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Abstract: Several reports have described the anti-cancer activity of arctigenin, a lignan extracted from
Arctium lappa L. Here, we investigated the effect of arctigenin (ATG) on doxorubicin (DOX)-induced
cell death using MDA-MB-231 human breast cancer cells. The results showed that DOX-induced cell
death was enhanced by ATG/DOX co-treatment in a concentration-dependent manner and that this
was associated with increased DOX uptake and the suppression of multidrug resistance-associated
protein 1 (MRP1) gene expression in MDA-MB-231 cells. ATG enhanced DOX-induced DNA damage
and decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3)
and the expressions of RAD51 and survivin. Cell death caused by ATG/DOX co-treatment was
mediated by the nuclear translocation of apoptosis inducing factor (AIF), reductions in cellular and
mitochondrial Bcl-2 and Bcl-xL, and increases in mitochondrial BAX levels. However, caspase-3 and -7
did not participate in DOX/ATG-induced cell death. We also found that DOX/ATG-induced cell death
was linked with activation of the p38 signaling pathway and suppressions of the phosphorylations
and expressions of Akt and c-Jun N-terminal kinase. Taken together, these results show that ATG
enhances the cytotoxic activity of DOX in MDA-MB-231 human breast cancer cells by inducing
prolonged p21 expression and p38-mediated AIF-dependent cell death. In conclusion, our findings
suggest that ATG might alleviate the side effects and improve the therapeutic efficacy of DOX.
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1. Introduction

Breast cancer is the major cause of cancer-related death among women. Although many subtypes
of breast cancer have been reported, they are generally classified as hormone receptor (HR)-positive,
human epidermal growth factor receptor 2 (HER2)-overexpressing, and triple-negative breast cancer
(TNBC) [1]. Triple-negative breast cancer (TNBC) has a higher mortality rate than HR-positive
or HER-2-overexpressing breast cancer because of its high rate of recurrence [2–4]. Furthermore,
because of the absence of HR and HER-2 in TNBC, non-targeting anti-cancer drugs such as paclitaxel,
cyclophosphamide, and doxorubicin (DOX) are being used to treat the disease [5].

DOX is an anthracycline antibiotic and broad spectrum anti-cancer agent [6,7]. Although DOX
is useful for the treatment of triple-negative breast cancer (TNBC), in practice its use is limited
because of its serious side effects, which include cardiotoxicity, diarrhea, vomiting, hair loss, and
nausea. Actually, the total dose of DOX administered must not exceed 450–500 mg/m2 because of its
cardiotoxicity [6]. Furthermore, reductions in DOX dosage made to address its side effects reduce its
therapeutic efficacy [8].

Arctigenin (ATG) is a pharmaceutically active substance isolated from the seeds of Arctium
lappa L. (commonly called greater burdock), and several investigators have shown it has anti-viral,
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anti-inflammatory, anti-cancer, and immunomodulatory activities [9–13]. The anti-cancer activity of
ATG has been reported to due to the induction of apoptosis mediated by mitochondrial disruption
and cell cycle arrest in breast, lung, bladder, gastric, hepatic, and colon cancer cells [14–18]. In a
recent study, we showed ATG suppressed metastatic potential and induced autophagic cell death
by inhibiting estrogen receptor (ER) expression in MCF-7 human breast cancer cells [19,20]. Also,
Wang et al. reported human non-small cell lung cancer (NSCLC) cells treated with ATG exhibited
greater chemosensitivity to cisplatin-induced apoptotic cell death mediated by the down-regulation of
survivin [21].

Combination chemotherapies are being increasingly used to treat cancers to minimize toxicities
and side effects based on the delivery of lower doses of the drugs responsible [22,23]. Numerous
investigations have shown ATG has anti-cancer and anti-metastatic effects on different cancer cell types.
Therefore, we assessed the effects of ATG/DOX co-treatment to determine whether ATG enhances the
cytotoxic effect of DOX in MDA-MB-231 TNBC cells.

2. Results

2.1. ATG Enhanced DOX-Induced MDA-MB-231 Cell Death

We evaluated whether DOX cytotoxicity was enhanced by ATG in MDA-MB-231 cells. When
MDA-MB-231 cells were treated with 0.2 µM DOX for 72 h, cell viability reduced to 72%, but combined
treatment with 0.2µM DOX and ATG (10–200µM) reduced viability to below 50% and ATG co-treatment
reduced viability in a concentration-dependent manner (Figure 1A,B).
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containing various concentrations of DOX (0–1 µM) for 24, 48, or 72 h. *, ** and # indicate p < 0.05,
p < 0.01 and p < 0.001 vs. non-treated controls. (B) Cells were incubated in DMEM medium containing
various concentration of ATG (0–200 µM) with or without 0.2 µM DOX for 72 h. ATG enhanced
cytotoxicity of DOX in a concentration-dependent manner. * and ** indicate p < 0.05 and p < 0.01 vs.
non-treated controls. ## and ### indicate p < 0.0005 and p < 0.0001 vs. non-treated controls. (A,B) Cell
viabilities were determined using an MTT assay. All experiments were performed independently three
times and results are presented as means ± SDs. (C) Combination indices (CI) versus fractional affected
(Fa) plots for ATG/DOX co-treatment were graphically represented by Compusyn software. Synergistic
cytotoxic activity of ATG/DOX co-treatment was observed in MDA-MB-231 human triple negative
breast cancer cells. A CI value of < 1 indicates a synergistic cytotoxic effect.

