Whole Genome DNA Methylation Analysis of Active Pulmonary Tuberculosis Disease Identifies Novel Epigenotypes: *parp9/mir-505/rasgrp4/gng12* Gene Methylation and Clinical Phenotypes

Yung-Che Chen^{1, 6, #}, Chang-Chun Hsiao^{1, 5}, Ting-Wen Chen^{7, 8}, Chao-Chien Wu¹, Tung-Ying Chao¹, Sum-Yee Leung¹, Chiu-Ping Lee¹, Hock-Liew Eng², Chien-Hung Chin¹, Chia-Cheng Tseng¹, Huang-Chih Chang¹, Wen-Feng Fang¹, Chung-Jen Chen³, Ting-Ya Wang¹, Yong-Yong Lin¹, Jen-Chieh Chang⁴, Meng-Chih Lin^{1, #}

Supplementary text

Isolation of DNA, RNA, and protein from PBMC samples

PBMCs were isolated from heparinized blood of all study subjects using a Ficoll-Histopaque density gradient centrifugation (Histopaque 1.077 and 1.119; Sigma Diagnostics, St.Louis, MO, USA) method. Blood samples at diagnosis were obtained and analyzed from all TB patients and HS, and after six months of anti-TB treatment from selected patients. Samples were stored in RNA*later*® RNA stabilization solution (Ambion®) at -80 °C until analysis. DNA was extracted using Puregene Core kit (Qiagen, Maryland, USA). An RNeasy® Plus Mini Kit (Qiagen, Hilden, Germany) was used for isolation of RNA, and treated with DNase according to the manufacturer's protocol.

Genome-wide DNA methylation assay

Infinium HumanMethylation450K BeadChip v1.2 (San Diego, CA, USA) was used to detect 482,421 methylation CpG sites of 14,495 genes, with the distance to the transcription start site ranging from 0 to 1499 bp. Electropherograms using an Agilent BioAnalyzer with Agilent DNA 12000 chips showed the fragment size to be >10000 bp. For bisulfite conversion, EZ DNA methylation kit (Zymo Research, USA) was used. About 200 ng of each bisulfite-converted genomic DNA sample was applied per BeadChip^{1,2}.

Genome-Wide DNA Methylation Data Analysis

The Methylation Module in the Illumina Genome Studio V2009.2 (San Diego, CA, USA) was used to generate the β value for each CpG locus. The β value was calculated as: (intensity of methylated probe)/(intensity of methylated probe + intensity of unmethylated probe). The β -values ranged between 0 (least methylated) and 1 (most methylated) and was then transformed into a M-value to achieve better statistical properties ³, which was the log₂ ratio of the intensity of methylated probes versus unmethylated probes using the following equation: M value = log₂ (β value/(1- β value))). A positive M-value meant higher intensity from the methylated probes than the unmethylated probes and a negative M value meant the opposite. The significance threshold in M value comparisons was p < 0.005 and a false discovery rate (q) <0.5.

To identify differential methylated CpG sites, M values of the case and control groups were analyzed with the Mann–Whitney test by Partek ® Genomics Suite ® software to obtain a p value and q value, as described previously². Significantly differentially methylated CpG sites with a p value < 0.005, q value < 0.01, at least a 10% difference in their β value (large effect size), and known biological or functional relevance were selected for further validation⁴. For the differentially methylated CpG sites, their corresponding gene symbols were used for pathway analysis using MetaCore from Thomson Reuters, which uses hypergeometric tests to examine whether the genes are enriched in any known pathway. The top 10 pathways were selected based on their p values (<0.005) and q values (<0.25). All methylation datasets have been deposited in the NCBI Gene Expression Omnibus with the accession number GSE118469.

