

Figure S1. Comparison of the amino acid sequences of OsMre11 and its homologs. The black lines label metallophos phosphoesterase domain, while the red lines represent DNA-binding domain.

Figure S2. Phylogenetic analysis of OsMre11 and other 11 homologs. The scale bar represents the number of amino acid substitutions per site.

Figure S3. Expression patterns of *OsRad50* and *OsNbs1* in rice.Expression values of *OsRad50* (a) and *OsNbs1* (b) in 7-day-old seedling, 60-day-old root, 60-day-old stem, 60-day-old leaf, callus, panicles (P1: 0-3cm spikelet; P2: 3-5cm spikelet; P3: 5-10cm spikelet; P4: 10-15cm spikelet; P5: 15-22cm spikelet; P6: 22-30cm spikelet), ovary, anther and seeds (5DAP: 5days after pollination; 10DAP: 10 days after pollination; 30DAP: 30 days after pollination).

Figure S4. Relative expression level of *OsMre11* responded to Aphidicolin and MMC in 10DAG seedlings. (a) The concentration of Aphidicolin is 0μ M, 50μ M and 100μ M. The materials with the treatment of 0.5, 1 and 2 days were collected. (b) The concentration of Aphidicolin is 150μ M, and the material with the treatment of 2 days was collected. (c) The concentration of MMC is 0μ M, 30μ M, 60μ M and 90μ M, respectively. The materials with the treatment of 0.5, 1 and 2 days were collected. (d) The concentration of MMC is 150μ M, and the material with the treatment of 2 days were collected. (d) The concentration of MMC is 150μ M, and the material with the treatment of 2 days were collected. The one asterisk represents a statistically significant difference according to Student's t-test (*, p < 0.05).

Figure S5. The three-dimensional structure of Mre11, Rad50, and Nbs1 in various species. Os-Mre11, AtMre11, hMre11, and ScMre11 are modeled according to the crystal structure of its homologue CtMre11 through SWISS-MODEL (<u>https://www.swissmodel.expasy.org/</u>). OsRad50, At-Rad50, hRad50, and ScRad50 are modeled according to the crystal structure of its homologue CtRad50. OsNbs1, AtNbs1, and hNbs1 are modeled according to the crystal structure of its homologue SpNbs1.

Figure S6. BiFC assay shows the interaction relationships between OsMre11, OsRad50, and Os-Nbs1 in tobacco leaf epidermis cells. (a, c, e) OsMre11-YN+YC, OsRad50-YN+YC and Os-Nbs1-YN+YC were the control groups. YC is an empty carrier. YN and YC stand for *pCAM*-*BIA-SPYNE* and *pCAMBIA-SPYCE* empty vectors respectively. (a-l) The epidermal cells were observed at 36 hours after being co-transformed. Scale bars represent 50µm.

Figure S7. RNA-seq analysis of wild type and the *mre11* mutant in rice. (a) Number of 2-fold up and down regulated genes (WT vs *mre11*). (b) Histogram presentation of gene ontology (GO) classification based on RNA-seq data. The red histograms show up-regulated genes (2-fold up), while the blue histograms represent down-regulated genes (2-fold down).

Table S1. Primers (5' to 3') used in the experiments.

Primers for Mutant Verification

	FP	RP
mre11	ACAA- GATGGCGTTTTATGCC	AGTTCACCAGGTCATTTGCC
2715LB	GTCTAAGCGTCAATTTGTT	

Primers for complementation

	FP	RP
Os-	CGCGGATCCTCCAAC-	GTGTTGCTTTCGTCTCCCATT-
Mre11-5'UTR	GGGCTCACCAACT	GCCGGTGTTGGTTCAGCTT
	AAGCTGAACCAACAC-	AGACTTAGACTAACAA-
OsMre11-CDS	CGGCAATGGGAGAC-	GAGGTCATCTCCTCCTAACAGCT
	GAAAGCAACAC	С
Os- Mre11-3'UTR	GAGCTGTTAGGAGGA- GATGACCTCTTGTTAG- TCTAAGTCT	CGCGTCGACCGAA- GATCCCTCGCAACTA
pCAMBIA2301		CCTCTTCGCTATTACGC