Moreover, Combination indices (CI) values quantitatively validated by Compusyn software was
<1, indicating that ATG synergistically enhanced cytotoxicity of DOX (Figure 1C). The results imply
that ATG is a potent substance for combinational treatment with DOX in breast cancer.

2.2. DOX Uptake by MDA-MB-231 Cells Was Increased by ATG

Next, we assessed intracellular DOX levels in MDA-MB-231 cells co-treated with ATG and
DOX. We observed ATG co-treatment increased DOX uptake by cells (Figure 2A). Furthermore,
ATG co-treatment increased DOX-induced H2A histone family member X (H2A.X) phosphorylation,
decreased signal transducer and activator of transcription 3 (STAT3) phosphorylation and expression,
and down-regulated survivin and DNA repair protein RAD51 homolog 1 isoform 1 (RAD 51) protein
expressions (Figure 2B). In addition, we evaluated changes in the gene expression of ATP-binding
cassette (ABC) transporters multidrug resistance-associated protein 1 (MRP1) and breast cancer
resistance protein 1 (BCRP), because the effectiveness of chemotherapy is negatively associated with the
expressions of these factors [24]. We found that ATG co-treatment reduced the gene expression of MRP1
but did not affect the gene expression of BCRP (Figure 2C). This result suggests that augmentation of
DOX cytotoxicity by ATG is mediated by enhancing DNA damage and suppressing DNA repair by
increasing DOX uptake and reducing MRP1 transcription.
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Figure 2. Effects of ATG on DOX uptake, the transcriptions of multidrug resistance-associated protein 
1 (MRP1) and breast cancer resistance protein 1 (BCRP1), the phosphorylations of H2A histone 
family member X (H2A.X) and signal transducer and activator of transcription 3 (STAT3), and the 
expressions of survivin and DNA repair protein RAD51 homolog 1 isoform 1 (RAD51) in MDA-MB-231 
cells. (A) Cells were grown for 48 h with various concentrations of ATG (0–200 μM) prior to being 
treated with 0.2 μM DOX treatment for 24 h. DOX uptake was analyzed by flow cytometry. ATG 
accelerated DOX uptake in a concentration-dependent manner. The X-axis shows fluorescence 
intensities of intracellular DOX and the Y-axis cell numbers per channel. (B) Cells were attached for 24 
h and further grown for 24 h in DMEM medium supplemented 2% fetal bovine serum (FBS), 0.2 μM 
DOX, and various concentration of ATG (0–200 μM). MRP1 gene expression was suppressed by 
ATG/DOX co-treatment. Relative expressions of MRP1 and BCRP1 genes were evaluated in triplicate 
and normalized versus glyceraldehyde-3-phosphate dehydrogenase (GAPDH). *, ** and # indicate p < 
0.05, p < 0.01, and p < 0.001 vs. DOX treated cells. –: 0.2 μM DOX-untreated, +: 0.2 μM DOX-treated (C) 
Cells were attached for 24 h and then co-treatment with 0.2 μM DOX and various concentration of ATG 
(0–200 μM) for 72 h in DMEM medium supplemented with 2% FBS. The proteins in whole cell lysates 
were separated by 8% or 15% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) 
and transferred to polyvinylidenefluoride (PVDF) membranes. Bands were densitometrically analyzed 
using Scion Image and band densities were normalized versus β-actin. $ and $$ indicate p < 0.01 and p < 

Figure 2. Effects of ATG on DOX uptake, the transcriptions of multidrug resistance-associated protein
1 (MRP1) and breast cancer resistance protein 1 (BCRP1), the phosphorylations of H2A histone family
member X (H2A.X) and signal transducer and activator of transcription 3 (STAT3), and the expressions
of survivin and DNA repair protein RAD51 homolog 1 isoform 1 (RAD51) in MDA-MB-231 cells.
(A) Cells were grown for 48 h with various concentrations of ATG (0–200 µM) prior to being treated with
0.2 µM DOX treatment for 24 h. DOX uptake was analyzed by flow cytometry. ATG accelerated DOX
uptake in a concentration-dependent manner. The X-axis shows fluorescence intensities of intracellular
DOX and the Y-axis cell numbers per channel. (B) Cells were attached for 24 h and further grown
for 24 h in DMEM medium supplemented 2% fetal bovine serum (FBS), 0.2 µM DOX, and various
concentration of ATG (0–200 µM). MRP1 gene expression was suppressed by ATG/DOX co-treatment.
Relative expressions of MRP1 and BCRP1 genes were evaluated in triplicate and normalized versus
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). *, ** and # indicate p < 0.05, p < 0.01, and
p < 0.001 vs. DOX treated cells. –: 0.2 µM DOX-untreated, +: 0.2 µM DOX-treated (C) Cells were
attached for 24 h and then co-treatment with 0.2 µM DOX and various concentration of ATG (0–200 µM)
for 72 h in DMEM medium supplemented with 2% FBS. The proteins in whole cell lysates were
separated by 8% or 15% sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and
transferred to polyvinylidenefluoride (PVDF) membranes. Bands were densitometrically analyzed
using Scion Image and band densities were normalized versus β-actin. $ and $$ indicate p < 0.01 and
p < 0.005 vs. non-treated control. *, ** and *** indicate p < 0.05, p < 0.01 and p < 0.005 vs. DOX treated
cells. (B, C) All experiments were conducted independently three times and results are presented as
means ± SDs.
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2.3. Cell Death by ATG/DOX Co-Treatment Was Associated with Down-Regulations in Bcl-2 and Bcl-xL and
Increases in BAX Levels in Mitochondria

