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Abstract: Colorectal cancer (CRC) is a malignant disease with an incidence of over 1.8 million new
cases per year worldwide. CRC outcome is closely related to the respective stage of CRC and
is more favorable at less advanced stages. Detection of early colorectal adenomas is the key to
survival. In spite of implemented screening programs showing efficiency in the detection of early
precancerous lesions and CRC in asymptomatic patients, a significant number of patients are still
diagnosed in advanced stages. Research on CRC accomplished during the last decade has improved
our understanding of the etiology and development of colorectal adenomas and revealed weaknesses
in the general approach to their detection and elimination. Recent studies seek to find a reliable
non-invasive biomarker detectable even in the blood. New candidate biomarkers could be selected
on the basis of so-called liquid biopsy, such as long non-coding RNA, microRNA, circulating cell-free
DNA, circulating tumor cells, and inflammatory factors released from the adenoma into circulation.
In this work, we focused on both genetic and epigenetic changes associated with the development of
colorectal adenomas into colorectal carcinoma and we also discuss new possible biomarkers that are
detectable even in adenomas prior to cancer development.
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1. Introduction

Colorectal cancer (CRC) is a serious heterogeneous disease that stands in third place in cancer
incidence and represents the second cause of death in the world (nearly1.8 million patients newly
diagnosed and 1 million patients who die every year) [1]. CRC has become predominant cancer in
Western countries, which could be partially explained by the aged population and adverse lifestyle
habits such as smoking, increased consumption of red meat and alcohol, lack of physical activity related
to obesity, and diabetes, connected usually with low diversity of intestine microflora. Risk factors also
include positive family history reflecting individual genetic equipment [2]. The screening programs
aim to identify patients with precancerous lesions or those with resectable CRC stages 0, I, and II, who
have a generally better prognosis than symptomatic patients with the pre-existing disease [3]. Despite
screening programs, many patients are diagnosed in the stages III and IV of CRC that lead to a worse
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overall prognosis [4]. According to data from National Cancer Institute from the United States of
America (USA) [5], five years survival rates for stage IV account only for 12% at colon cancer (CC) and
13% at rectal cancer (RC), while detection at an early stage I can increase the chance to survive up to
92% at CC and 88% at RC [6].

Several screening methods such as stool testing, blood testing, and endoscopic and radiological
examination are currently available [7,8]. Polyps or tumors can manifest by microscopic bleeding
(so-called occult bleeding). First-line test detecting occult bleeding is a fecal occult blood test (FOBT).
Guaiac fecal occult blood test (gFOBT) detects hemoglobin (Hb) by peroxidase activity. Nevertheless,
gFOBT is insufficiently specific to human hemoglobin and connected with a risk of false-positive
results and omission of small polyps or non-bleeding polyps [7]. Despite its disadvantages, it has been
able to contribute to a 33% reduction in CRC mortality [9]. Nowadays, gFOBT has predominantly been
replaced by a fecal immunochemical test (FIT) based on antibody assay, which provides qualitative and
quantitate results on Hb concentration per gram feces. Positive results of gFOBT or FIT are followed
by endoscopic examination [8].

Endoscopic methods include colonoscopy examination, sigmoidoscopy, or capsule endoscopy.
Colonoscopy is the main investigative method of the large bowel, this technique provides visualization
of the entire large intestine, precise localization, biopsy, or complete removal of a potential precancerous
lesion in a single session [10]. Early polypectomy leads to a 76–90% reduction in CRC incidence [11].
The weakness of this method is its invasiveness, it is an unpleasant procedure requiring several days
of diet restriction and bowel preparation. These could pose an obstacle for many people, and among
other things, it is expensive with the necessary presence of a very well-trained examiner [12].

Sigmoidoscopy compared to colonoscopy reduces time-consuming examination and patient
discomfort and provides a lower risk of complications without the need for sedation, but allows
investigation of only the rectum and the sigmoid. The study of sigmoidoscopy screening of individuals
between 55 and 64 years in the United Kingdom (UK), indicated subsequent CRC incidence reduction
by 33% and mortality by 43% [13].

Colon capsule endoscopy (CCE) is a non-invasive method suitable for individuals who are
unwilling to undergo colonoscopy because of discomfort or any other obstacles. Meta-analysis showed
that CCE for any polyp has a specificity of 89% and sensitivity of 73%. Though CCE is not as accurate
as colonoscopy, it could decrease the need for its application [14].

CRC screening by radiology using computed tomographic (CT) colonography is able to visualize
the entire colorectum and with no need for sedation. Even though it still requires bowel preparation, it
is a relatively non-invasive method. This technique can detect only large adenomas and tumors with
size ≥10 mm, nevertheless with sensitivity of 90% [15].

Screening methods based on blood testing were enriched by a highly promising biomarker,
methylated gene septin9 (mSEPT9) in the last few years. mSEPT9 is released from CRC cells into
circulation and is detectable in peripheral blood. A recent study showed that mSEPT9 assay, approved
by Food and Drug Administration (FDA) in the USA, has a higher specificity (94.5%) than FOBT at
advanced stages of CRC, but not at asymptomatic patients with early neoplasia [16,17].

Several types of a lesion can be histologically described from the colonoscopy biopsy. A colon
polyp is a small clump of cells that forms on the lining of the colon epithelium. There are two main
classes of polyps, non-neoplastic and neoplastic (Table 1) [18]. In general, the larger the neoplastic
adenoma the greater the risk of cancer. Table 2 shows the recommended follow up after patient
polypectomy [19–21]. Although the recommended surveillance guideline has been widely accepted,
clinicians still detect the incidence of CRC (<10%) developed during the initial colonoscopy and the
subsequent follow-up examination. This subgroup of CRCs is referred to as interval CRC (I-CRC) and
represents one of the problems that screening programs face [22].
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Table 1. Classification of non-neoplastic and neoplastic polyps and polyposis [18].