Measuring Candidate Gene Expressions of Peripheral Blood Mononuclear Cells by Quantitative Realtime Reverse Transcription (RT)-PCR Method

Total RNA from PBMCs was isolated by RNA Extraction RiboPureTM-Blood (Ambion), and converted to single stranded cDNA using a cDNA archive kit (Applied Biosystems) followed by the amplification of specific gene transcript by using TaqMan probe and specific primers (supplementary Table S2). *GAPDH* was used as the internal control. The PCR reaction was performed at 94 °C for 10 min, followed by amplification (95 °C for 10 s, 60 °C for 30 s), and cooling (40 °C for 30 s), for 30 cycles. The PCR products were subjected to 1% agarose gel electrophoresis and photographed. Relative expression levels were calculated using the $\Delta\Delta$ Cq method with the median value for the HS group as the calibrator. All amplification reactions were performed simultaneously.

Analysis of *miRNA-505* Gene Expression

cDNA was generated from 2 µL of purified total RNA using the TaqMan Advanced miRNA cDNA Synthesis kit (Thermo Fisher Scientific, Waltham, MA, United States). Additionally, 1 pM of the synthetic *C. Elegans oligo*, cel-miR-39 (Sequence: UCACCGGGUGUAAAUCAGCUUG), was added to the isolated total RNA. This sequence does not exist in humans and was used as an exogenous control. All qPCR reactions were normalized to their corresponding cel-miR-39 *C*t values. Quantitative RT-PCR was performed for each sample using 2.5 µL of diluted cDNA, TaqMan Advanced miRNA Assays (cel-miR-39-3p: 478293_mir ; hsa-miR-505-5p: 478957_mir ; Thermo Fisher Scientific, Waltham, MA, United States), and Applied BiosystemsTM TaqManTM Fast Advanced Master Mix (Thermo Fisher Scientific, Waltham, MA, United States) under fast cycling conditions. All TaqMan assays quantitative RT-PCR was carried out using the ABI 7500fast Real-Time PCR System (Applied Biosystems). Real-time PCR cycling conditions consisted of 95 °C for 20 s, followed by 40 cycles of 95 °C for 3 s and

60 °C for 30 s. miRNA fold expression changes were determined by the $2^{-\Delta\Delta CT}$ method.

References

- Bibikova, M. *et al.* Genome-wide DNA methylation profiling using Infinium(R) assay. *Epigenomics* 1, 177-200, doi:10.2217/epi.09.14 (2009).
- Chen, Y. C. *et al.* Whole Genome DNA Methylation Analysis of Obstructive Sleep Apnea: IL1R2, NPR2, AR, SP140 Methylation and Clinical Phenotype. *Sleep* 39, 743-755, doi:10.5665/sleep.5620 (2016).
- 3 Du, P. *et al.* Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. *BMC bioinformatics* **11**, 587, doi:10.1186/1471-2105-11-587 (2010).
- 4 Michels, K. B. *et al.* Recommendations for the design and analysis of epigenomewide association studies. *Nature methods* **10**, 949-955, doi:10.1038/nmeth.2632 (2013).

Table S1. Top differentially methylation loci (DML) in the comparison before and after anti-TB treatment (comparison II).

NCBI RefGene Name	NCBI RefGene Accession	NCBI RefGene Group	C hr o m os o m e	Mean differe nce	p-value	q- value	Column ID
RPL9; LIAS	NM_0010 24921	5'UTR;T SS200	4	0.364	0.12549 7	0.00 4396	cg1931 1470
TRNT1	NM_1829 16	Body		0.312	0.00013 2626	0.00 4396	ch.3.55 501R
COG5	NM_0063 48	Body	7	0.244	0.07319 74	0.00 4396	cg2302 4343
HCG4P6	NR_00131 7	Body	6	0.2	0.00888 886	0.00 4396	cg0424 6123
GLT25D 2	NM_0151 01	TSS1500	1	0.185	0.00977	0.00 4396	cg0106 8808
PIAS3	NM_0060 99	TSS1500	1	0.182	8.17E- 07	0.00 4396	cg0492 1814