ATG co-treatment accelerated DOX-induced cell death (Figure 1B). Furthermore, survivin (an
anti-apoptotic factor) induction by DOX was concentration-dependently suppressed by ATG (Figure 2B),
implying apoptotic signaling was activated by ATG/DOX co-treatment [25,26]. In addition, we found
that B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-xL) levels in whole cell lysates
and mitochondrial fractions were diminished by ATG/DOX co-treatment and that mitochondrial
Bcl-2-associated X protein (BAX) levels were increased (Figure 3). In contrast, ATG/DOX co-treatment
did not induce the cleavages of caspase-3 and -7 (Figure 4A). Furthermore, the enhancement of cell
death by ATG was not associated with receptor interacting serine/thereonine kinase 3 (RIPK3)-mediated
necroptosis or Beclin 1-linked autophagy (Figure 4B). These results show cell death enhancement
by ATG/DOX co-treatment was not mediated by caspase-3-dependent apoptosis, RIP3K-mediated
necroptosis, or Beclin 1-linked autophagy.
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Figure 3. Effects of ATG/DOX co-treatment on mitochondrial Bcl-xL, B-cell lymphoma 2 (Bcl-2), and
BAX levels in MDA-MB-231 cells. Cells were attached for 24 h and then co-treated with 0.2 µM DOX and
various concentrations of ATG (0–200 µM) for 72 h in DMEM supplemented with 2% FBS. ATG/DOX
co-treatment reduced Bcl-xL and Bcl-2 levels in whole cell lysate and mitochondria. In contrast,
mitochondrial BAX was increased by ATG/DOX co-treatment. The proteins in whole cell lysates
and mitochondrial fractions were separated by 15% SDS-PAGE and transferred to PVDF membranes.
β-Actin and mitochondrial cytochrome c oxidase subunit IV (COX IV) were used as internal controls
in whole cell lysates and mitochondrial fractions, respectively. All bands were densitometrically
analyzed using Scion Image and band densities in samples were normalized versus β-actin and COX
IV, respectively. & and $$ indicate p < 0.05 and p < 0.005 vs. non-treated controls. *, ** and # indicate
p < 0.05, p < 0.01, and p < 0.001 vs. DOX treated cells. Experiments were conducted independently three
times and results are presented as means ± SDs. –: 0.2 µM DOX-untreated, +: 0.2 µM DOX-treated.
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Figure 4. Effects of ATG/DOX co-treatment on the activations of caspase-3 and -7 and on the expressions
of necroptosis and autophagy factors in MDA-MB-231 cells. (A,B) Cells were attached for 24 h and
then co-treated with 0.2 µM DOX and various concentration of ATG (0–200 µM) for 72 h in DMEM
medium supplemented with 2% FBS. –: 0.2 µM DOX-untreated, +: 0.2 µM DOX-treated (A) ATG/DOX
co-treatment did not affect the cleavages of poly (ADP-ribose) polymerase (PARP), caspase-3, or
caspase-7. Proteins in whole cell lysates were separated by 10% or 15% SDS-PAGE and transferred
to PVDF membranes. All experiments were conducted independently three times. (B) ATG/DOX
co-treatment did not affect the expression of receptor interacting serine/threonine kinase 3 (RIPK3),
LC3-II or Beclin. Proteins in whole cell lysates were separated by 8% or 15% SDS-PAGE and transferred
to PVDF membranes. All experiments were conducted independently three times.

2.4. MDA-MB-231 Cell Death by ATG/DOX Co-Treatment Was Induced AIF-Dependently

Survivin prevents caspase-independent apoptosis inducing factor (AIF)-dependent cell death [26].
Accordingly, we evaluated the effect of ATG/DOX co-treatment on the nuclear translocation of AIF to
determine whether inhibition of survivin expression by ATG/DOX co-treatment was associated with
AIF-dependent cell death. The results showed that nuclear AIF levels were increased by ATG/DOX
co-treatment as determined by Western blotting and immunocytochemistry (Figure 5A,B), which
indicated ATG/DOX co-treatment-induced cell death was mediated by AIF.
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Figure 5. Effects of ATG/DOX co-treatment on the nuclear translocation of apoptosis inducing factor
(AIF) in MDA-MB-231 cells. (A,B) Cells were attached for 24 h and then co-treated with 0.2 µM DOX
and various concentration of ATG (0–200 µM) for 72 h in DMEM medium supplemented with 2% FBS.
(A) Nuclear AIF levels were increased by ATG/DOX co-treatment. Proteins in whole cell lysates and
in nuclear and cytosolic factions were separated by 10% or 15% SDS-PAGE and transferred to PVDF
membranes. Nuclear and cytosolic fraction bands were densitometrically analyzed using Scion Image
software and band densities were normalized versus Lamin B1 and GAPDH, respectively. p < 0.05 and
p < 0.005 vs. non-treated controls. * and ** indicate p < 0.05 and p < 0.01 vs. DOX-only. All experiments
were independently conducted three times, and results are presented as means ± SDs. −: 0.2 µM
DOX-untreated, +: 0.2 µM DOX-treated (B) After serial fixation with ice-cold methanol and acetone,
we immunostained for cellular AIF and nuclei were stained with 4’,6-diamidino-2-phenylindole (DPAI)
supplemented antifade mounting solution. Cells were visualized under a fluorescence microscope.
ATG/DOX co-treatment was found to promote the nuclear translocation of AIF.
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2.5. Sustained Increase of p21 Was Associated with ATG/DOX Co-Treatment-Induced Cell Death