Non-Neoplastic Neoplastic

Sporadic Hereditary Sporadic Hereditary

Hyperplastic polyps Hyperplastic
polyposis

Benigns adenomas: Tubular Familial
adenomatous

polyposis (FAP)
Villous

Tubulovillous

Inflammatory polyps Juvenile polyposis Serrated adenomas: Sessile serrated Hereditary
non-polyposis

colorectal cancer
(HNPCC)Juvenile polyps

Traditional serrated

Peutz-Jeghers
syndrome

Malignant lesions: Carcinoma in situ

MUTYH associated
polyposisLymphoid polyps Intramucosal CRC

Invasive CRC

Around 5–10% of CRC cases are related to heredity including most common syndromes
such as hereditary non-polyposis colorectal cancer (HNPCC), familial adenomatous polyposis
(FAP) and attenuated familial adenomatous polyposis (aFAP), MUTYH-associated polyposis (MAP),
Juvenile polyposis syndrome (JPS), Peutz-Jeghers syndrome (PJS), Polymerase proofreading-associated
polyposis (PPAP), PTEN hamartoma tumors syndrome (PHTS), Cowden syndrome, and Familial
colorectal cancer type X, while more than 90% of CRC cases are of sporadic origin [6,7]. Syndromes are
usually detected at an early age. However, sporadic CRC correlates with increasing age due to the
accumulation of mutations in intestine cells [23,24].

In the study by Brenner et al. [25], 10 years of cumulative risk of CRC among both sex with advanced
adenomas increases from 25.4–25.2% at age 55 years to 42.9–39.7% at age 80 years. The development
of carcinoma from adenoma tissue can last 5 to 20 years, and it is not influenced purely by one
pathway [26,27]. This transition is a complex, multifactorial process that has been characterized by
chromosomal instability (CIN), microsatellite instability (MSI), and DNA methylation in CpG islands
areas (CIMP). All these pathways may overlap with each other and are responsible for genetic instability
in adenoma that could undergo malignant transformation [28] (Figure 1). The events contributing to
these processes are constantly subject to intensive investigations [27].
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Figure 1. Arise of tumor-initiating cells from aberrant colon crypt and subsequent transition of early
adenoma to metastatic cancer.
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Considering the current knowledge about the CRC development and with an application
of screening programs, we are still missing identification of patients with asymptomatic disease
progression in early stages, where detection plays a key role in cancer survival. Recent studies seek to
find new non-invasive biomarkers measurable even in early stages of CRC from an area of non-coding
RNA, inflammatory biomarkers, or cell-free DNA [29].

Table 2. Current surveillance recommendation [20,30].

Neoplasia Found Recommanded Interval for
Colonoscopy Examination Comment

Small rectal hyperplastic polyps 10 years Exception are patients with hyperplastic polyposis
syndrome, who need more intensive follow up.

One or two small (<1 cm) tubular
adenomas with only low-grade

dysplasia
5–10 years

The precise timing within this interval should be
based on other clinical factors (such as prior
colonoscopy findings, family history, and the

preferences of the patient and judgment of the
physician).

3 to 10 adenomas, or any adenoma
≥ 1 cm, or any adenoma with
villous features, or high-grade

dysplasia

3 years

Adenomas must have been completely removed. If
the follow up colonoscopy is normal or shows only 1

or 2 small, tubular adenomas with low-grade
dysplasia, then the interval for the subsequent

examination should be 5 years.

More than 10 adenomas at one
examination < 3 years

The interval should be based on the clinician
judgement and consider the possibility of an

underlying familial syndrome.

Sessile adenomas that are
removed piecemeal 2 to 6 months

Once complete removal has been established,
subsequent surveillance needs to be individualized

based on the endoscopist’s judgment. Completeness
of removal should be based on both endoscopic and

pathologic assessments.

Transition of Adenoma to Carcinoma in Colon

The colon epithelium is constantly and rapidly renewing tissue. Old cells on the top of the villus
are released into the lumen and replaced with new cells raised from colonic crypts. On the bottom of
colonic crypts are stem cells that proliferate and differentiate into the cellular compartment of colon
epithelium [31]. Vogelstein et al. [32] proposed the classical model of tumor evolution in the large
bowel (Figure 1). Cells with high WNT signaling activity arise from aberrant crypts and evolve into a
tubular or tubule-villous polyp. The subsequent proliferation of polyp may lead to the development of
early adenoma with a low grade of dysplasia. Early adenoma expanses into advanced adenoma with a
high grade of dysplasia and with increasing accumulation of mutations in daughter cells progressing
ultimately further into carcinoma [2,32,33].

Each mutation that provides tumor cell-selective growth advantage is called driver mutation.
This advantage slightly increases the growth rate of clonal expansion around 0.4% and is increasing
with every new driving mutation [34]. Driver mutations enhance the accumulation of a large number
of somatic mutations due to altering the cell condition and reduce the population fitness landscape.
The predominant mutations, so-called passenger mutations, are mutations without selective growth
advantage. With each clonal expansion of cancer cells, heterogeneous passenger mutations are
generated that constitute the enormous variations of unique tumors [35].

Thanks to the next-generation sequencing (NGS) technique, thousands of mutations in the
human genome were identified and some of them contribute to malignant evolution [36]. The driver
mutations in the APC gene, predominantly frameshift at codon 1,554 [37], provide cell-selective growth
advantage [32], and cause loss of cell ability to control the concentration level of protein β-catenin in
the cytoplasm. β-catenin implements in the WNT signaling pathway and its concentration imbalances
lead to uncontrolled growth and cell division [38]. Following mutations in TP53 or SMAD4 genes
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induce transformation into a malignant tumor, which overgrows into basal tissue and has an ability to
metastasize into lymph nodes and distant organs [27].