NCEH1	NM_0011 46278	5'UTR;B	3	0.182	5.07E-	0.00	cg1053
SI C2543	NM 0323	ouy			0.01134	+370	cg2660
3	141v1_0323	Body	1	0.16	0.01134	4396	7031
S SVII · SVI	15 NM 0217	TSS1500			0.03326	4390	7031 cg1131
SVIL,SVI I	1NIVI_0217 29.	1551500 .5'UTD		0.148	0.03320	1206	6997
L ITDD1.E	30, NM 0022	,JUIK Dodw			40	4390	0007
IIPKI;E	NM_0022	DOUY,		0.146	0.07039	0.00	0724
601		1331300			0,00500	4390	0734
DACH2	NM_0011 20514	TSS1500	Х	0.145	0.00390	0.00	cg2344
	39314 NDA 1095	1 - 4 F			43/	4396	3545
VWC2	NM_1985	Istexon;	7	0.144	9.70E-	0.00	cg1820
	/U	JUIR			0.00102	4396	0027
EVX2	NM_0010	TSS200	2	0.136	0.00103	0.00	cg1513
	80458 NDA 1202				00	4396	3351
WRNIP1	NM_1303	Body		0.135	0.00677	0.00	cg1359
	95				545	4396	8881
PCDHA2	NM_0189	Body;	5	0.132	0.00044	0.00	cg0982
	05	188200			9357	4396	0378
F2RL1	NM_0052	Body	5	0.131	0.02617	0.00	cg1858
	42				04	4396	6277
HDAC4	NM_0060	5'UTR		0.127	0.01599	0.00	cg0270
	37				04	4396	8956
CASZ1	NM_0010	3'UTR	1	0.126	0.01458	0.00	cg1610
0/15/21	79843	5011	1	0.120	48	4396	1008
LIME1	NM_0178	TSS200	2	0.126	0.00279	0.00	cg0665
LIMLI	06	155200	0	0.120	738	4396	3796
TRIM15	NM_0332	3'ITR	6	0.124	0.01045	0.00	cg0377
1101115	29	5011	0	0.124	08	4396	1840
NOSIAP	NM_0146	Body		0 121	0.00164	0.00	cg0245
10051111	97	Dody		0.121	369	4396	5571
HS3ST1	NM_0051	TSS200	Δ	0.12	0.00028	0.00	cg0175
1155511	14	155200	-	0.12	692	4396	6381
DTDDC	NM_0028	Pody		0.118	0.02447	0.00	cg1193
I II KO	41	Bouy		0.118	11	4396	4688
IRX2;	NM_0332	TSS1500	5	0.117	0.00064	0.00	cg2109
C5orf38	67	;TSS200	5	0.117	5891	4396	3166
EA 1142	NM_0011	Dody	1	0.116	0.00339	0.00	cg2160
ΓΑΙΜΙΟ	42473;	Бойу	1	0.110	14	4396	7172
1 CM 11	NM_1734	Dada	F	0.116	0.00099	0.00	cg1412
LSMII	91	Воду	5	0.116	6015	4396	6863
	NM_0221	D - I-	1	0 114	0.04245	0.00	cg1173
PRDM10	14	Воду	1	0.114	37	4396	1671
C_{1}	NM_00111	D - I-	1	0.112	0.00103	0.00	cg0873
Clorf/0	4748	Body	1	0.113	542	4396	8570
CNC12	NM_0188		1	0.112	0.00196	0.00	cg1793
GNG12	41	SUIR	1	0.113	249	4396	1620
CCDC	NM_0043	5'UTR;T		0 102	0.00731	0.00	cg2179
CCRO	67	SS200		-0.123	069	4396	4222
RASGRP	NM 0011	T 001500		0.100	0.01205	0.00	cg2437
4	46202;	1221200		-0.123	85	4396	6214
C5orf20	NM_1308	TSS1500		-0.126	0.00175	0.00	cg1357
ž			5				C

