## Supplementary file



Figure S1. Sequence alignment of representative BTB proteins in animals and plants and transmembrane prediction of Arabidopsis BTB-A2.1, BTB-A2.2, and BTB-A2.3. (A) Phylogenetic relationship of representative BTB-A2 proteins in animals and plants. DmRib (NP_001261084), DmMdg4 (NP_788698), DmPsq (NP_523686), DmBroad Complex (NP_726750), DmLola (NP_788312), DmTtk (P17789), DmBab1 (NP_728565), DmGAF (Q08605), HsPLZF (NP_001018011), DmKelch (NP_724095), AtETO1 (At3g51770), AtEOL2 (At5g58550), AtEOL1 (At4g02680), AtNPR1 (At1g64280), AtNPR2 (At4g26120), AtNPR3 (At5g45110), AtNPR4 (At4g19660), AtARIA (At5g19330), AtABAP1 (At5g13060), AtBTB-A2.1 (At5g41330), AtBTB-A2.2 (At3g09030), AtBTB-A2.3 (At2g24240), AtBPM1 ( AT5G19000 ), AtBPM2 (At3g06190), AtBPM3 (At2g39760), HsRhoBTB3 (NP055714), HsDBC2 (NP003400), HsRboBTB1 (AAH41791), HsBTBD1 (NP_079514), HsBTBD2 (NP_001011885), CgRhoBTB1 (RLQ76268), CgRhoBTB2 (RLQ55967), CgRhoBTB3 (RLQ73570). (B) The transmembrane prediction of Arabidopsis BTB-A2.1, BTB-A2.2, and BTB-A2.3.


Figure S2. Identification of $b t b-a 2$ single mutants, double mutants and triple mutant. (A) Schematic diagrams of gene structure and T-DNA insertion positions of $B T B-A 2 s$. The $5^{\prime}$ and $3^{\prime}$ non-translation regions were indicated by the hollow frame represents. The exons were indicated by the black solid frame. The position of T-DNA insertion in the mutant was indicated by the triangle. The direction of T-DNA insertions in the mutant was indicated by arrows. (B) RT-PCR analysis of the accumulation of BTB-A2.1, BTB-A2.2, and BTB-A2.3 transcripts in Col, btb-a2.1, btb-a2.2, and btb-a2.3, respectively. (C) RT-PCR analysis of double and triple mutants. Expression of ACTIN2 gene was used as internal reference.


Figure S3. Arabidopsis BTB-A2s may function in polycomplex. The interaction among BTB-A2.1, BTBA2.2 and BTB-A2.3 by yeast two-hybrid assays. Saturated cultures were spotted onto on SD-WL and SD-WLHA at different dilutions ( $10^{-1}, 10^{-2}$, and $10^{-3}$ ).


Figure S4. The growth situation of Arabidopsis $b t b-a 2.1 / 2 / 3$ in normal condition at each growth stage. (A-C) The growth of WT and Arabidopsis triple mutant $b t b-a 2.1 / 2 / 3$ at one week (A), three weeks (B), six weeks (C), Bar=2cm. (D, E) The size of siliques and seeds of WT and Arabidopsis triple mutant $b t b-$ $a 2.1 / 2 / 3$. $\mathrm{Bar}=1 \mathrm{~mm}$.