2. Genetic Changes in Adenoma

The evolution of adenoma to carcinoma contains a wide range of genetic and epigenetic
alterations. Here, we described the most relevant genetic changes associated with precancerous
stages of colorectal adenoma.

2.1. Chromosomal Instability (CIN)

Chromosomal instability is associated with about 70% of sporadic CRC cases and is caused by
aberrant segregation during mitoses, breaks in DNA due to nucleotide excision repair genes (NER)
deficiency, or fusion of telomeres.

Chromosomal rearrangement could be classified as a numerical CIN, involving gains or losses of
whole chromosomes, or it could be described as a structural CIN involving translocations, inversions,
amplifications, or deletions certain parts of chromosomes [39]. CIN acts as a cancer driver by changing
the copy number of large gene cohorts within tumor suppressor genes, oncogenes, DNA repair
genes, and apoptotic genes [40]. Besides, the loss of one of the parental alleles during mitosis has a
consequence in the loss of heterozygosity (LOH) [41].

In the study by Hermsen et al. chromosomal aberrations of 66 non-progressed colorectal
adenomas, 46 progressed adenomas, and 36 colorectal carcinomas were analyzed by comparative
genomic hybridization (CGH) method [42]. Authors observed that even in small adenomas a certain
degree of CIN was found, independent of the degree of dysplasia. In particular, losses of chromosomal
regions were observed in small non-progressed adenomas while in progressed adenomas predominantly
gains of chromosomal regions and increased CIN were detected. The higher accumulation of losses at
8p21-pter, 15q11-q21, 17p12-13,18q12-21 and gains at 8q23-qter, 13q14-3, 20q13 chromosomes correlated
with tumor progression [42]. Further, the most common losses were found at 1p, 4, 8p, 14, 15, 17p, 18,
and most common gains at chromosomes 7, 8q, 13, 20 [43].

2.2. Microsatellite Instability (MSI)

MSI is defined as the change in microsatellite length, caused by the insertion or deletion of
repetitive sequences in a tumor compared to the length of microsatellite in non-malignant tissue in
the same individual. MSI is caused by a deficiency of the DNA repair mechanism, particularly the
mismatch repair pathway (MMR). Under normal physiological conditions, the role of MMR is to
correct DNA errors formed during the replication process, however deactivating some MMR genes
(e.g., MLH1, MSH2, MSH6, or PMS1, and PMS2) results in MSI [44].

Originally, MSI has been reported to be associated with germline mutation of MMR genes in
hereditary non-polyposis colorectal syndromes (HNPCC) known as a Lynch syndrome (LS). Sporadic
tumors with MSI, commonly caused by biallelic promoter hypermethylation of the MHL1 gene, has a
tendency to arise in the proximal colon. The frequency of the MSI is 80% to 95% in HNPCC cancers
and 10% to 15% in sporadic CRC [45,46].

HNPCC tumors demonstrate high MSI, especially those located in the proximal colon, and the
presence of tumor-infiltrating lymphocytes, nevertheless associated with better prognosis [47].

2.3. DNA Methylation in CpG Islands

DNA methylation, an important epigenetic modification, is closely related to the occurrence
and development of tumors [48] and takes place at the 5-position of the pyrimidine ring of the
cytosine residues within CpG sites to form 5-methylcytosines. CpG islands, 0.5- to 2-kb regions rich
in cytosine-guanine dinucleotides, are present in approximately half of all human genes; comprising
about 30,000 CpG islands in the human genome. The presence of multiple methylated CpG sites in CpG
islands leads to the stable silencing of gene expression [49–51]. The CpG island methylator phenotype
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(CIMP) was firstly introduced in CRC by Toyota et al. [52] as a mechanism of CRC development.
CIMP-positive CRC is characterized by a high degree of methylation in multiple CpG islands of genes
associated with CRC, such as tumor suppressor genes MLH1, MGMT, and p16 [52,53].

CIMP level corresponds to the histological stage of dysplasia. In the study of Rashid [54],
the methylation status of p16, MINT2, and MINT31 was determined and the methylation of these loci
was present at 41% tubular adenomas and at 73% of tubulo-villous or villous adenomas. Interestingly,
tubulo-villous and villous types of adenomas were more frequently found to evolve into invasive
carcinomas. K-ras mutation was also observed in larger adenomas associated with higher CIMP [53,54],
and this mutation also occurred at sessile serrated adenomas with significantly frequent methylation
of MINT1 and MINT2 genes [55,56].

Although it is well known that hypermethylation of MHL1 gene leads to MSI, these two pathways,
CIMP and MSI, are shown to be independent ways. It has been suggested that hypermethylation of
MHL1 gene is a consequence in late stages, which was supported by the presence of previous mutations
or allelic loss [54,57].

3. Insight into Novel Candidate Biomarkers of CRC

Research on CRC reported during the last decade has improved our understanding of the etiology
and development of colorectal neoplasia and revealed weaknesses in the general approach to their
detection and elimination.

The aims of recent studies on early CRC detection are oriented on the identification of new
biomarkers and a more comprehensive understanding of existing biomarkers. A significant role in
this field is played by non-coding RNA (long and small non-coding RNAs), cell-free DNA, circulating
tumor cells, and inflammatory agents or length of telomeres. Here, we present the most promising
biomarkers, which could serve as a diagnostic tool.

