) or hemin (25 pug/mL) for 24 h. The relative TIF51A (c), SDH1
(d) and HAP1 (e) mRNA levels were determined. The results are expressed in relation to the value for the no supplement

condition. (a—e) and are shown as the means =+ SD of three independent experiments. Statistical significance was measured
by a Student’s t-test. * p < 0.05, ** p < 0.01, *** p < 0.001.

2.6. TIF51A Is Regulated under Iron Deficiency in a Hap1-Dependent Manner

Respiration is a highly iron-consuming process as both the TCA cycle and ETC re-
quire iron and heme in many steps. Indeed, during iron starvation, cells are unable to
grow under non-fermentable carbon sources. Iron deficiency regulation in S. cerevisiae
involves metabolic remodelling, which is achieved by changes in gene expression at the
transcriptional and post-transcriptional levels to prioritise iron-dependent essential cellular
processes over non-essential processes, including mitochondrial respiration (reviewed
in [62]). According to our previous results, we hypothesised that under iron starvation, res-
piratory process inhibition would also involve the down-regulation of TIF51A expression.

The mRNA levels of the two elF5A isoforms were determined under iron deficiency to
test the possible iron-dependent activity of eIF5A. Iron starvation significantly affected the
expression of the two isoforms. While TIF51A expression decreased in a time-dependent
manner, TIF51B expression increased almost 4-fold (Figure 6a). Due to the very low basal
TIF51B expression, its increase did not compensate the down-regulation of TIF51A, and
elF5A protein levels (corresponding to both eIF5A isoforms recognized by the antibody)
decreased under iron depletion (Supplementary Figure S2). The increased but still low
expression of the Tif51B isoform must be insufficient to support yeast growth because we
observed that the complete depletion of the Tif51A protein (using TIF51A temperature
sensitive mutants at restrictive temperature) rendered it sensitive to iron starvation (Sup-
plementary Figure S3). Next, we determined if e[F5A regulation under iron deficiency was
based on a transcriptional mechanism and attempted to identify the implicated factor. To
that end, we tested the expression of both isoforms under iron sufficiency or deficiency
conditions in the WT, hapIA and hap4A mutant cells. We found that only for hap1A cells the
TIF51A mRNA levels remained unchanged and transcriptional regulation was lost, which
indicate that Hap1 is responsible for eIF5A regulation under iron deficiency (Figure 6b). The
synthesis of the iron-containing heme directly correlates with iron availability, and it has
been shown that, under iron-limiting conditions, the cytochrome c-encoding CYC1 gene is
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transcriptionally down-regulated via the Hap1 transcription factor with some contribution
made by the Hap2/3/4/5 complex [63]. We observed that the CYCI mRNA levels were
down-regulated and almost undetectable when iron was absent (Figure 6¢). With the case
of haplA and hap4A cells, the CYC1 levels substantially lowered under the iron-sufficient
condition and most of the down-regulation was lost in the single mutants, which agrees
with previous data [63]. Finally, Hapl was also important for TIF51B regulation as the
induction that occurred in the WT strain under iron depletion was blocked when cells were
Hap1-deficient (Figure 6d). This result can be interpreted by the fact that lack of heme,
in this case caused by limited iron availability, converts Hap1 in a repressor that down-
regulates ROX1, which is necessary for inducing TIF51B [22]. Taken together, these results
reinforce the idea of TIF51A expression regulation at the transcriptional level by Hap1 to
up- or down-regulate its expression depending on the cell’s metabolic requirements.
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Figure 6. Iron deficiency down-regulates TIF51A and up-regulates TIF51B in a Hapl-dependent manner. (a) The WT cells
were grown in SC medium with the addition of 100 mM BPS and samples were collected at the indicated time points. The
relative TIF51A and TIF51B mRNA levels were determined. The results are expressed in relation to the value at time 0.
(b—d) The WT, haplA and hap4A strains were grown in SC medium with or without the addition of 100 mM BPS for 7 h. The
relative TIF51A (b), CYC1 (c) and TIF51B (d) mRNA levels were determined. The results are expressed in relation to the
value of the WT strain without treatment. (a—d) The results are shown as the means =+ SD of three independent experiments.
Statistical significance was measured by a Student’s t-test. * p < 0.05, ** p < 0.01, ** p < 0.001.