Figure S5. Arabidopsis btb-a2.1/2/3 displayed no different performance compared with WT in SA and ethylene conditions. (A) The phenotypic analysis of WT and triple mutant $b t b-a 2.1 / 2 / 3$ growing in $1 / 2$ MS medium containing SA, BA, pHBA ( $10 \mu \mathrm{M}, 30 \mu \mathrm{M}$, and $50 \mu \mathrm{M}$ ) for 10 days. (B) The root length of WT and triple mutant btb-a2.1/2/3 growing in $1 / 2 \mathrm{MS}$ medium containing SA, BA, $p \mathrm{HBA}(10 \mu \mathrm{M}, 30$ $\mu \mathrm{M}$, and $50 \mu \mathrm{M}$ ) for 10 days. (C, E) The phenotypic analysis of WT and triple mutant $b t b-a 2.1 / 2 / 3$ growing in $1 / 2 \mathrm{MS}$ medium containing $10 \mu \mathrm{M} \mathrm{ACC}, 50 \mu \mathrm{M} \mathrm{ACC}$ and $10 \mu \mathrm{M} \mathrm{AgNO} 3$ in dark for 4 days (C) and in light for 7 days (E). (D) The statistics of the hypocotyl length in dark. (F) The statistics of the root length analysis in light. Data are mean $\pm$ SD. Values labeled with different letters are significantly different ( $\mathrm{p}<0.05$ ).


Figure S6. Analysis of cis-elements in the promoter of $A t B T B-A 2$ s. About 2000bp promoter of the BTBA2s were respectively analyzed using PlantCARE.


Figure S7. Arabidopsis $b t b-a 2$ single and double mutant display no sensitivity to ABA in germination. (A) Germination of WT and $b t b-a 2.1, b t b-a 2.2, b t b-a 2.3$ single and double mutants in normal and 0.8 $\mu$ M ABA $1 / 2$ MS medium. The images were taken after 3 days (first two columns) and 5 days (last two columns) of stratification, respectively. (B) Germination rate statistics. (C) Green cotyledon statistics. About 150 seeds of each line were used in each experiment. Values labeled with different letters are significantly different ( $\mathrm{p}<0.05$ ).


Figure S8. Expression levels of ABA synthesis related genes in WT and triple mutant $b t b-a 2.1 / 2 / 3$. Total RNA was isolated from 7-day-old wild-type and $b t b-a 2.1 / 2 / 3$ seedlings growing under normal and $0.5 \mu \mathrm{M}$ ABA conditions. ACTIN2 gene was used as internal reference, and the results were shown by mean standard deviation. Data are mean $\pm$ SD. $n=3$. Values labeled with different letters are significantly different ( $\mathrm{p}<0.05$ ).


Figure S9. BTB-A2.1 may do not interact with PP2Cs. The interaction of BTB-A2.1 with ABI1, ABI2, AHG1, AHG3, HAB1, and HAB2 was performed by yeast two-hybrid assays. Saturated cultures were spotted onto on SD-WL and SD-WLHA at different dilutions $\left(10^{-1}, 10^{-2}\right.$, and $\left.10^{-3}\right)$.


Figure S10. The interactions between BTB-A2.1, BTB-A2.2, and BTB-A2.3 with SnRK2.6 by BiFC assays in $N$. benthamiana leaves. Columns from left to right were fluorescent signal, bright field images, and merged images, respectively. Bar $=50 \mu \mathrm{~m}$.


Figure S11. Expression levels of BTB-A2.1, BTB-A2.2 and BTB-A2.3 in transformed Arabidopsis plants by qPCR. Total RNA was isolated from 2-week-old hydroponic culture seedlings. ACTIN2 gene was used as internal reference. Data are mean $\pm$ SD. $\mathrm{n}=3$. Values labeled with different letters are significantly different ( $\mathrm{p}<0.05$ ).


Figure S12. Overexpression of $B T B-A 2.2, B T B-A 2.3$ inhibits the ABA hypersensitive phenotypes of lines overexpressing SnRK2.3. The seeds of WT, SnRK2.3-OE lines, BTB-A2.2-OE lines, BTB-A2.3-OE lines, SnRK2.3-OE lines in BTB-A2.2-OE background and SnRK2.3-OE lines in BTB-A2.3-OE background were germinated in $1 / 2 \mathrm{MS}$ medium containing 0 and $0.8 \mu \mathrm{M} \mathrm{ABA}$. The images of first two columns and last two columns were taken after 3 and 5 days of seed stratification, respectively. About 150 seeds of each line were used in each experiment, and each assay repeated 3 times.