3.1. Long Non-Coding RNAs (lncRNAs)

Only 1–2% of the human genome encodes proteins whereas 70–90% is transcribed into non-coding
RNA (ncRNA) [58,59]. The role of non-coding RNAs in organisms comprises numerous biological
functions such as RNA splicing, regulation of transcription and translation, epigenetic modification,
cell metabolism, interaction with RNA, DNA, and proteins [60]. Recently, it has been documented
their involvement in a several diseases, especially in cancer. LncRNAs, transcripts longer than 200
nucleotides, can act as oncogenes or tumor suppressor genes in CRC and are involved in all phases of
cancer evolution, tumor progression including migration of cancer cells, proliferation, tumor invasion,
and metastasis formation [61]. LncRNAs can be detected not only in target tissue but also in peripheral
blood. Therefore, these transcripts could represent promising diagnostic biomarkers for CRC and even
in precancerous stages. A number of lncRNA e.g., CCAT1, CAHM, CRNDE, CRCAL1-4, H19, HOTAIR,
MALAT1 was found significantly differentially expressed in carcinomas compared to adjacent colon
tissue [62,63].

Colon-cancer associated transcript 1 (CCAT1) was recently found significantly up-regulated in all
stages of adenoma-carcinoma cascades, in adenomatous polyps (100 - fold), in tumors (5 - fold) or in
metastases (over - 100 fold) when compared to adjacent mucosa [64]. CCAT1 locus is located nearby
of family MYC regulator genes, a well-known transcription factor. Observations of Xiang et al. [65]
suggest that CCAT1-L lncRNA is involved in MYC regulation by intra-chromosome looping between
the MYC gene promoter and distal upstream enhancer elements that regulate MYC transcription.
The up-regulation of lncRNA-CCAT1 is highly abundant in the premalignant stages of CRC [60,66].

The H19, an oncofetal gene for lncRNA, is located in an imprinted region of chromosome 11, close
to the telomeric region. H19 is overexpressed during the early stages of embryogenesis, downregulated
after birth, and re-expressed during tumor genesis [67]. H19-lncRNA regulates gene expression of
CDK4, CCND, and certain cancer-related proteins, such as RB1, and indirectly the activity of β-catenin
via reduction of CDK8 expression by interacting with macroH2A [68]. H19 lncRNA is highly abundant
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in many tumors, including CRC [69]. Yoshimizu et al. [70] demonstrated that lack of H19-lncRNA
expression may be considered as an initiating step in increasing the number of polyp appearance in
APC mutated carcinogenesis mice model.

A gene locus (Chr16: hCG_1815491), named colorectal neoplasia differentially expressed (CRNDE),
encodes lncRNA that is activated in early stages in colorectal neoplasia [71]. Elevated expression was
detected in more than 90% of colorectal adenomas and adenocarcinomas in comparison to adjacent
tissue. Moreover, transcripts of CRNDE were also found in the plasma of 13 out of 15 CRC patients [71].
A significant up-regulation of lncRNA, CRNDE-h variant transcript was found in serum exosomes of
individuals with adenoma and CRC patients compared to control healthy subjects [72]. In addition,
the level of CRNDE-lncRNA correlated with tumor size and advanced CRC stages and patient survival.
CRNDE knockout suppressed CRC cell proliferation and supported apoptosis both in vitro and in vivo
in the mouse model [73]. CRNDE-lncRNA also plays a significant role in CRC development by
enhancing an activity of Ras/MAPK and WNT/β-catenin signaling pathways [74].

3.2. MicroRNAs (miRNAs)

MicroRNAs (miRNAs), class of small non-coding RNAs (with an average of 22 nucleotides in
length), regulate the gene expression through RNA interference. MiRNAs may act as oncogenes or
tumor suppressors, and their differential expression has been involved in many cancers, including
CRC [75]. Their role in the silencing or triggering several pathways has been observed, thus contributing
to the transition from normal epithelial colonic mucosa to adenoma and carcinoma [76]. To date,
numerous studies have been focused on the differences in the miRNA’s expression between patients
with CRC and healthy individuals. However, the investigation of precancerous adenomas is scarce
2 [77].

Differential miRNAs expression levels between several types of adenomas were described by
studies shown in (Table 5).

The study by Tsikitis et al. focused on several types of adenomas characterized by histology
and malignant potential. MiR-145, -143, -107a, -194, and -26a exhibited higher expression in low
risk adenomas than in high risk adenomas, whereas miR-663b, -1268, -320a, -320b, and -1275 were
highly expressed in high risk adenomas. Authors suggested the potential value of comprehensive
miRNAs profiling to identify patients with high-risk malignant potential adenomas [78]. Kanth et al.
analyzed miRNAs isolated from in formalin-fixed paraffin-embedded (FFPE) samples from 6 patients
with sessile serrated polyps (SSA/Ps), hyperplastic polyps (HPs), and paired adjacent colon mucosa
by small noncoding RNA sequencing. Several differentially expressed miRNAs (miR-135b, -378a,
-548, -31, and -196b) were observed in SSA/Ps in comparison with HPs. The authors suggested that
these miRNAs might serve as a good diagnostic biomarker of serrated polyps [79]. Aslam et al. also
analyzed miRNAs isolated from FFPE samples and the expression level of miR-135b was progressively
increased with the sequential progression of non-affected tissue to adenoma and carcinoma [80]. Oberg
et al. identified several miRNAs (including miR-31 and -135) that evinced a significant difference in
their expression profiles between adenomas and adjacent mucosa [81]. The involvement of miR-31 in
transition from adenoma to carcinoma was also proposed by [82].

A study by Wang et al. focused on miRNA as biomarkers for prediction of adenoma recurrence.
Patients with advanced colorectal adenomas were monitored for 22–24 months and almost 50% of
them experienced adenoma recurrence. Authors identified that low expression of miR-194 can serve
as a potential independent factor for adenoma recurrence. Moreover, this parameter was a better
predictor than number of adenomas and adenoma size [83].