	48				248	4396	7149
DODUAT	NM_0189		~	0.106	0.00128	0.00	cg2491
PCDHA7	10	Body	5	-0.126	697	4396	5503
COON	NM 0069		-	0.106	0.00781	0.00	cg0334
SCGN	98	Body	6	-0.126	617	4396	9134
DECA	NM 0011			0.107	0.00352	0.00	cg1981
REG4	59352	Body		-0.127	39	4396	0433
	NM 0160	TGG15 00		0.100	9.64E-	0.00	cg2484
WNT16	87	1881500		-0.129	05	4396	9648
	NM 0251			0.12	0.00409	0.00	cg2463
AIPIOB	53	SUTR		-0.13	421	4396	9117
710211	NM_0010			0.12	0.00086	0.00	cg2638
ZNF311	10877	Body		-0.13	073	4396	0692
TWOOD	NM_0183		6	0 1 2 1	0.01016	0.00	cg2756
EXOC2	03	Body	6	-0.131	04	4396	2005
DDGG25	NM 1533			0 1 2 1	0.00189	0.00	cg1616
PK5535	62	SUIR		-0.131	682	4396	2611
LOC1001	NID 02440					0.00	1200
29534;M	NK_02448	Body		-0.132	0.38E-	0.00	cg1380
ORN1	9	·			05	4396	5052
RAPGEF	NM_0010	Dada		0 122	0.10761	0.00	cg2381
3	98532	Бойу		-0.155	7	4396	5853
	NIM 0207	5'UTR;1s			0.00170	0.00	og1097
HHATL	NWI_0207	tExon;TS		-0.135	0.00179	0.00	7650
	07	S1500			938	4390	/030
	NM 1334	Body;TS			0.00858	0.00	cg1452
MBNL3	86	S200;5'U		-0.137	1/1	4306	0512
	80	TR			141	4390	0312
PPP2R2	NM_1816	5'UTR;T		0.138	0.00033	0.00	cg0899
В	77	SS1500		-0.138	4285	4396	1927
CACNA1	NM_0011	Body		-0.130	0.00051	0.00	cg1375
D	28839	Dody		-0.137	0919	4396	7263
KCNO1	NM_0002	Body		-0.14	0.03797	0.00	cg1741
KCNQI	18	Douy		-0.14	6	4396	6793
SDK1	NR_02781	Body		0.142	6.60E-	0.00	cg2578
SDKI	6	Douy		-0.142	05	4396	3987
MIR548A	NR_03031	Body		-0.1/13	0.00425	0.00	cg0291
2	7	Dody		-0.145	148	4396	7236
	NM_0151	Body		-0.145	0.00010	0.00	cg2263
Ibelb)	30	Dody		-0.145	0421	4396	1616
	NM_0011						
SGCD	28209;NM	Body		-0 154	0.00018	0.00	cg2667
JUCD	_172244;N	Dody		0.154	7951	4396	6094
	M_000337						
MYOF	NM_1333	Body		-0.156	0.06763	0.00	cg1127
	37	Douy		0.150	26	4396	6093
LOC2857	NR_02711	Body		-0.157	0.00304	0.00	cg2182
68	6	_ 5 u j		0.107	634	4396	3426
CHL1	NM_0066	5'UTR	3	-0.163	0.02101	0.00	cg0870
	14		-	0.100	24	4396	7471
VOPPI	NM_0307	Body	7	-0.174	0.01629	0.00	cg0688

	96				12	4396	9086
CCT	NM_0010	TSS1500	2	0 197	0.01294	0.00	cg1470
331	48	1351500	3	-0.167	87	4396	3224
A RID 5 A	NM_2124	Body	2	0 180	0.02775	0.00	cg0472
ARIDJA	81	Bouy	2	-0.169	9	4396	2215
SH3PXD	NM_0010	Body		0 101	0.00600	0.00	cg1997
2B	17995	Bouy		-0.191	959	4396	9108
VANCI 2	NM_0203	Body	1	0 104	0.00034	0.00	cg0692
VANGL2	35	Bouy	bouy I		6465	4396	8484
RPS6KC	NM_0011	TSS200	1	-0 108	0.01852	0.00	cg1457
1	36138	155200	1	-0.176	73	4396	6824
11_Mar	NM_0011	Body	5	-0.223	0.00108	0.00	cg0347
11-11141	02562	Douy	5	-0.225	518	4396	7332
CZMK	NM_0021	TSS200		0.277	0.03213	0.00	cg0397
UZMK	04	155200		-0.277	98	4396	9311
MAST?	NM_0151	Body		-0.374	0.04837	0.00	cg2233
MASI 2	12	Douy		-0.374	69	4396	7626

Table S2. Top 10 enriched pathways in the comparison between TB patients and

healthy subjects (comparison I).