p21 is a cyclin-dependent kinase that induces cell cycle arrest [27] and has been reported to
be involved in cell death [28,29]. Therefore, we evaluated the effect of ATG/DOX co-treatment on
p21 expression. The mRNA and protein levels of p21 were enhanced by ATG/DOX co-treatment
in a dose-dependent manner (Figure 6A,B). Furthermore, the up-regulation of its mRNA and
protein levels were sustained at 24–72 h after ATG/DOX co-treatment, which suggested ATG/DOX
co-treatment-induced cell death involved the up-regulation of p21.
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Figure 6. Effects of ATG/DOX co-treatment on p21 expression in MDA-MB-231 cells. (A) Cells were
attached for 24 h and then co-treated with 0.2 µM DOX and various concentration of ATG (0–200 µM)
for 24, 48, or 72 h in DMEM medium supplemented with 2% FBS. The expression of p21 protein was
increased by ATG/DOX co-treatment. Proteins in whole cell lysates were separated by 15% SDS-PAGE
and transferred to PVDF membranes. –: 0.2 µM DOX-untreated, +: 0.2 µM DOX-treated (B) Cells were
attached for 24 h and then co-treated with 0.2 µM DOX and various concentration of ATG (0–200 µM)
for 24 and 72 h in DMEM supplemented with 2% FBS, respectively. p21 mRNA levels were enhanced by
ATG/DOX co-treatment. Relative p21 mRNA expressions were determined in triplicate and normalized
versus GAPDH. *, **, # and ## indicate p < 0.05, p < 0.01, p < 0.001, and p < 0.0001 vs. DOX treated cells.

2.6. Involvement of p38 MAPK Phosphorylation in ATG/DOX Induced Cell Death

C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38, and Akt
play important roles in cell survival and death [30,31]. Hence, we evaluated whether ATG/DOX
co-treatment altered the phosphorylations of MAPKs and Akt. We found p38 MAPK phosphorylation
was increased by co-treatment and that this co-occurred with the nuclear translocation of AIF and
reductions in the phosphorylations of Akt and JNK (Figure 7). Furthermore, ribosomal protein S6
phosphorylation induced by DOX was prevented by ATG/DOX (Figure 7), whereas DOX-induced
phosphorylations of ERK and Rel/p65 were unaffected (Figure 7). These results suggest increased cell
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death by ATG/DOX co-treatment was mediated by the activation of p38 and by suppressions of the
JNK and Akt signaling pathways.
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Figure 7. Effects of ATG/DOX co-treatment on the phosphorylations of Akt, mitogen-activated
protein kinases (MAPKs), S6 and NF-κB in MDA-MB-231 cells. Cells were attached for 24 h
and then co-treated with 0.2 µM DOX and various concentration of ATG (0–200 µM) for 72 h in
DMEM medium supplemented with 2% FBS. Phosphorylated p38 levels induced by DOX were
concentration-dependently increased by ATG. In contrast, DOX-induced phosphorylation of S6 was
prevented by ATG. ATG/DOX co-treatment reduced the phosphorylations of Akt and JNK. Proteins in
whole cell lysates, nuclear fractions, and cytosolic factions were separated by 8% or 10% SDS-PAGE
and transferred to PVDF membranes. Bands in nuclear and cytosolic fractions were densitometrically
analyzed using Scion Image software and band densities were normalized versus GAPDH. & and
&& indicate p < 0.05 and p < 0.01 vs. non-treated controls. *, ** and # indicate p < 0.05, p < 0.01, and
p < 0.001 vs. DOX treated cells. All experiments were conducted independently three times, and the
results are presented as means ± SDs. –: 0.2 µM DOX-untreated, +: 0.2 µM DOX-treated

3. Discussion

Although DOX is useful anti-cancer drug, its side effects severely restrict its use. However,
reducing DOX dosages markedly mitigate these side effects. In the present study, we found the
cytotoxic activity of DOX was significantly enhanced by co-treating it with ATG in MDA-MB-231
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human triple-negative breast cancer cells and that DOX uptake was dose-dependently enhanced and
MRP1 expression was dose-dependently suppressed in these cells (Figures 1B and 2A,C). Furthermore,
the presence of ATG synergistically increased DOX cytotoxicity (Figure 1C). These results suggest that
combinatorial ATG/DOX should be considered a potential treatment for triple-negative breast cancer
that reduces the side effects of DOX.