In the last decade, many studies focused on the concept of liquid biopsy with the goal to identify
diagnostic and prognostic biomarkers from body fluids. As miRNAs can be secreted into the circulation,
they might represent promising diagnostic candidates [51]. It has been observed that circulating
miRNA can also aid to distinguish between CRC and adenoma patients (Table 5).
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Ardila et al. analyzed circulating miRNAs in the serum of advanced adenomas, hyperplastic
polyps and controls and found that miR-141, -143, and -200c were overexpressed in the serum of
patients with adenomas compared to all the others [84].

Analysis of miRNAs in plasma of patients with adenomas was the task of the study conducted by
Nagy et al. The authors identified three miRNAs (miR-31, -4506 and -452) differentially expressed
in adenomas when compared with adjacent mucosa and the similar trend was also noticed in their
plasma samples [85]. Four other miRNAs (miR-21, -29a, -92a and -135b) displayed significantly higher
expression levels in adenomas when compared with non-affected adjacent mucosa. Alongside, patients
with adenomas also evinced higher expression levels of miR-21 and -29a in their serum and exosomes
than healthy individuals [86].

Besides plasma and serum, miRNAs can be also detected in the stool specimens [87]. In the
study of Wu et al., authors identified miR-31 and -135b to be the most upregulated miRNAs in both
CRC tissue and advanced adenomas tissue. These miRNAs were validated in stool specimens. The
expression level of stool miR-135b was significantly higher in subjects with CRC compared with control
individuals. However, there was no significant difference in the stool levels of miR-31. Authors repeated
this analysis in patients upon removal of colorectal tumors and advanced adenomas and observed
significant drop in miR-135b expression level in comparison with their level before removal [88].

Table 3. Summary of studies focusing on miRNA profiles in colorectal cancer (CRC) adenomas (in
chronological order).

Reference Origin of
Study Source Number of

Patients miRNAs Significant Relevant

[89] USA tissue 84 adenomas miR-21 ↑ expression associated
with poor survival

[90] Netherlands tissue 25 CRC
30 adenomas

miR-17-92
cluster

↑ expression across
adenoma carcinoma

sequence

[81] USA tissue
222 CRC

41 adenomas
52 controls

miR-135b
miR-31
miR-1

miR-137
miR-9

miR-99a

ability to distinguish
adenomas vs. controls

[91] USA plasma
20 CRC

9 adenomas
12 controls

miR-532
miR-331
miR-195
miR-17

miR-142
miR-15b
miR-532
miR-652
miR-15b
miR-21

miR-339

ability to distinguish
adenomas vs. controls and

CRC

[83] China tissue 227 adenomas
37 controls miR-194a predictor for adenoma

recurrence

[88] China
tissue 40 CRC

16 adenomas miR-31
miR-135b

↑ expression in adenoma
carcinoma sequence

stool
104 CRC

169 adenomas
109 controls

↑ expression in stool
miR-135 level across the

adenoma carcinoma
sequence

[82] Japan tissue 870 CRC
637 adenomas miR-31

↑miR-31 expression was
associated with CIMP

status
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Table 4. Cont.

Reference Origin of
Study Source Number of

Patients miRNAs Significant Relevant

[92] USA tissue 113 adenomas
miR-320a ↑ expression in adenoma

carcinoma sequence

miR-145
miR-192

↓ expression across
adenoma carcinoma

sequence

[93] China serum
307 CRC

164 adenomas
266 controls

miR19a
miR-92a
miR-223a

↑ expression in adenoma
carcinoma sequence

miR-422
↓ expression across
adenoma carcinoma

sequence

[80] UK tissue
13 CRC

55 adenomas
10 controls

miR-135b
↑ expression across
adenoma carcinoma

sequence

[94] Netherlands tissue 52 CRC
48 adenomas miR-15a ↑ expression in adenoma

carcinoma sequence

[95] France tissue
41 CRC

51 adenomas
34 controls

miR-15b
miR-16b
miR-21
miR-24

miR-145
miR-150
miR-378

↓ expression in adenomas
compared to controls

[96] Japan tissue 151 CRC
21 adenomas miR-148a

↓ expression across
adenoma carcinoma

sequence

[97] USA serum
11 CRC

20 adenomas
10 controls

miR-30b
miR-30c

miR-146a
miR-30d

↑ expression in adenoma
carcinoma sequence

[98] Japan tissue

18 CRC with
adenomas

3 CRC without
adenomas
21 normal

mucosa

miR-320 family
↓ expression in adenomas
and early CRC tissue vs.

controls

[78] USA tissue 109 adenomas

miR-145
miR-143
miR-107a
miR-194
miR-26a

miR-663b
miR-1268
miR-320a
miR-1275

ability to distinguish high
risk adenomas from low

risk adenomas

[86] Japan serum
(+exosomes)

26 adenomas
47 controls

miR-21
miR-29a
miR-92a

miR-135b

ability to distinguish
adenomas vs. controls

discriminate patients with
↑ risk adenoma
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Table 5. Cont.