Primers for qRT-PCR

	FP	RP
Actin	CCCCAAGGCCAATCGTGA G	ACGCCCAGCAAGGTCGAGA

OsMre11	AAAGATGCTACCGATGT	CATTAGTCTCATTTTCC
OsRad50	ATGAGCCGACCACCA	ATGAGCCGACCACCA
OsNbs1	CTCGGAAGTGGAGTGAT	GAAGGCATTTCGGTGT
MCM3	GGGACTATGGTCTGCG	GCCTACGAAAGATGTGAT
MCM4	GCTGCTTGGTTTGCG	TGGAGTGCCACCTTCTG
MCM5	TGGGAAAGGTTCATCAGCA	ACTCCACCATCAGCCAAAA
MCM6	AAAAGCAGGAATACAAGC	TGATGGACCCTCACAAT
	AGACTGTTAG-	
MCM17	TATTGCGAAGG	CIGGAGGIAGAIIGAIGIIII
ORC5	CGCCCTCTTCGCTTCT	GCTGACCACCCTTATCCC
	GGAA-	
KAD9	GAGCCTCCTGATGTTG	GIAGIGCGGIGIIGIIIGG
α	CAGGAGGTTGTCAA-	
Cyclint-A3-2	GATGGA	GGAGACAGCCGIAGICAAGIAG
cyclin-B2-2	AATGGAGGGCGTCAAG	TTAGCGGCAGGTTTATC
cyclin-D3-1	TTCTTGGGTTGTTGGG	GATGTGCTGCTGCTCC
cyclin-D6-1	CTCGCCTTCCTCGGCTTCTT	AACTCCGCCATCTTCACCTCC
ATM	ACTTGTTGCCTTCGTAA	AAGTGGCTCCAAATCTC
ATR	CCTAAGAATGGACCCG	AGGCAGCAGAAACAAAT
Rad51	TGCGAGCCAACTTCAT	AGAGCCAGTTTCTATCCC
Mus81	CAGGAGGGTCAAAGC	GTGGCGTCAATAAGC
1/ 50	GAGGGAGATGAAA-	AGTTGAACGGATTAGCG
KU70	TAGTGG	
Ku80	TCACTCCGAATCCCA	GCTCAAATACATTGCCTA
XLF	CAAGCACTGGGAATG	TGGAAGCGGAACTG

Primers for CRISPR/Cas9

	FP	RP
mre11-cr	GGCAC-	AAACTGATTGGCTGAAATTCAGA
	TCTGAATTTCAGCCAATCA	G
Ubi-RP		GATAAACTGCACTTCAAACA

Primers for subcellular localization fusion constructs

	FP	RP
Mre11-GFP	TGCTCTAGATCCAAC-	CGCGGATCCTGCCGGTGTT-
	GGGCTCACCAACTC	GGTTCAGCTT
35S-GFP-RP		CGCACAATCCCACTATCCTTCG
pCAMBIA1300	CGGGCCTCTTCGCTATTACG	AGGCACCCCAGGCTTTACACT

Primers for tissue expression

	FP	RP
Mre11-GUS	CGCGGATCCTCCAAC-	CGCGTCGACCATTGCCGGTGTT-
	GGGCTCACCAACTC	GGTTCAGCTT
GUS-RP		AACGCTGATCAATTCCACAG

Primers for BiFC

	FP	RP
OsMre11	TGCTCTAGAATGGGA-	TCCCCCGGGTCTCCTCCTAACAG

	GACGAAAGCAACAC	CTCCGT
OsRad50	CGGACTAGTATGAGCAC-	TCCCCCGGGGTCAAA-
	GGTGGACAAGAT	GATCTCCTGGGCTT
OsNbs1	TGCTCTA- GAATGGTGTGGGGGGCGCTGAC CCC	TCCCCCGGGTCTGCGGCCGG- TAAGCATGG
NosT		GCAAGACCGGCAACAGGATTCA

Primers for Co-IP

	FP	RP
Rad50-3×Flag-1		CTT-
	CACGGTCTCG-	GTCATCATCGTCCTTATAGTCCTT
	GATCCATGAGCACGGTG-	ATCGTCGTCATCCTT-
	GACAAGAT	GTAATCGTCAAA-
		GATCTCCTGGGCTT
		CGCGTCGACTCATTTATCGTCATC
Rad50-3×Flag-2		ATCTTTGTAGTCCTT-
		GTCATCATCGTCCTTATAGTC
		CTCCTCAGAAATAAGTTTTT-
	TGCTCTA-	GCTCAA-
Nbs1-3×Myc-1	GAATGGTGTGGGGCGCTGAC	GATCCTCCTCAGAAATCAACTTTT
	ССС	GCTCTCTGCGGCCGGTAA-
		GCATGG
Nbs1-3×Myc-2		CACGGTCTCGGATCCTCAC-
		TAC-
		AAATCTTCTTCAGAAATCAATTTT
		TGTTCAAGATCCTCCTCAGAAA-
		TAAGTTTTTGC