In the present study, ATG co-treatment increased DOX-induced H2A.X phosphorylation, reversed
DOX-induced survivin and RAD51 protein expressions, and increased DOX uptake by MDA-MB-231
cells (Figure 2A,B). H2A.X phosphorylation is the result of DNA damage [32,33], and thus, we
speculated that increased DOX-induced H2A.X phosphorylation by ATG reflects an increase in DNA,
and that this enhanced MDA-MB-231 cell death (Figure 1C). Cell death by DNA damage is primarily
caused by a failure to repair DNA [34,35], and survivin and RAD51 play important roles in DNA
repair [36,37]. Hence, the ATG/DOX-induced suppressions of survivin and RAD51 protein levels
suggests increased cell death was due to an inability to repair DNA. Consequently, the present results
suggest that ATG/DOX co-treatment-induced MDA-MB-231 cell death was associated with DNA
damage and failure of the DNA repair system.

Constitutively activated STAT3 has been observed in various cancers and shown to enhance
cell proliferation, invasion, and survival and to inhibit apoptosis in breast cancer cells [38]. Studies
have also shown the growth of breast cancer cells is inhibited by STAT3 inhibitors. Apoptotic
cell death was observed by treating MDA-MB-231 human breast cancer cells with STAT3-siRNA
or inhibiting STAT3, for example, decreased phosphorylation of STAT3 by hydrazinocurcumin
was associated with down-regulations of the expressions anti-apoptotic and metastasis-enhancing
factors [39–41]. Furthermore, survivin expression is transcriptionally regulated by STAT3 [42]. In the
present study, STAT3 phosphorylation and survivin were down-regulated by ATG/DOX co-treatment
in MDA-MB-231 cells (Figure 2B). These results suggest that ATG/DOX co-treatment enhances cell
death by down-regulating DOX-induced survivin expression and STAT3 phosphorylation.

Decreases in Bcl-xL and Bcl-2 levels are closely associated with apoptotic cell death mediated
by mitochondrial disruption [43]. In contrast, increases in BAX (a member of the pro-apoptotic Bcl-2
family) levels in mitochondria is an indicator of apoptotic cell death [44]. In the present study, we
observed ATG/DOX co-treatment reduced cellular and mitochondrial Bcl-xL and Bcl-2 levels and
increased mitochondrial BAX levels (Figure 3), which suggests ATG/DOX co-treatment induced cell
death by disrupting mitochondrial integrity by down-regulating Bcl-xL and Bcl-2 levels and inducing
the translocation of BAX to mitochondria.

Caspase-dependent apoptosis is a well-known type of programmed cell death system. However,
in the present study, ATG/DOX co-treatment was not associated with the activations of caspase-3 or -7
(Figure 4A) and increases of LC-3II (an autophagy marker) and of RIP3K (a necrosis marker) were not
observed (Figure 4B). In contrast, ATG was found to dose-dependently augment AIF protein levels
as determined by a nuclear fractionation assay and fluorescence immunocytochemistry (Figure 5).
AIF is a key inducer of caspase-independent cell death and causes chromatin condensation and
DNA fragmentation [45]. In addition, we previously observed the nuclear translocation of AIF from
mitochondria during apoptosis induced by staurosporin, etoposide, ceramide, or cisplatin [45,46].
Furthermore, it has been reported induction of Bcl-2 expression by epithelium-derived factor inhibited
apoptotic cell death by suppressing the nuclear translocation of AIF from mitochondria [47], and that the
up-regulation of mitochondrial BAX caused release of AIF from mitochondria by inducing mitochondrial
outer membrane permeabilization [48]. In the present study, we observed ATG/DOX co-treatment
down-regulated Bcl-2 and Bcl-xL and up-regulated mitochondrial BAX and nuclear AIF levels (Figures 3
and 5). Consequently, our study indicates ATG/DOX co-treatment-induced MDA-MB-231 cell death
was mediated by the nuclear translocation of AIF induced by mitochondrial damage.

Mammalian target of rapamycin (mTOR) complex 1/S6K1 signaling influenced T cell activation
and differentiation without requiring S6 phosphorylation, which suggested S6 may affect cell responses
independently of mTOR [49]. Furthermore, other investigators have reported DNA damage by
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7,12-dimethylbenz(a)anthracene was prevented by S6 phosphorylation in a knock-out mouse model
and that hyperphosphorylation of S6 was linked with poor prognosis in NSCLC and with metastatic
potential in H1650 and SK-MES-1 NSCLC cells [50,51]. In the present study, we found that ATG
co-treatment reversed DOX-mediated phosphorylation of S6 and the increase of survivin and RAD51
(Figures 2C and 7). These results suggest ATG promotes DOX-mediated cell death by inhibiting DNA
repair and improves prognoses by suppressing DOX-induced S6 phosphorylation.

p21 enhancement is primarily caused by the induction of cell cycle arrest and its expression is
associated with p53 induced by DNA damage [52]. Many studies have shown that cell senescence
is associated with p21 accumulation [53]. Moreover, the induction of apoptosis by suberoylanilide
hydroxamic acid (a histone deacetylase inhibitor) was found to be induced by p21 overexpression
in T24 human bladder carcinoma cells [54]. In the present study, we found ATG/DOX co-treatment
resulted in the prolonged induction of p21 in MDA-MB-231 cells (Figure 6). Li et al. showed that
oridonin-induced cell death by autophagy and apoptosis was also closely linked with the sustained
up-regulation of p21 [29], and others have shown sustained p21 induction triggers intracellular reactive
oxygen species (ROS) production [28,55]. It has been well established that DOX generated ROS has
cardiotoxic effects in cancer patients. In the present study, we found that DOX uptake by MDA-MB-231
cells and the cytotoxic activity of DOX were increased by ATG (Figures 1 and 2A). Consequently,
these observations indicate that increased cytotoxic activity of DOX by ATG might be associated with
enhanced ROS production mediated by the overexpression of p21.