Reference Origin of
Study Source Number of

Patients miRNAs Significant Relevant

[85] Hungary tissueplasma
20 CRC

20 adenomas
20 controls

miR-31
miR-10b
miR-183
miR-196a

expression of miRNAs in
plasma correlated with

matched tissue expression
level

ability to distinguish
adenomas vs. controls and

CRC

[99] China serum
20 CRC

20 adenomas
20 controls

miR-4463
miR-5704
miR-371b
miR-1247
miR-1293
miR-548a
miR-107
miR-139

ability to distinguish CRC
vs. adenomas vs. controls

[100] USA serum
34 CRC

33 adenomas
35 controls

Ratios of:
let-7b/miR-367

miR-130a/miR-409
miR-148/miR-27

miR-148/miR-409
miR-21-miR367

ability to distinguish
adenoma vs. controls

miR-17/miR-135b
miR-92a/miR-135b
miR-451a/miR-491

ability to distinguish CRC
vs. adenomas

[84] Colombia tissue
serum

45 CRC
25 adenomas
45 controls

miR-141
miR-200c

↑ expression in adenomas
compared to CRC and

controls

[79] USA tissue 26 adenomas
30 controls

miR-31
miR-135b
miR-378a

predictors of serrated
neoplasia

[101] Ireland plasma
16 CRC

24 adenomas
8 controls

miR-34
miR-150

ability to distinguish CRC
vs. adenomas

[76] China tissue
6 CRC

6 adenomas
6 controls

miR-135b
miR-18a
miR-29b

↑ expression in adenoma
carcinoma sequence

miR-1
miR-338
miR-218

↓ expression level across
adenoma carcinoma

sequence

↑ high/higher, ↓ low/lower.

3.3. Circulating Cell-Free DNA

As mentioned before, multiple genetic aberrations gradually accumulate over time, first in normal
cells that develop into precursor lesions with the potential to develop into cancer. Thus, it may
theoretically be possible to detect these genetic changes in plasma DNA taken from individuals with
precursor lesions and monitor them over time to detect the progression. However, there are very few
published studies on this issue.

One attractive way to improve adenoma detection and compliance is an analysis using cell-free
DNA (cfDNA). Dying cells release their fragmented DNA into the circulation. In cancer patients, the
cfDNA fraction that originates from tumor cells (circulating tumor DNA (ctDNA)) carries tumor-related
alterations that can be detected using next-generation sequencing and PCR-based methodologies [102].
The cfDNA analysis, known as the liquid biopsy approach, is cost-effective, minimally invasive, and
its specificity can be increased by tailoring the assay to detect tumor-specific mutations [51,103,104].
Recently, liquid biopsies have been used to detect minimal residual disease and monitor relapse after
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surgical resection of a localized disease [105]. The use of liquid biopsies for the detection of benign
tumors has proved to be challenging [106,107]. The probability of detecting cfDNA is low in early-stage
CRC [107] and many groups showed different results in terms of diagnostic value of total ctDNA levels
or analysis of KRAS mutations in the plasma of patients with adenomas [105,108–111]. Encouraging
studies reported an increase in total cfDNA or even detected tumor-related mutations in patients with
benign adenomas [108,110].

Several parameters can influence the detection rate of benign lesions. Adenomas are typically
small and do not manifest the persisted apoptosis or necrosis that is usually observed in advanced
cancers. However, heterogeneity has been described in adenomas, which might affect KRAS mutation
detection [112,113] suggesting that this oncogene might be subclonal and therefore inadequate
for targeted cfDNA testing. Similar conclusions have been recently emerged from the study by
Myint et al. [105] as authors argued that benign lesions do not release significant quantities of
DNA in the circulation and are therefore unlikely to be diagnosed by liquid biopsies, at least using
current technologies.

Further studies have shown even lower sensitivity. An analysis of 96 mutations in nine cancer
driver genes (BRAF, CTNNB1, EGFR, FOXL2, GNAS, KRAS, NRAS, PIK3CA, and TP53) detected
mutations in plasma cfDNA in 6% (12/200) of individuals undergoing colonoscopy; 42% of these
individuals had polyps, and the rest had negative finding on colonoscopy [114]. KRAS mutations were
detected in 33% (9/27) of individuals with CRC, 10% (3/30) of individuals with neoplastic polyps, and
in 6% (2/35) of healthy individuals with no identified polyps during a colonoscopy. The same study
also analyzed BRAF mutations in plasma cfDNA, and the results were similar in all three groups: 15%
in those with CRC, 20% in individuals with neoplastic polyps, and 11% in healthy controls suggesting
technical or biological issues. From a biological point of view, benign diseases, especially those with
inflammatory background, may be associated with elevated levels of cfDNA [115]. In addition, somatic
DNA mutations associated with cancer have been identified in histologically normal skin and colonic
mucosa [116,117]. KRAS and APC mutations have also been identified in aberrant crypt foci in the
colon which may be precursors of adenomas and CRC [118]. It further emphasizes that apparently
unaffected colon mucosa may harbor cancer gene mutations and indeed KRAS mutations have been
found in colonic effluent samples of patients at increased risk of CRC, however with normal finding on
colonoscopy [119]. It was assumed that the source of the ctDNA could be from a neoplasm outside
of the colorectal area, from apoptotic cells or destruction of precancerous cells, benign inflammatory
lesions such as endometriosis, and small neoplasms with somatic DNA mutations during the normal
process of immune surveillance [119,120].

In addition to KRAS and BRAF mutations, Galanopoulos et al. [109] recently studied blood
samples and colonic biopsy specimens from healthy individuals with no polyps undergoing screening
colonoscopy, patients with CRC, and patients with neoplastic intestinal polyps. Based on the mutation
analysis for codon 12 of the KRAS, authors were able to discriminate patients with CRC compared to
healthy individuals. However, with no success in predicting the presence of colonic polyps.

Kopreski et al. [110] found KRAS mutations in plasma cfDNA in 22 of the 62 patients with
adenomas and in 9 out of 65 of those with hyperplastic or other non-neoplastic lesions. In prospective
colonoscopy study, Perrone et al. [111] found 22 instances of high-grade intraepithelial neoplasia in
adenomas (12.9%), 54 adenomas (31.8%), and 19 hyperplastic lesions (11.2%) in the 170 investigated
individuals. KRAS mutations were found in the plasma of 3/19 patients with high-grade intraepithelial
neoplasia (15.8%), 1/54 patients with adenomas (1.8%), and none of the patients with hyperplasia.