Table S1. Primers used in this study.

| Primer Name | Primer Sequences (5'-3') |
| :---: | :---: |
| LBa1 | TGGTTCACGTAGTGGGCCATCG |
| SLLBb1 | GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC |
| A140-Oligod(T) | TTTTTTTTTTTTTTTTTT |
| 35 S | GACGCACAATCCCACTATCC |
| BTB-A2.1-LP | AATGCAAACATCCTTCACAGC |
| BTB-A2.1-RP | ATCACTTCGTTTGATTGGTCG |
| BTB-A2.2-LP | ACGATATCACATCGATCTGCC |
| BTB-A2.2-RP | TTTCCCGCAACAATTAGTGTC |
| BTB-A2.3-LP | CTCCGTACGGGAGACCTTAAC |
| BTB-A2.3-RP | ACGTGAACAAAAGCAAACCAG |
| BTB-A2.1-OE-F | ACGGGGGACTCTTGACCATGGATGAATTTTCCGACGATCC |
| BTB-A2.1-OE-R | GTCACCTGTAATTCACACGTGGTGGTGGTGGTGGTGCTCGACG |
| BTB-A2.2-OE-F | ACGGGGGACTCTTGACCATGGATGGTGGTTTCCGATGGCG |
| BTB-A2.2-OE-R | GTCACCTGTAATTCACACGTGGTGGTGGTGGTGGTGCTCGACG |
| BTB-A2.3-OE-F | ACGGGGGACTCTTGACCATGGATGGGTATCTCAAAAGACAG |