Phosphorylation of p38 during cell death has been reported on a number of occasions [56–60].
Furthermore, several research teams have shown p38 activation is linked with caspase-independent cell
death mediated by the nuclear translocation of AIF [56,59,61,62]. Others have reported the mitochondrial
translocation of BAX is induced by the phosphorylation of p38 [63,64]. In the present study, we observed
that DOX-induced p38 phosphorylation was dose-dependently enhanced by ATG/DOX co-treatment
and that this matched increases in the nuclear and cytosolic levels of AIF (Figures 5 and 6A). Moreover,
ATG/DOX co-treatment was found to increase of BAX levels in mitochondria (Figure 3). Consequently,
these results indicate that enhanced cell death by ATG/DOX co-treatment was caused by the p38-linked
nuclear translocation of AIF and the mitochondrial translocation of BAX.

In the present investigation, we confirmed that ATG enhances the cytotoxic activity of DOX. This
is consistent with the report that ATG increased cisplatin sensitivity in non-small cell lung cancer
cells [21]. Furthermore, several studies showed that ATG suppresses chemical-induced metastatic
potential in breast cancer cells, induces cell death of triple-negative breast cancer cells and has no
significant toxicity less than 6 mg/kg in beagle dongs [20,65,66]. Anticancer drugs, such as doxorubicin,
cisplatin, etc., have various side effects. To minimize the side effects, reducing the dosage of anticancer
drug is an effective strategy. Therefore, the results suggest that ATG is a useful candidate to enhance
therapeutic efficacy of anticancer drugs with diminished side effects.

Taken together, the present study demonstrates that ATG enhances the cytotoxic effect of DOX
by increasing the cellular uptake of DOX and inducing the mitochondrial translocation of BAX,
prolonged p21 induction, and the activation of p38, thus causing AIF-dependent cell death signaling. In
conclusion, this investigation shows ATG should be considered a powerful candidate for combinational
chemotherapy. However, this study proved the effect of ATG/DOX co-treatment at the cellular level.
Therefore, further investigations in animal level must be required to evaluate the effect clearly.

4. Materials and Methods

4.1. Materials

ATG, DOX, and MTT reagent were purchased from Sigma Aldrich (Merck KGaA, Darmstadt,
Germany). Tris base, glycine, and sodium chloride (NaCl) were obtained from BioShop Canada Inc.
(Burlington, ON, Canada) and Dulbecco’s Modified Eagle’s medium (DMEM), antimycotic/antibiotic
solution and trypsin were from Welgene, Inc. (Gyeongsan, Korea). Dimethyl sulfate (DMSO) was



Int. J. Mol. Sci. 2020, 21, 2997 12 of 18

bought from Duksan Pure Chemicals (Ansan, Korea) and 30% acrylamide/bis-acrylamide solution
from SERVA Electrophoresis GmbH (Heidelberg, Germany). Bicinchoninic acid (BCA) protein assay
kits and horseradish peroxidase-conjugated goat anti-mouse and -rabbit IgG were obtained from Pierce
Biotechnology (Rockford, IL, USA). Alexa 488 (Liedtke et al.)-conjugated goat anti-rabbit antibody
was acquired from Thermo Fisher Scientific (Waltham, MA, USA), and antifade mounting solution
containing 4′,6-diamidino-2-phenylindole (DAPI) was from BioLegend (San Diego, CA, USA). Sodium
dodecyl sulfate (SDS) and N,N,N′,N′-tetramethylethylenediamine were purchased from VWR Life
Science AMRESCO biochemicals (Solon, OH, USA). Antibodies for H2A.X, phospho-H2A.X, STAT3,
phospho-STAT3, survivin, RAD51, Bcl-2, Bcl-xL, BAX, AIF, PARP, caspase-3, caspase-7, RIPK3, LC3,
Beclin 1, p38, phospho-p38, Akt, phospho-Akt, JNK, phospho-JNK, S6, phospho-S6, ERK, phospho-ERK,
Rel/p65, phospho- Rel/p65, mitochondrial cytochrome c oxidase subunit IV (COX IV), Lamin B1 and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were purchased from Cell Signaling Technology
(Beverly, MA, USA). Antibody for β-actin was from Santa Cruz Biotechnology Inc. (Dallas, TX, USA).

4.2. Cell Culture

MDA-MB-231 human breast cancer cells were obtained from the Korean Cell Line Bank (Seoul,
Korea) and grown in DMEM containing 1% antimycotic/antibiotic solution (100 units/mL of penicillin,
100 µg/mL of Streptomycin and 0.25 µg/mL amphotericin B) and 10% heat-inactivated fetal bovine
serum (FBS; American Type Culture Collection, Manassas, VA, USA) in a 5% CO2 atmosphere at 37 ◦C.
To perform experiments, culture media were replaced with conditioned media supplemented with 1%
antimycotic/antibiotic solution and 2% FBS.