3. Discussions

The adaptation of the cellular metabolism to external circumstances is important for
those unicellular systems that must deal with a continuously changing environment, but
also for multicellular ones as redirecting metabolism can promote different cellular func-
tions. One important example of metabolic adaptation is the well-known Warburg effect,
by means of which most tumour cells sustain aerobic glycolysis with glucose fermentation
into lactate, unlike complete glucose oxidation by mitochondria, to meet their bioenergetic
and anabolic demands [64,65]. In fact, it has been proposed that all high proliferating
cells adapt their metabolism to facilitate the uptake and incorporation of nutrients into
the biomass needed to produce a new cell (aerobic glycolysis) over the promotion of high-
efficient ATP synthesis in the quiescent (differentiated) state (mitochondrial OXPHOS). This
also applies to microorganisms like yeast cells, which prefer the fermentation of glucose
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when it abounds, but change to mitochondrial respiration when glucose is scarce [66].
Understanding how cells adapt their metabolism to meet demands is relevant because
wrong adaptation can have pathological consequences. Previous studies (detailed in the
Introduction) as well as the present one suggest a role of e[F5A in promoting mitochondrial
metabolism.

Our study addresses how elF5A expression is regulated to adapt it to metabolic
requirements. Although elF5A is a highly expressed protein and has been described as
one of the 20 most abundant proteins in proliferating cells [67], 2- to 4-fold increases
in yeast cells took place under respiratory conditions. Like other proteins involved in
translation [59-61], we document a positive regulation by the TORC1 signalling pathway
activated under abundant nutrient conditions. In this situation, we expected the main
function of cellular eIF5A to facilitate the cytoplasmic translation of the genes encoding
proteins with specific amino acids motifs [2,3], although other molecular functions for
elF5A have been described [68]. With low glucose or non-fermentative carbon sources, our
results indicate that the Tif51A isoform of yeast eIF5A is up-regulated by Snfl and Hapl,
and Tif51A depletion compromises growth in ethanol or glycerol and reduces oxygen
consumption. The reason why more elF5A protein is needed under this condition when
growth has slowed down and, therefore, less cytoplasmic translation is required, is not
known. A model summarising our results is show in Figure 7. It is worth highlighting the
recent results reported by Puleston et al. [34], who suggest that eIF5A is required for the
efficient translation of a subset of mitochondrial proteins, such as succinate dehydrogenase
(SDH) and some other TCA cycle and OXPHOS proteins, which carry specific mitochondrial
target signals. On the contrary, other TCA enzymes would be less elF5A-dependent,
which elF5A inactivation would not affect their expression. A search for e[F5A-dependent
tripeptide motifs [2] reveals a slight enrichment of these motifs in TCA enzymes but an
underrepresentation of these motifs in OXPHOS proteins, both compared to total yeast
proteins (Supplementary Figure S4). Interestingly, polyproline motifs are excluded in the
polypeptide sequences of both functional groups (Supplementary Figure S4). A more
exhaustive investigation will be necessary to identify el[F5A mitochondrial targets and
mechanisms involved in the elF5A control of mitochondrial respiration. The need of eI[F5A
for synthesizing specific mitochondrial proteins would explain its upregulation under
respiratory conditions, when the expression of some of the proteins required for respiration
substantially increases (SDH1 mRNA increases more than 100-fold during the diauxic
shift, Figure 3d). If this role of eIF5A in the translation of nuclear-encoded mitochondrial
proteins is direct, the co-purification of e[F5A with mitochondria [24-26] may indicate that
elF5A is involved in the described translation on the yeast mitochondrial surface, where
inner-membrane proteins like SDH are supposed to be cotranslationally targeted to the
mitochondria [69].

One outcome of our study was the clearly differential regulation of the yeast eIlF5A
isoforms. Their opposite regulation by oxygen has been previously documented, with
TIF51A being repressed and TIF51B activated during hypoxia/anaerobiosis, when heme-
dependent Hap1 activity controls TIF51B repressor Rox1 expression [17-22]. Here we show
that Hap1 is also the main factor that controls TIF51A expression in response to respiratory
conditions, heme levels and iron availability. In fact, a putative binding site for Hap1
(CGGNnnTANCGG, [70]) exists 571 bp upstream of the ATG of TIF51A, but further work
should be done to demonstrate the direct regulation of TIF51A expression by Hapl. The
control of eIF5A isoforms by Hapl, likely by activating TIF51A expression and the Rox1
repression of TIF51B under nutrient and oxygen availability, but by repressing TIF51A and
Rox1 under nutrient and/or oxygen scarcity, would allow the opposite regulation of the
two paralogue genes with only one factor. It is tempting to suggest that the differential
expression of the elF5A isoforms would promote, in each case, differential metabolic
outcomes with Tif51A promoting respiration and Tif51B promoting aerobic glycolysis. To
date, there has been no evidence to support this in yeast, although it has been described that
the elF5A-2 isoform of human eIlF5A promotes aerobic glycolysis in human hepatocellular
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carcinoma (HCC) [71]. Thus eIlF5A-2 overexpression increases growth, glucose uptake and
lactate secretion by up-regulating glycolytic enzymes [71], which is precisely the metabolic
reprogramming that occurs in most cancer cells [72].
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Figure 7. Model of regulation of the translation elongation factor eI[F5A expression by nutrient
availability through different signalling pathways. Under nutrient availability conditions, glucose
signalling via TOR up-regulates eIF5A expression to facilitate cytoplasmic translation, and glycolysis
predominates over mitochondrial respiration. Under low glucose and/or non-fermentative carbon
sources, TOR positive elF5A regulation is inhibited, but eIF5A expression is up-regulated by the
increase in heme levels and subsequent Hapl activation. In these conditions, eI[F5A promotes,
additionally to cytoplasmic translation, not-well known functions in mitochondrial respiration.