Gocke et al. [121] demonstrated that either of two hotspot mutations (codons 175 and 248) in
TP53 was detectable in cfDNA in 1.3% (3/240) of the individuals. However, only one of these three
individuals had a polyp that carried the same TP53 mutation, and thus, the origin of the other two
plasma TP53 mutations could not be determined.

Mead et al. [108] analyzed diagnostic markers utilizing cfDNA isolated from samples obtained
from 35 individuals without endoscopic abnormality, a group of 26 individuals with benign colorectal
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adenomas, and 24 patients with CRC. The best model to discriminate physiological from neoplasia
populations was based on four DNA markers (Line1 79 bp, Alu 247 bp, mitochondrial DNA, and Alu
115 bp), with ROC curve of 0.810. The final test had a positive predictive value (PPV) of 81.1% for
polyps and a negative predictive value (NPV) of 73.5% (sensitivity 83% and specificity 72%) for early
cancer diagnosis.

CRC screening with a multitarget stool DNA test was approved by the Food and Drug
Administration in 2014. This simple, noninvasive, multitarget stool DNA (mt-sDNA)-based screening
test (Cologuard; Exact Sciences, Madison, WI) has much greater sensitivity for the detection of both
CRC and advanced precancerous lesions than FIT. Thus was developed to improve both non in-vasive
screening performance and screening compliance [122,123]. Screening study data have similarly
supported a Cologuard multiyear interval with a negative predictive value of a single test even of
99.94% for CRC and 95% for advanced adenoma [124]. Colo-guard consists of quantitative molecular
assays to detect aberrantly methylated DNA (NDRG4 and BMP3) and DNA mutations (KRAS) in stool
plus a fecal hemoglobin immunoassay. Berger et al. suggested [122] that screening every 3 years using
a multitarget mt-sDNA test provides reasonable performance at an acceptable cost.

Taken together, these results suggest that the detection of pathogenic mutations in plasma is not
synonymous with precancerous lesions or cancer. Whilst many precancerous colorectal lesions are not
detectable at all, some small polyps can shed detectable amounts of ctDNA in plasma. Since adenomas
are potentially premalignant and should be excised, their detection through measurement of ctDNA
should be useful and the finding of a positive test might increase the rate of screening colonoscopies,
which suffers from poor patient compliance.

3.4. Circulating Tumor Cells (CTCs)

The process of tumor metastasis involves the release of epithelial cancer cells, called circulating
tumor cells (CTCs) into the bloodstream. It has been observed that CTCs can access the circulatory
system not only in metastatic stages but even at preinvasive lesions [125]. However, even in metastatic
stages, the blood concentration of CTCs is extremely low and therefore the CTCs detection is difficult
and much more challenging for colorectal adenomas or carcinomas in situ. Nevertheless, in terms of
diagnostic value, CTCs provide an opportunity to monitor the development of cancer at all stages with
a deeper understanding of tumor biology and better treatment efficiency [51].

The analysis of CTCs in the sense of liquid biopsy requires cell enrichment and CTC detection.
The gold standard is represented by the CellSearch system [126], the only FDA approved method for
CTC-detection today is based on immunomagnetic CTC enrichment using an antibody against the
epithelial cell adhesion molecule (EpCAM) and combined with flow cytometry. EpCAM adhesion
molecule is specific for epithelial cells and most carcinomas are characterized by its overexpression.
Besides CTC detection by EpCAM, different assays based on physical characteristics (e.g., size, density,
deformability, and electrical charge) or on more specific biological properties such as certain tumor
epithelial protein (e.g., CK20, CD45) also exist [127].

In CRC, CTCs may originate not only from epithelial tumor cells, but also from tumor cells
undergoing epithelial-mesenchymal transition, and tumor stem cells [128]. As mentioned before,
extremely low concentration of CTCs in peripheral blood (e.g., 1-5 CTCs per 7.5 mL blood at CRC
stage III) is the main obstacle in cancer progress investigation [129]. However, the presence of CTCs
could serve as an indicator of metastatic spread of the disease. In a recent meta-analysis by Tan and
Wu [130] that included 15 studies with 3129 CRC patients, the association between CTCs detection
and poor survival outcomes for patients with CRC was proved. Another meta-analysis by Huang et
al. [131], included 13 studies with eligible 2388 CRC patients observed CTCs level in peripheral blood
before initiating chemotherapy and during the chemotherapy. They confirmed CTCs high level was
significantly associated with poor progression-free survival and poor overall survival. Moreover, CTCs
are suitable for evaluation chemosensitivity and gene expression to evaluate the current mutational
status of the tumor [132]. Interesting results were shown by Guadagni et al. [133], where CTCs
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from 47% of CRC patients exhibited high sensitivity to mitomycin when compared to recommended
chemotherapeutic for CRC.

Considering the low occurrence of CTCs in the bloodstream during CRC metastatic process, the
utilization of CTCs for a screening of CRC early stages or precancerous lesions represents a very
ambitious aim. The recent study of Tsai et al. [134] has accepted this challenging topic. On the day of
the colonoscopy, 8 ml of peripheral blood was collected from 667 Taiwanese subjects (in detail the study
consisted of 235 healthy controls, 107 subjects with adenomatous polyps, and 325 patients with CRC
across all stages I-IV). All individuals were tested for CTCs presence by using the CellMax Platform
(EpCAM(+), CK20(+), CD45(−) epithelial cells). Results of the study showed high specificity 86% and
sensitivity 79% for adenomatous lesion and for CRC across all stages specificity 82% and sensitivity
95%. While the CTCs presence in metastatic CRC is widely accepted, CTCs detection at adenomatous
polyps or in precancerous stages appears to be rather difficult. Nevertheless, CTCs detection has the
potential to serve as a diagnostic tool in CRC screening.