Maps	In Data/ Total	P Value	Min FDR	Genes from Active Data
				APG16L1, DAPK1,
		1.218E-	0.063810	Raptor, Beclin 1,
Autophagy_Autophagy	6/32	04	71	ULK1, Endophilin B1
				GSK3 alpha/beta,
Regulation of metabolism_Bile				SCD, FASN, HNF3-
acids regulation of glucose and		2.814E-	0.073727	alpha, HNF3-beta,
lipid metabolism via FXR	6/37	04	28	HNF3
-				Ephrin-A, Kalirin,
				Ephrin-A5,
		8.344E-	0.123768	TAK1(MAP3K7),
Cell adhesion_Ephrin signaling	6/45	04	9	Intersectin, Ephrin-A2
Apoptosis and survival_Role of		9.448E-	0.123768	HSP70, c-IAP1, c-
IAP-proteins in apoptosis	5/31	04	9	IAP2, FasR(CD95), Aif
Regulation of lipid				AMPK gamma subunit.
metabolism Regulation of lipid		2.421E-	0.241812	SCD. FASN. YY1.
metabolism via LXR, NF-Y and	5/38	03	7	Caveolin-1

SREBP					
DNA damage_Role of NFBD1		3.694E-	0.241812		
in DNA damage response	3/13	03	7	ATR, Chk2,	p53BP1
Regulation of degradation of		4.291E-	0.241812	HSP70,	UBE2D1,
deltaF508 CFTR in CF	4/27	03	7	VCP, HSC7	70
Apoptosis and survival_Anti-					
apoptotic TNFs/NF-kB/IAP		4.291E-	0.241812	I-kB, c-IAI	P1, c-IAP2,
pathway	4/27	03	7	CD30(TNF	RSF8)
CFTR folding and maturation		4.615E-	0.241812	HSP70,	HSP40,
(norm and CF)	3/14	03	7	UGCGL1	
Transport_RAB3 regulation		4.615E-	0.241812	Rab-3,	Rab-3A,
pathway	3/14	03	7	RAB3IP	

Table S3. Top 10 enriched pathways in the comparison before and after anti-TB

treatment (comparison II).

Maps	In Data/Total	pValue	Min FDR	Genes from Active Data
Signal transduction_Activation of PKC via G-Protein coupled receptor	21/52	6.140E -10	4.2307E -07	Sequestosome 1(p62), PKC-beta, PKC-mu, NF- AT4(NFATC3), GSK3 beta, PLC-beta, PKC-alpha, PKC-delta, ERK1/2, MEK2(MAP2K2), c-Abl, IKK-gamma, G-protein beta/gamma, MEF2, NF- kB, CPI-17, G-protein alpha-q/11, MELC, PKC- epsilon, NF-AT2(NFATC1), IP3 receptor Shc, CBP, PKC-mu, ERK5 (MAPK7), GSK3 beta, PI3K reg class IA, GAB1, PKC-alpha, NCX1, G- protein alpha-i family, G- protein beta/gamma, MEF2A, HDAC4, ADSSL1, Cardiac MyBP-C, HDAC5, Beta-1 adrenergic receptor
Cardiac Hypertrophy_NF-AT signaling in Cardiac		2.056E	7.0845E	AKT(PKB), G-protein alpha-q/11, Angiotensin II, PKC-epsilon, Troponin I,
Hypertrophy Neurophysiological process_ACM	23/65	-09	-07	cardiac, alpha-MHC RhoA, CACNA1H, TRPC3, PKC, PLC-beta, PKC- alpha, G-protein alpha-i
regulation of nerve impulse	18/46	1.899E -08	4.3618E -06	family, G-protein alpha-o, G-protein alpha-11, L-type