Several aspects of TIF51A regulation by the metabolic status of cells will have to
be explored in future studies. We showed that the up-regulation of TIF51A under non-
fermentative carbon sources also depends on Snfl kinase. However, we do not know
if this regulation is executed by the release of Migl-repression or through transcription
activators under the control of Snfl, such as Cat8, which controls the derepression of HAP4
under respiratory conditions [35]. The control of TIF51A expression by glucose and TORC1
should also be further investigated to elucidate the involved mechanism, which could
implicate TORC1 downstream kinase Sch9 because its depletion increases respiration [43].
One of our observations indicates that the deletion mutant in yeast DOHH enzyme lia1A
has the same oxygen rate consumption as the WT strain. Differently to mammalians and
most eukaryotes, S. cerevisite DOHH is not essential and shows similar growth to the
WT [54]. Our results suggest that full yeast Tif51A hypusination would not be necessary to
promote respiration, conversely to the results obtained for mammals [34].

The control by Hap1 and Snfl of TIF51A expression under respiratory conditions that
we herein report is likely to occur at the transcriptional level. However, it has also been
previously reported that the posttranscriptional control of TIF51A expression by carbon
sources is executed at the mRINA stability level. TIF51A mRNA harbours an ARE (AU-rich)
element) at the 3’ UTR (untranslated region), which has been described to stabilise the
mRNA on glucose and destabilise it in glycerol media [73]. Although this regulation is
opposite to what we show here, with a higher TIF51A mRNA level in glycerol than in
glucose, both results may still be compatible if major differences at the transcriptional
level would reverse the negative impact of a reduction in TIF51A mRNA stability in
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glycerol media. AREs are also important for mRNA stability regulation and translation
upon iron depletion through mRNA binding proteins Cth2 and Cth4. Iron deficiency
promotes the specific binding of Cth2/4 to ARE-containing mRNAs and down-regulates,
among other non-essential processes, mitochondrial respiration [74-76]. Whether TIF51A
mRNA is posttranscriptionally regulated through its ARE sequence must be addressed in
future studies.

4. Materials and Methods
4.1. Yeast Strains and Growth Conditions

All the Saccharomyces cerevisiae strains used herein are listed in Table S1. Yeast cells
were grown in liquid YPD (2% glucose, 2% peptone, 1% yeast extract), YPGal (2% galactose,
2% peptone, 1% yeast extract), YPGly (2% glycerol, 2% peptone, 1% yeast extract), YPEtOH
(2% ethanol, 2% peptone, 1% yeast extract) or synthetic complete (SC) media.

A PCR-based genomic disruption technique was employed to replace genomic full
length HAP1 ORF with the KanMX marker. Plasmid pFA6a-KanMX6 [77] was used as
a template for PCR reactions using primers HAP1-F1 and HAP1-R1 for HAP1 deletion.
The resulting cassette was transformed into the WT strain by the lithium acetate-based
method [78] and transformants were selected in the YPD medium supplemented with
geneticin (G418, Gibco Life Technologies, Waltham, MA, USA).

Experimental assays were performed with the cells exponentially grown for at least
four generations at 30 °C until required ODggg. Temperature-sensitive strains were grown
at the permissive temperature of 25 °C until required ODggp and transferred to the non-
permissive temperature of 37 °C for 4 h for complete elF5A depletion. For some experi-
ments described in the text, the media were supplemented with 100 uM of bathophenan-
throlinedisulphonic acid (BPS, Sigma, St. Louis, MO, USA), 200 ng/mL of rapamycin
(LC Laboratories, Woburn, MA, USA), 300 pg/mL of é-aminolevulinate (ALA, Sigma)
and 25 ug/mL of hemin (Sigma). ALA and hemin were dissolved in water and DMSO at
100 mg/mL and 10 mg/mL, respectively, and added to media at the indicated concentrations.