3.5. Circulating Inflammation Markers

Inflammation belongs between one of the colorectal neoplasia drivers; however, particular
inflammatory processes that play a role in early carcinogenesis are still unknown. Recently, Huang
et al. [135] compared serum levels of 78 inflammation markers between 171 pathologically confirmed
colorectal adenoma cases and 344 controls within the frame of Prostate, Lung, Colorectal and Ovarian
Cancer Screening Trial. Their results provided important new evidence implicating C-chemokine
cysteine motif chemokine ligand 20 (CCL20)—and growth-related gene oncogene products (GRO)
–related pathways in early CRC, and further supported a role for insulin. The CCL20/CCR6 system also
appeared to play a role in organ-selective liver metastasis of CRC. A recent meta-analysis of 4 cohorts
and 10 case-control studies found no associations between adenoma and 3 most studied circulating
inflammation markers CRP, IL-6, and TNF-α [136]. Similarly, no significant associations were found
for C-peptide, GM-CSF, interferon-α (IFN-α), IL-1β, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-17A, MIP-1β,
and vascular endothelial growth factor and adenoma [137–139]. Although associations were reported
for IFN-α2, IL-7, IL-8, MCP-3, and SIL-4R in cross-sectional analyses [137,140] they have not been
prospectively confirmed.

3.6. Telomere Length

Telomeres are terminal repeated sequences at the ends of chromosomes and their shortening is
associated with aging. During the cell division are telomeres shortened due to the lack of enzyme
telomerase that synthesizes the ends of linear nucleic acid. Nevertheless, this enzyme is active in germ
cells, stem cells, and in most of the cancer cells. In the advanced stage of CRC epithelial-mesenchymal
transition occurs and telomere lengthening is maintenance by the alternative lengthening of telomeres
(ALT) [141–143].

The latest studies reported that both short and long telomeres have been involved in carcinogenesis.
The relationship between the length of telomeres in colorectal adenomas and the risk of cancer
development is still subject to discussion [144]. Results of comparing the telomere length between
adenomas, tumors, and adjacent mucosa are inconsistent and vary among several studies. In the study
by Peacock et al. [141], telomere length of colon tissue from 40 adenomas and 45 controls identified
during colonoscopy was exanimated. The result suggested that long telomeres in non-affected colon
tissue are related to increased risk of CRC. Bautista et al. [145] observed higher telomerase activity in
adenomas compared to their adjacent control mucosa, however shorter telomere length in adenomas
in comparison to control tissue. Similar results were also obtained in the other studies [146,147], where
telomere shortening in adenomas compared to adjacent mucosa was detected. The largest analysis
of telomere length was done in the study of Suraweera et al. [148] where relative telomere length
(RLT) was measured in 90 adenomas and adjacent normal mucosa. Adenomas showed a shortening of
telomeres by 79% and lengthening only in 7% of cases.
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4. Conclusions

The development of colorectal cancer is a comprehensive process of genetic, epigenetic, and
structural modifications from benign adenoma to invasive cancer. Early detection and complete
endoscopic removal of adenomas in their early stages is the key to survival with almost zero chance
for cancer development. Nowadays, the most used method for the investigation of the large bowel is a
colonoscopy. Although it is a very sensitive and reliable method, it brings considerable difficulties as a
dietary restriction, invasive examination, risk of omission of some adenomas, high price, and requires
a well-trained examiner. Non-invasive approaches for early adenoma detection are still evolving.
The future perspectives in this area are moving towards liquid biopsy as a potential minimally invasive
tool for clinical use. CfDNA, CTCs, inflammatory markers or specific RNA transcripts, such as a
miR-31, miR-135, lncRNAs, released from adenoma lesions into circulation are extensively studied and
have been shown as promising candidate biomarkers for early CRC. Although the concentration of
cfDNA in plasma is very low, it still can provide useful information about mutations in crucial genes as
a KRAS or BRAF that are involved in carcinogenesis. The early appearance of KRAS or BARF mutations
in circulation even in healthy individuals warrants further investigation as a potential prognostic
marker. Recently acquired knowledge about new possible biomarkers can help to better understand
colorectal cancer evaluation and design its future detection strategy.
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ALT alternative lengthening of telomeres
aFAP attenuated familial adenomatous polyposis
CC colon cancer
CCE colon capsule endoscopy
CCL20 C-chemokine cysteine motif chemokine ligand 20
cfDNA cell-free DNA
CGH comparative genomic hybridization
CIMP CpG island methylator phenotype
CIN chromosomal instability
CRC colorectal cancer
CTCs circulating tumor cells
CT computed tomographic
ctDNA circulating tumor DNA
EpCAM epithelial cell adhesion molecule
FAP familial adenomatous polyposis
FDA Food and Drug Administration
FFPE formalin-fixed paraffin-embedded
FIT fecal immunochemical test
FOBT fecal occult blood test
gFOBT guaiac fecal occult blood test
Hb hemoglobin
HNPCC hereditary non-polyposis colorectal cancer
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HPs hyperplastic polyps
JPS Juvenile polyposis syndrome
LOH loss of heterozygosity
LS Lynch syndrome
MAP MUTYH-associated polyposis
MMR mismatch repair pathway
mt-sDNA multitarget stool DNA
ncRNA non-coding RNA
NER nucleotide excision repair genes
NGS next-generation sequencing
NPV negative predictive value
PHTS hamartoma tumors syndrome
PJS Peutz-Jeghers syndrome
PPAP Polymerase proofreading-associated polyposis
PPV positive predictive value
RC rectal cancer
RLT relative telomere length
SSA/Ps sessile serrated polyps
UK United Kingdom
USA United States of America
WNT Wingless/Int-1 pathway
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