				Ca(II) channel, alpha 1C subunit, G-protein beta/gamma, FKBP12, G- protein alpha-q, PKA-reg (cAMP-dependent), G- protein alpha-q/11, CACNA11, G-protein alpha-i2, IP3 receptor PKC-beta, Shc, PKC-mu, PI3K reg class IA (p85), PI3K reg class IA (p85- alpha), MEKK1(MAP3K1), PKC-alpha, PKC-delta, TCF7L2 (TCF4), ERK1/2,
Development_Gastrin in cell growth and proliferation	21/62	2.535E -08	4.366E- 06	MEK2(MAP2K2), G- protein alpha-q, Cyclin D1, JNK(MAPK8-10), ERK2 (MAPK1), G-protein alpha- q/11, Stromelysin-1, PKC- epsilon, ERK1 (MAPK3), p90Rsk, IP3 receptor Shc, CBP, ErbB2, Galpha(s)-specific amine GPCRs, PI3K reg class IA,
Development_Ligand- independent activation of ESR1 and ESR2	16/45	5.553E -07	7.374E- 05	NCOA3 (pCIP/SRC3), Neuregulin 1, ERK1/2, MEK2(MAP2K2), ErbB3, Cyclin D1, PKA-reg (cAMP-dependent), NCOA1 (SRC1), ERK2 (MAPK1), AKT(PKB), ERK1 (MAPK3) Talin, RhoA, Shc, TGF-beta 1, GSK3 beta, PI3K reg class IA, Tcf(Lef), WNT, TGF-beta receptor type II, Destrin, TCF7L2 (TCF4),
Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling	27/111	6.421E -07	7.374E- 05	ERK1/2, MEK2(MAP2K2), LRP5, Cyclin D1, Alpha- actinin, SMAD3, ERK2 (MAPK1), Alpha-actinin 1, AKT(PKB), Collagen IV, MELC, LIMK1, p53, ERK1 (MAPK3), Axin, Frizzled ELAVL1 (HuR), RhoA, Shc, PI3K reg class IA (p85), ERK5 (MAPK7), MEKK1(MAP3K1), PKC-
Immune response_Gastrin in inflammatory response	20/69	9.601E -07 9	9.4501E -05	alpha, PKC-delta, MEK2(MAP2K2), G- protein alpha-q,

				JNK(MAPK8-10), MEF2, ERK2 (MAPK1), AKT(PKB), NIK(MAP3K14), G-protein alpha-q/11, Stromelysin-1, PKC-epsilon, ERK1 (MAPK3), IP3 receptor Shc, GSK3 beta, PI3K reg class IA, MEKK1(MAP3K1), PKC- delta, G-protein alpha-i family, Adenylate cyclase, TCF7L2 (TCF4), ERK1/2, MEK2(MAP2K2), Cyclin D1, JNK(MAPK8-10), AKT(PKB), G-protein alpha-a/11. PKC-epsilon.
Development Endotheli		1.313E	0.00011	<i>IP3</i> recentor
n-1/EDNRA signaling	17/53	-06	31	MEKK4(MAP3K4)
				RGS4, PKC-beta, Shc, CBP,
				PKC-alpha, PKC-delta,
				Adenylate cyclase, ERK1/2, MEK2(MAP2K2), G-
				protein alpha-11, L-type
				Ca(II) channel, alpha 1C
				subunit, G-protein
				beta/gamma, G-protein
				dependent) G-protein
				alpha-a/11. PKC-epsilon.
Development_Thyrolibe		1.929E	0.00014	<i>G</i> -protein alpha-i2, <i>IP3</i>
rin signaling	18/60	-06	199	receptor
				Shc, GSK3 beta, PLC-beta,
				G-protein alpha-i family,
				$TCF7L2 \qquad (TCF4),$
				MEK2(MAP2K2), G-
				D1 PKA-reg (cAMP-
				dependent). RASGRF1. NF-
				kB, AKT(PKB), G-protein
				alpha-q/11, PKC-epsilon,
Development_A3		2.061E	0.00014	ERK1 (MAPK3), IP3
receptor signaling	16/49	-06	199	receptor