4.2. Western Blot Analysis

Protein extraction and Western blot analyses were performed as previously described [79].
In brief, a cell culture volume corresponding to 5-10 ODgp units was harvested by cen-
trifugation. For protein extraction, cell pellets were washed and resuspended in 200 uL of
NaOH 0.2M and incubated at room temperature for 5 min for posterior centrifugation at
12,000 rpm for 1 min. Then samples were resuspended in 100 pL of 2X-SDS protein loading
buffer (Tris-HCl pH 6.8 24 mM, Glycerol 10%, SDS 0.8%, -mercaptoethanol 5.76 mM,
bromophenol blue 0.04%) and boiled for 5 min at 95 °C. Afterwards, lysates were cen-
trifuged at 3000 rpm for 10 min at 4 °C to remove cell debris and insoluble proteins, and
supernatants were transferred to fresh tubes and stored at —20 °C. The soluble protein
content in the extract was quantified by an OD,g estimation in a Nanodrop device (Thermo
Fisher Scientific, Waltham, MA, USA) to load equal protein amounts per sample into 15%
SDS-PAGE gels.

SDS-PAGE and Western blot were performed by standard procedures (Bio-Rad Lab-
oratories). Membranes were blocked with 5% skimmed milk in TBS-T (150 mM NaCl,
20 mM Tris, 0.1% Tween20, pH 7.6) for 1 h at room temperature and incubated with pri-
mary antibodies overnight at 4 °C against e[F5A (rabbit polyclonal 1:500, Abcam ab137561),
hypusinated-eIF5A (FabHpu antibody, 1:600, Genentech, San Francisco, CA, USA), elF2A
(rabbit polyclonal 1:1000, kindly provided by T. Dever) or glyceraldehyde-6-phosphate
dehydrogenase (rabbit polyclonal anti-G6PDH antibody, 1:20,000, Sigma A9521). Bound
antibodies were detected using the appropriate horseradish peroxidase-conjugated sec-
ondary antibodies (1:10,000 Promega). Chemiluminiscent signals were detected with an
ECL Prime Western blotting detection kit (GE Healthcare, Chicago, IL, USA) and digitally
analysed by the ImageQuant LAS 4000 software (GE Healthcare). Band intensity was
normalised against GGPDH bands. At least three replicates of each sample were analysed.
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4.3. RT-gPCR Analysis

For the analysis of mRNA levels, total RNA was isolated from yeast cells following
the phenol:chloroform protocol. Briefly, a volume of an exponential phase culture corre-
sponding to 10 ODgqp units was harvested and flash frozen. The cells were resuspended in
500 pL of cold LETS buffer (LiCl 0.1 M, EDTA pH 8.0 10 mM, Tris-HCI pH 7.4 10 mM, SDS
0.2%) and transferred to a screw-cap tube already containing 500 puL of sterile glass beads
and 500 pL of phenol:chloroform (5:1). Then, the cells were broken in a Precellys 24 tissue
homogenizer (Bertin Technologies) and centrifuged. The supernatant was transferred o
a new tube containing 500 pL of phenol:chloroform (5:1) and then to a tube containing
500 puL of chloroform:isoamyl alcohol (25:1). The RNA from the top phase was precipitated
and finally dissolved in water for later quantification and quality control using a Nanodrop
device (Thermo Fisher Scientific).

The reverse transcription and quantitative PCR reactions were performed as detailed
in [80]. Briefly, 2.5 pg of the total DNAse-I-(Roche) treated RNA were retrotranscribed
using an oligo d(T)18 with Maxima Reverse Transcriptase (Thermo Fisher Scientific).
cDNA was labelled with SYBR Pre-mix Ex Taq (Tli RNase H Plus, from Takara) and Cq
values were obtained from the CFX96 TouchTM Real-Time PCR Detection System (BioRad).
Endogenous ACT mRNA levels were used for normalisation. At least three biological
replicates of each sample were analysed, and the specific primers designed to amplify the
gene fragments of interest are listed in Table S2.

4.4. Oxygen Consumption Assays

Molecular oxygen consumption was measured by a model Oxyview 1 System (Hansat-
ech) and an S1 Clark-type oxygen electrode following the manufacturer’s protocol. Cells
were grown to an ODgq of 1.5-2 in YPGal medium, and a volume corresponding to 1.0
ODggg was collected and washed with distilled water. The cells were then resuspended
in 1 mL of the YEP medium containing 2% ethanol and 3% glycerol, and were transferred
to the oxygen consumption chamber, magnetically stirred and maintained at 30 °C. The
oxygen content decline was monitored for 15 min and respiratory rates were determined
from the slope. The oxygen consumption rate in the WT cells was set at 1.

Supplementary Materials: Supplementary Materials can be found at https:/ /www.mdpi.com /1422
-0067/22/1/219/s1.
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Abbreviations

elF2A Eukaryotic translation initiation factor 2A
elF5A Eukaryotic translation initiation factor 5A
ETC Electron transport chain

OXPHOS Oxidative phosphorylation

PKA Protein kinase A

ROS Reactive oxygen species

SDH Succinate dehydrogenase

TCA Tricarboxylic acid

TORC1 Target of rapamycin complex I
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