| BTB-A2.3-OE-R |  |
| :---: | :---: |
| BTB-A2.1-GFP-F | GGGGTACCATGAATTTTCCGACGATCCCTC |
| BTB-A2.1-GFP-R | TCCCCCCGGGGATAGATATTCCACGACTAGGAC |
| BTB-A2.2-GFP-F | GGGGTACCATGGTGGTTTCCGATGGCGGCAAAC |
| BTB-A2.2-GFP-R | TCCCCCCGGGGCTCGACGGATACCACACCGGAGAAAC |
| BTB-A2.3-GFP-F | CCCTCGAGATGGGTATCTCAAAAGACAG |
| BTB-A2.3-GFP-R | GGATCCCGTATGATCGGACAAGGCGGAGT |
| BTB-A2.1-GUS-F | GCTCTAGATTCGCCAAGCAAACGCAG |
| BTB-A2.1-GUS-R | CGGGATCCGTTCGATTCATGAGGGATCGTC |
| BTB-A2.2-GUS-F | TGCCTGCAGGTCGACTCTAGACAACTATATGAAAGTAAGCG |
| BTB-A2.2-GUS-R | ATAAGGGACTGACCACCCGGGGACACTCGTTTGCCGCCATC |
| BTB-A2.3-GUS-F | GCTCTAGAGACCTTGAGTCCTTGACGAT |
| BTB-A2.3-GUS-R | CGGGATCCTCCACCAACGTTGAATTTGAT |
| BTB-A2.1-EcoRI-Y2H-F | ATGGCCATGGAGGCCGAATTCATGAATTTTCCGACGATCCCT |
| BTB-A2.1-BamHI-Y2H-R | CCGCTGCAGGTCGACGGATCCTTAGATAGATATTCCACGAC |
| BTB-A2.2-EcoRI-F(YH) | CGGAATTCATGGTGGTTTCCGATGGCGGC |
| BTB-A2.2-Xhol-R(YH-AD) | CCCTCGAGTTACTCGACGGATACCACACCGGAG |
| BTB-A2.2-PstI-R(YH-BD) | AACTGCAGTTACTCGACGGATACCACACCGGAG |
| BTB-A2.3-EcoRI-Y2H-F | GGAATTCATGGGTATCTCAAAAGACAGGAT |
| BTB-A2.3-BamHI-Y2H-R | CGGGATCCTTATATGATCGGACAAGGCGGAGT |
| SnRK2.3-Flag-Nco-F | ATAAGATGGATCGAGCTCCGGTGAC |
| SnRK2.3-Spel-R | GACTAGTTTAGAGAGCGTAAACTATCTCT |
| SnRK2.3-BIFC-BamHI-F | CGGGATCCATGGATCGAGCTCCGGTGACCAC |
| SnRK2.3-BIFC-KpnI-R | GGGGTACCGAGAGCGTAAACTATCTCT |
| SnRK2.3-YH-F | GGAATTCATGGATCGAGCTCCGGTGACCAC |
| SnRK2.3-YH-R | CGGGATCCTTAGAGAGCGTAAACTATCTCT |
| SnRK2.6-Flag-Nco-F | ATAAGATGGATCGACCAGCAGTGAGT |
| SnRK2.6-Spel-R | GACTAGTTCACATTGCGTACACAATCTC |
| SnRK2.6-BIFC-BamHI-F | CGGGATCCATGGATCGACCAGCAGTGAGTGGTC |
| SnRK2.6-BIFC-KpnI-R | GGGGTACCCATTGCGTACACAATCTCTCCG |
| SnRK2.6-YH-F | GGAATTCATGGATCGACCAGCAGTGAGTGGTC |
| SnRK2.6-YH-R | CGGGATCCTCACATTGCGTACACAATCTCTCCG |
| SnRK2.2-YH-F | GGAATTCATGGATCCGGCGACTAATTCACCG |
| SnRK2.2-YH-R | CTGCAGTCAGAGAGCATAAACTATCTCTCCAC |
| BTB-A2.1-qRT-F | AGGGGAAGTTTTCTACGCCG |
| BTB-A2.1-qRT-R | GCTTGCATTCCCCACCAAAC |
| BTB-A2.2-qRT-F | GGAACCGTCCGTACACATCT |
| BTB-A2.2-qRT-R | TTCCGAATCAGCAACGGCG |
| BTB-A2.3-qRT-F | GCCAACATCCCTGAGCGTCT |
| BTB-A2.3-qRT-R | ATCAGGACCTGCCCTGATGGC |
| ABI3-qRT-F | CACAGCCAGAGTTCCTTCCTTTACT |
| ABI3-qRT-R | TAGTTGCTGAGGAACACAAACGG |
| ABI4-qRT-F | GGGCAGGAACAAGGAGGAAGTG |
| ABI4-qRT-R | TCTCCTCCAAAAGGCCAAATGGT |
| ABI5-qRT-F | ATGATCAAGAACCGCGAGTCTGC |
| ABI5-qRT-R | CGGTTGTGCCCTTGACTTCAAAC |
| RAB18-qRT-F | GGCTTGGGAGGAATGCTTCA |
| RAB18-qRT-R | CGCTTGAGCTTGACCAGACT |
| RD29A-qRT-F | GGAAGTGAAAGGAGGAGGAGGAA |
| RD29A-qRT-R | CACCACCAAACCAGCCAGATG |
| RD29B-qRT-F | GAATCAAAAGCTGGGATGGA |
| RD29B-qRT-R | TGCTCTGTGTAGGTGCTTGG |
| ABA1-qRT-F | CGTGCGGTTGGAGAAGATGTGAT |
| ABA1-qRT-R | TCTCAGAATGGCTTCCTCCTCAGT |
| ABA3-qPCR-F | AGTGGATATTGAAGAGGCAGC |
| ABA3-qPCR-R | CACCAGATCTAGATTAAACCTCAGG |
| AAO3-qRT -F | CAACCGCATGCGCACTAG |
| AAO3-qRT-R | GTCTTGCGGTTCAAAAACATCTT |


| NCED3-qPCR-F | GAGTGTCCTGTCTGAAATCCG |
| :---: | :---: |
| NCED3-qPCR-R | CGAATCCTGAGACTTTAGGCC |
| Actin2-F | ACTCTCCCGCTATGTATGTCGCC |
| Actin2-R | ATTTCCCGCTCTGCTGTTGTGGT |