Table S4. Primer sequences used for	PCR and p	oyro-sequencing	of the 21 s	selected
-------------------------------------	-----------	-----------------	-------------	----------

Gene name /probe ID	CpG site location relative to transcription start site/ NCBI reference number	Primer Sequence 5'→3'		
	+175,	F.P:AGTGTTTAGGAGATGTGGTATAT		
RNASE3	NM_002935,	R.P: Biotin-AACCCACAAACCCCTCTAC		
cg09842118		S.P:GGGGATAGGAAGAAAAG		
	+982,	F.P:AAGAGTGGTGATAGAGGTTAATATAGA		
MRPS18B	NM_014046,	R.P: Bioti	n-	
cg04176995		AATCAATCCAATAAAATCACTAAATTACC		
C		S.P:AAATAATAATAGTTTTGGTAGTT		
	-95	F.P:AGAGAGAAAGGAATGATGAAGTTA		
MIR223	NR_029637.1	R.P: Bioti	n-	
cg19127840		ACTTCCCTATTCTAATACTTTAATTAATCC		
C		S.P:GGAATGATGAAGTTATATTTTTAGT		
	-1321	F.P:AGGGAAATGTTTTTGTGAAGG		
LGALS3	NM_002306.3	R.P: Bioti	n-	
cg04306507		CCCAACCACACTATAACTTCTATATACA		
C		S.P:GGTTGGTAAGGTTTTTGTAATAT		
	+14263, NM_000873	F.P:TTTTTTGTATAGGGAGTTAGTAGGG		
ICAM2		R.P: Bioti	n-	
cg12793803		ACTAATAACTACATTTCCTCTCATTATC		
-		S.P:TTAGAGGTTTGGGGT		
	-243,	F.P: Bioti	n-	
GHRL	NM_001134946,	ATTGTATTTTAGTTTGGGTGATAGAG		
cg03751527		R.P:AACATTACAACTTTAATCCCAAACCA		
-		S.P:CCACAATAAAACAAATCACAC		
	-1120	F.P:ATGAGGAAAATTGAGGTATAGATAGG		
ICOS	NM_012092.3	R.P: Bioti	n-	
cg18219180		AAAATCCAACCTAAATCTAACATCTTAA		
		S.P:GTTTGTTGATTTTTTTTTTTAGAAG		
	-696, -690	F.P:GGTTTGTTGATTTATTGGTAGAATTTAGT		
MIR505	NR_030230,	R.P: Bioti	n-	
cg16719099		AACTTACACATAATTTCCTCCAAACTT		
		S.P:ATTGGTAGAATTTAGTATATAGAA		

genes assayed in the validation cohort.