4.3. Cell Viability Analysis

MTT assay was performed to evaluate cytotoxicity of DOX and ATG and to assess whether ATG
increases cytotoxic activity of DOX in MDA-MB-231 cells. MDA-MB-231 cells (5 × 103) were plated in
the wells of a 96-well plate and allowed to attach for 24 h. Culture medium was then removed and
conditioned medium containing DOX and ATG was added. After co-culture for 72 h, 20 µL of 5 mg/mL
MTT reagent was added, and cells were incubated for 4 h in a dark. Media were then removed and
the formazan was dissolved by adding DMSO. Optical densities were measured at 540 nm using a
Spectramax M2 spectrophotometer (Molecular Devices, LLC, Sunnyvale, CA, USA).

4.4. Doxorubicin Uptake Assay

We performed flow cytometric analysis to investigate the effect of ATG on DOX uptake in
MDA-MB-231 cells. MDA-MB-231 cells were seeded into 6-well plates at 2 × 105 cells/well and allowed
to attached for 24 h. Cells were then pre-treated with 0 to 200 µM of ATG for 48 h and administrated
with 0.2 µM DOX for 24 h, detached by trypsinization, washed twice with phosphate buffered saline
(PBS) containing 2% FBS, and resuspended in PBS containing 2% FBS. Resuspended cells were analyzed
by FACSCalibur II flow cytometry (Becton Dickinson Biosciences, San Jose, CA, USA).

4.5. Determining Combined Drug Interactions

Combination index (CI) values were calculated to determine whether 10–200 µM ATG
synergistically enhanced the cytotoxicity of DOX. The association between the effects of ATG- and
DOX-alone and in combination were analyzed using Compusyn Version 1.0 software (Combosyn
Inc., Paramus, NJ, USA), as previously described [19]. CI values were determined for each dose and
the corresponding effect level, presented as the fraction affected (Fa). The CI values at different Fa
levels was automatically simulated as CI-Fa plot by Compusyn software. The CI values obtain a
quantitative definition for the synergism (CI < 1), additive effect (CI = 1) and antagonism (CI > 1) of
ATG/DOX combinations.
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4.6. Quantitative Real-Time Polymerase Chain Reaction

To estimate the change of gene expression in MRP1 and BCRP1, quantitative real-time polymerase
chain reaction was conducted. MDA-MB-231 cells (2 × 105 cells/well) were plated into 6-well plates
and allowed to attach for 24 h. Cells were then treated with 0.2 µM DOX with ATG (0–200 µM)
for 24 h in DMEM supplemented with 2% FBS. The cells were harvested by trypsinization and
lysed using the easy-BLUETM Total RNA Extraction Kit (iNtRON Biotechnology, Inc., Sungnam,
Korea). Total RNA concentrations were measured using a NanoDrop spectrophotometer (Schimadzu
Scientific Instruments, Columbia, MD, USA) and cDNA synthesis was performed using 1 µg of total
RNA and GoscriptTM Reverse Transcriptase (Promega, Madison, WI, USA). Relative expressions
of MRP1 and BCRP1 were determined by real-time PCR using QGreen 2× SybrGreen Master
Mix (Cellsafe, Suwon, Korea) and an EcoTM Real-time PCR unit (Illumina, San Diego, CA, USA).
PCR products were confirmed by melting curve analysis and relative expressions were evaluated
using EcoStudy v. 5.0.4890 software (Illumina). GAPDH was used as the internal control. PCR
primers were synthesized by Bioneer Corporation (Daejeon, Korea) and the primer sequences of
target genes were as follows: MRP1, forward 5′-GCGAGTGTCTCCCTCAAACG-3′ and reverse
5′-TCCTCACGGTGATGCTGTTC-3′; BCRP1, forward 5’-GCAGATGCCTTCTTCGTTATG-3′ and
reverse 5’-TCTTCGCCAGTACATGTTGC-3′; GAPDH, forward 5’-CTGCTCCTCCTGTTCGACAGT-3′

and reverse 5’-CCGTTGACTCCGACCTT CAC-3′.

4.7. Mitochondrial Fractionation

Subcellular localization of Bcl-xL, Bcl-2, and BAX proteins were observed by mitochondrial
fractionation. After incubating MDA-MB-231 cells with 0.2 µM of DOX plus 0 to 200 µM of ATG in
DMEM medium supplemented with 2% FBS, cells were collected by scraping with a rubber policeman,
and floating cells were centrifuged at 1000 rpm for 5 min. Mitochondrial fractionation was performed
using the Mitochondria/Cytosol Fractionation Kit (BioVision Inc., Milpitas, CA, USA). Prepared
mitochondrial and cytosolic fractions were stored at −80 ◦C until required.