	+1741,	F.P:AGGTTTTTGTATATGGTTGGTAAGAT
PARP9	NM_001146106,	R.P: Biotin-
cg22930808		CCCCCTATTTATAAACATTAAAAAATTCCC
		S.P:AGATTGGAAATGGGT
	+47700,	F.P:GGAGAGGTTTTTTTTTTTTATAGTTATATGT
PLCL2	NM_001144382,	R.P: Biotin-
cg20271057		ATTCATACCTTAAATCTATTTTCCCTACA
		S.P:AGTTATATGTTGGTAGATAATG
	+2167	F.P: TGTTTGAGTAAGAGAGGAAATGAATAA
ITSN1	NM_001331010.1	R.P: Biotin-
cg16452651		CTTACTACCACTCATTTTATACCCTATTT
		S.P: AGGAAATGAATAAATTTTTAATGTA
	+4145, +4141	F.P: Biotin-
PYCR2	NM_013328,	TTTAGTTTTTTTTTTTTAGTTGGGTTGAT
cg20334115		R.P: CTCTCCTATCCCATATTAAAAATTACTC
		S.P: ACCAAACACAACCCT
	+28532, NM_016003	F.P: TTGAGGGGAGAGATGGTTT
WIPI2		R.P: Biotin-
cg05639533		СТТАТТСТСТТССТСАТТТАААСТАТАСС
	10,000	S.P: GATTITAAGATAGAAGAATG
	+106809	F.P: GTTTTAGTTTTTTAAAGTGTTGGGATTATA
FOXO3	NM_201559.2	R.P: Biotin-
cg06636172		
	. 7.4.4	
CCDC	+/44 NM_004267.5	F.K: ATAGTIGAGAIGIAIGGAGAAITAIT
CCR0 ag15222001	INIVI_004307.3	
cg13222091		
CLCDO	⊥ 26100	
CASP8	NM 001228 4	
cg23073137		
au a 1 a	+1452	
GNG12	+1432 NM 0188/11 5	
cg1/931620	1111_0100+1.5	
	111	
	-111 NM 002104.2	F.P: TTATTATAGGTGTTTTAGGGGTAAGAT
GZMK	INIM_002104.2	R.P: Biotin-
cg03979311		
	1207	
MADILCOC	+1507 XM_005273130.3	
MAPILUSU cg1/382888	AWI_005275157.5	
Cg14502000		S P. GGGTGGGTGGGGGGGTT
	<u>-1201·-110/·-1188</u>	
<i>RASGRP4</i> cg24376214	NM 001146202.1	
κρισκ		Γ.Γ. Αυσυλλασυτασυλυτιταια

Table S5. Primer sequences used for quantitative RT-PCR of the 9 candidate genes

Gene name		Primer sequence
PARP9	forward	5'- GGTTCTAAAGGTGGAGAAGATAGA-3'
	reverse	5'-GCATTGACACCTACCGCAA-3'
RASGRP4	forward	5'-CTGGTCAGGTACTGGCTGATG-3'
	reverse	5'-GCTGCTCATTGGGAGTGGG-3'
GNG12	forward	5'- ACACTCTTGGAATTTCCAGG -3'
	reverse	5'- AATGAACTGAAGAAGAATTAAAGCATC -3'
WIPI2	forward	5'-GCTCTTCGCCAACTTCAACC-3'
	reverse	5'-CCAACAGCTAGGGACCAGAC-3'
FOXO3	forward	5'-GCTCTTCGCCAACTTCAACC-3'
	reverse	5'-CCAACAGCTAGGGACCAGAC-3'
MRPS18B	forward	5'-GATATGGTTCTCGCCCCGTC-3'
	reverse	5'-CTCCAAGAGCTTCACGTTCCTA-3'
RPTOR	forward	5'-AAGATCCTCGCAGTGGACAG-3'
	reverse	5'-GGTGTTCAGCTGGCATGTAG-3'
CCR6	forward	5'- TTC AGC GAT GTT TTC GAC TCC-3'
	reverse	5'-GCA ATC GGT ACA AAT AGC CTG G-3'

verified in the validation cohort.

Figure legends

Figure S1. Gene expression changes of the 9 candidate genes in response to ESAT6 or CFP10 stimuli in vitro for 48 hours. (a) *PARP9* gene was up-regulated and (b) *miR-505* gene was down-regulated in response to either ESAT6 or CFP10 stimuli. (c)

RASGRP4 gene was up-regulated only in response to CFP10 stimuli. (d) *GNG12* was upregulated in response to either ESAT6 or CFP10 stimuli. (e) *WIP12* and (f) *FOXO3* genes were both up-regulated only in response to ESAT6 stimuli. (g) *MRPS18B* and (h) *RPTOR* genes were both up-regulated in response to either ESAT6 or CFP10 stimuli. (i) *CCR6* gene was up-regulated only in response to ESAT6 stimuli.

Figure S1