4.8. Nuclear Fractionation

We performed nuclear fractionation to assess nuclear AIF level. MDA-MB-231 cells were
co-incubated with 0.2 µM of DOX plus 0–200 µM of ATG in DMEM medium supplemented with 2%
FBS for 72 h, collected by scraping, and floating cells were obtained by centrifugation at 1000 rpm
for 10 min. Cells were then washed with ice-cold PBS, resuspended in a hypotonic buffer (20 mM
Tris-HCl pH 7.4, 10 mM NaCl, and 3 mM MgCl2) containing protease inhibitor cocktail, and held on
ice for 15 min. NP-40 solution (1/8 vol., 10%) was then added to cell suspensions and vortexed for
10 s. Mixtures were then incubated on ice for 10 min and centrifuged at 3000 rpm for 10 min at 4 ◦C.
Supernatants were collected (cytosolic fractions), and pellets were lysed with Cell Extraction Buffer
(Invitrogen, Carlsbad, CA, USA) containing protease inhibitor cocktail for 30 min on ice, centrifuged at
14,000× g for 30 min at 4 ◦C, and supernatants (nuclear fractions) were transferred to new tubes. The
nuclear fractions were used for assessing nuclear level of AIF by Western blotting.

4.9. Western Blotting

MDA-MB-231 cells were seeded into 6-well plates and allowed to attach for 24 h in culture
medium, and then co-incubated with 0.2 µM of DOX and 0 to 200 µM of ATG for 72 h in DMEM
medium supplemented with 2% FBS. Cells were then lysed with radioimmunoprecipitation assay lysis
buffer (Biosesang, Seongnam, Korea) supplemented with protease inhibitor cocktail and phosphatase
inhibitor cocktail (GenDEPOT, LLC, Barker, TX, USA) and centrifuged at 13,000 rpm for 10 min at 4 ◦C.
Supernatants were removed (whole cell lysates) and stored at −22 ◦C until required. Total protein
concentrations in whole cell lysates were determined using the BCA method. Same amounts of proteins
were subjected to SDS-polyacrylamide gel electrophoresis (PAGE) on 8%–15% gel and transferred to
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polyvinylidenefluoride (PVDF) membranes (Pall Life Science, Port Washington, NY, USA), which were
blocked with 1% bovine serum albumin (BSA) or 5% non-fat dry milk (Santa Cruz Biotechnology, Inc.)
in Tris-buffered saline-Tween (TBS-T, 50 mM Tris-HCl, 150 mM NaCl, and 0.1% Tween-20) and probed
with primary antibodies diluted at 1:3000 in 1% BSA or 5% non-fat dry milk in TBS-T overnight at 4 ◦C.
Membranes were washed three times with TBS and treated with secondary antibody diluted at 1:5,000
in TBS for 1 h at room temperature. Target protein bands were developed using a chemiluminescent
substrate and photographed using Luminescent Image Analyzer LAS-4000 (Fujifilm Corporation,
Tokyo). Densities of target protein bands were analyzed using Scion Image software (Alpha 4.0.3.2)
(Scion Corporation, Frederick, MD, USA).

4.10. Fluorescence Immunocytochemistry

The nuclear localization of AIF in MDA-MB-231 cells was observed by fluorescence
immunocytochemistry. Cover slips were sterilized with 70% ethanol in PBS and by exposure to
UV radiation for 10 min and then collagen-coated. Cells were plated on cover slips, cultured for 24
h, co-treated with DOX and 0–200 µM of ATG for 72 h, and serially fixed in ice cold methanol for 4
min and then in acetone for 2 min. After fixation, cells were blocked in phosphate buffered saline
(PBS) supplemented with 10% FBS, probed with 1:200 diluted AIF antibody in PBS overnight at 4◦C,
and treated with 1:200 diluted Alexa 488-conjugated goat anti-rabbit IgG in PBS for 2 h at room
temperature in the dark. Cells were then mounted onto coverslips, dipped into antifade mounting
solution containing DAPI and placed on glass slides. Alexa 488 and DAPI stained cells were observed
and photographed under a fluorescence microscope (Carl Zeiss, Jena, Germany).

4.11. Statistical Analysis

MTT assay, real-time PCR, and Western blotting results were analyzed by one-way ANOVA
followed by Dunnett’s post-hoc test using SPSS Ver. 20.0 software (SPSS, Inc., Chicago, IL, USA).
Results are presented as means ± SDs and statistical significance was accepted for p values < 0.05.
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Abbreviations

AIF Apoptosis-inducing factor
ATG Arctigenin
BAX Bcl-2-associated X protein
Bcl-2 B-cell lymphoma 2
Bcl-xL B-cell lymphoma-extra large
BCRP Breast cancer resistance protein
CI-Fa Combination index-Fraction affected
COX IV Cytochrome c oxidase subunit 4 isoform 1
Dox Doxorubicin
ERK Extracellular signal-regulated kinase 1/2
GAPDH Glyceraldehyde-3-phosphate dehydrogenase
H2A.X H2A histone family member X
HER2 Human epidermal growth factor receptor 2
HR Hormone receptor
JNK C-Jun N-terminal kinase
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LC3 Microtubule-associated protein 1A/1B-light chain 3
MRP1 Multidrug resistance-associated protein 1
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NSCLC Non-small cell lung cancer
PARP Poly (ADP-ribose) polymerase
RIPK3 Receptor-interacting serine/threonine-protein kinase 3
ROS Reactive oxygen species
S6 Ribosomal protein 6
STAT3 Signal transducer and activator of transcription 3
TNBC Triple-negative breast cancer
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